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On Induction of Morphology

Grammars and its Role in

Bootstrapping

Damir Ćavar, Joshua Herring, Toshikazu Ikuta,
Paul Rodrigues, Giancarlo Schrementi

Different Alignment Based Learning (ABL) algorithms have been pro-
posed for unsupervised grammar induction, e. g. Zaanen (2001) and
Déjean (1998), in particular for the induction of syntactic rules. How-
ever, ABL seems to be better suited for the induction of morphological
rules. In this paper we show how unsupervised hypothesis generation
with ABL algorithms can be used to induce a lexicon and morphological
rules for various types of languages, e. g. agglutinative or polysynthetic
languages. The resulting morphological rules and structures are opti-
mized with the use of conflicting constraints on the size and statistical
properties of the grammars, i. e. Minimium Description Length and
Minimum Relative Entropy together with Maximum Average
Mutual Information. Further, we discuss how the resulting (optimal
and regular) grammar can be used for lexical clustering/classification
for the induction of syntactic (context free) rules.

4.1 Introduction

In previous approaches grammar induction algorithms consisted of
three fundamental phases, see e. g. van Zaanen and Adriaans (2001),
Zaanen (2001), Déjean (1998):
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. Hypothesis generation

. Hypothesis selection

. Induction

From the computational perspective the main problems lie on the
generational and selectional level. Both of these components try to
reduce the set of hypotheses about the structure of selected natural
language input to the smallest possible amount that provides the best
coverage given a targeted formalism or description level. That is, it
tries to maximize relevant and minimize irrelevant hypotheses based
on the need to reduce computational complexity and errors in the final
induction phase. Thus, the art of grammar induction is to find the
equilibrium between the amount of hypotheses generated and the effort
invested to select the best candidates.

In what follows, we will discuss the results from investigations into
unsupervised grammar induction algorithms that make use of string
alignment for hypothesis generation driven purely by previous experi-
ence, or, in other words, by the lexicon and the hypotheses generated
at every step in the incremental consumption and induction procedure.
ABL is such an approach, see for example Zaanen (2001). Its propo-
nents have thus far hesitated to recognize ABL as an approach that is
attractive from computational as well as a cognitive perspectives. ABL
constrains the hypothesis space from the outset to the set of hypothe-
ses that are motivated by previous experience/input or a preexisting
grammar. Such constraining characteristics make ABL attractive from
a cognitive point of view, both because the computational complexity
is reduced on account of the reduced set of potential hypotheses, and
also because the learning of new items, rules, or structural properties
is related to a general learning strategy and previous experience only.
The approaches that are based on a brute-force first order explosion of
hypotheses with subsequent filtering of relevant or irrelevant structures
are both memory intensive and require more computational effort.

The basic concepts in ABL go back to notions of substitutabil-
ity and/or complementarity, as discussed in Harris (1955) and Harris
(1961). The concept of substitutability is used in the central part of
the induction procedure itself, the assumption being that substitutable
elements (e. g. substrings, words, structures) are assumed to be of
the same type (represented e. g. with the same symbol). The notion
of “same type” is not uncontroversial. Its use in syntax as a test for
membership in a particular “part-of-speech” category, for example, was
rightly criticized in Pinker (1994) and Chomsky (1955). However, it
remains a rather reliable constituent test, and is certainly reliable in
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the sense in which it is understood in this paper. By “substitutabil-
ity,” we understand not so much an instrument to identify consitutents
of the same type but rather of a method of identifying constituents
as such. The typing of constituents could be the result of indepen-
dent components that use alignment information and other statistical
properties.

Nevertheless, the ABL approach has disadvantages if not used prop-
erly. The size of the grammar can affect the runtime behavior of ABL
systems, as can learning errors. In the following, we will describe our
implementation and the use case, the problems and solutions for a
grammar induction algorithm based on ABL.

While ABL is used in a slightly restricted way for hypothesis gener-
ation, we make use of different methods in the evaluation component
to reduce the error rate and increase the performance of the algorithm,
both with respect to the runtime behavior as well as the output quality.
Interacting weighted constraints are used to increase the efficiency of
the resulting grammar and eliminate irrelevant structural descriptions.
In particular, the central constraints we use are:

. Maximum Average Mutual Information (MI), which requires
that the mutual information between segments of a structural de-
scription and the complete structural descriptions acquired so far
(the hypotheses space for the induction procedure), is maximized.
Hypotheses that maximally contribute to the average mutual infor-
mation are preferred.. Minimum Relative Entropy (RE), which requires that the rela-
tive entropy for all resulting structural descriptions is minimized.. Minimum Description Length (MDL), which requires that the
size of the resulting grammar (including structural descriptions) is
minimized.

All constraints are used for evaluation and selection of the best hy-
potheses by taking into account the properties of the resulting grammar
and the structural descriptions it generates. All the constraints seem
to be well-motivated from a cognitive perspective, assuming that the
cognitive resources are limited with respect to e. g. memory capacity
and processing time. Grammar acquisition is seen as a compression
process that emerges under memory and processing time restrictions,
i. e. compressing the language input as much as possible while maintain-
ing online usability. The compression ratio is limited by the processing
capacities and time constraints imposed by language use. Unlimited
creativity is thus seen here to be a side effect of complementary con-
straints of memory driven compression (grammar induction) and time
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and processing driven usability. The algorithm is parametrized along
these lines, allowing for fine grained restrictions of the runtime envi-
ronment. This potentially allows us to test the impact of the different
constraints on the resulting grammar.

One of the underlying research hypotheses here is also that a large
amount of valuable syntactic information can be induced if informa-
tion from other linguistic domains is used. That is, if large parts of the
morphological, phonological or prosodic restrictions can be induced,
assuming that these are to a great extent regular, we expect this infor-
mation to be used as bootstraps to syntactic structure, assuming that
this is mainly context free (or mildly context sensitive). In other words,
the hypothesis here is that at least parts of context free grammar can
be learned if regular grammars are used that describe or generate parts
of natural language input. This is how we understand bootstrapping in
grammar induction or natural language acquisition.

Thus, the design criteria for the algorithm presented here are compu-
tational, cognitive, and linguistic in nature, and though we assume that
the algorithm can be used in virtually all linguistic domains (prosody,
phonology, syntax), our concern here is mainly with the induction of
morphological structure and any underlying rules that might (or might
not) be used to describe such structure. The main research question is
to what extent can we use this type of algorithm to induce morpho-
logical grammars that can then serve, together with the morphological
terminals, as cues for syntactic structure and rules.

4.2 Specification of the algorithm

On the basis of the design criteria for the algorithm, as discussed above,
a first implementation of the ABL-based induction algorithm was in-
cremental. The algorithm was designed as an iterative procedure that
consumes utterances, generates hypotheses for the morphological struc-
ture of every individual word in the utterance, and adds the most ac-
curate hypotheses to the grammar and/or lexicon. The entire cycle of
hypothesis generation, evaluation and induction is passed through for
each word in the input. 1

The variant of the ABL algorithm for morphology that we are using
makes use of simple substring maching, described in further detail be-
low. If a morpheme is found as a submorpheme in an input word, its
edges are assumed to represent potential morpheme boundaries within
that word. We apply the restriction that only words that occure as

1A Python implementation and more detailed information is available at
http://jones.ling.indiana.edu/ abugi/.
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independent morphemes are used for this alignment based hypothesis
generation.

In order to reduce the computational complexity of the algorithm,
we take all generated rules and lexical entries as final if there is more
than one occurrence of a similar pattern in the grammar. There is no
revision of the made hypotheses that enter the final hypothesis space
and are part of the structural descriptions (SD) that serve as input
to the induction procedure, generated wrong SDs being expected to
become statistically insignificant as the incremental grammar induction
process runs.

As mentioned, the input to the algorithm is a list of words that is
processed incrementally. That is, we make use of word boundaries, pre-
supposing an existing segmentation of the input. For the purpose here,
and to generate better results, we focus on the generation of morpholog-
ical segmentation for a given set of words. In principle, however, there
is no reason why the same algorithm, with minor refinements, couldn’t
be used to segment a raw string of alphanumeric characters into usable
units separated by word boundaries. Indeed, we believe that a defining
feature of our work, and one which distinguishes it from previous work,
e. g. Goldsmith (2001), is that there is a concentrated attempt to elimi-
nate all built-in knowledge from the system. The algorithm starts with
a clean state and uses only statistical, numerical, and string matching
techniques in an effort to remain as close as possible to a cognitive
model, with a central focus on unsupervised induction. The main goal
of this strategy is to identify the algorithms that allow for induction
of specific linguistic knowledge, and to identify the possibly necessary
supervision for each algorithm type.

Thus we assume for the input:

. Alphabet: a non-empty set A of n symbols {s1, s2, . . . sn}. Word: a wordw a non-empty list of symbolsw = [s1, s2, . . . sn], with
s ∈ A. Corpus: a non-empty list C of words C = [w1, w2, . . . wn]

The output of the ABL hypothesis generation is a set of hypotheses
for a given input word. A hypothesis is a tuple:

. H =< w, f, g >, with w the input word, f its frequency in C, and
g a list of substrings that represent a linear list of morphemes i w,
g = [m1,m2, . . .mn]

The hypotheses are collected in a hypotheses space. The hypothesis
space is defined as a list of hypotheses:

. Hypotheses space: S = [H1, H2, . . .Hn]
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The algorithm does not make any assumptions about types of mor-
phemes. There is no expectation of specific structure in the input, nor
does it use notions like stem, prefix, or suffix. We assume only linear
sequences. The fact that single morphemes exist as stems or suffixes is
a side effect of their statistical properties (including Frequency and left
and right Pointwise Mutual Information, a term that will be explained
below) and alignment within the corpus, or rather within words.

There are no language specific rules built-in, such as what a mor-
pheme must contain or how frequent it should be. All of this knowledge
is learned, based on statistical analysis of prior experience. However, as
discussed in the last section, at certain points in the learning procedure
we lose the performance benefit of not relying on such rules to escape
linguistic and statistical anomalies that might lead the program astray.

Each iteration of the incremental learning process consists of the
following steps:

1. ABL Hypotheses Generation

2. Hypotheses Evaluation and Selection

3. Grammar Extension

In the ABL Hypotheses Generation, a given word in the utterance
is checked against all the morphemes in the grammar. If an existing
morpheme m aligns with the input word w, a hypothesis is generated
suggesting a morphological boundary at the alignment positions:

w(speaks) +m(speak) = H [speak, s] (4.1)

Another design criterion for the algorithm is complete language in-
dependence. It should be able to identify morphological structures of
Indo-European type of languages, as well as agglutinative languages
(e. g. Japanese and Turkish) and polysynthetic languages like some
Bantu dialects or Native American languages like Lakhota. In order to
guarantee this behavior, we extended the Alignment Based hypothesis
generation with a pattern identifier that extracts patterns of character
sequences of the types:

1. A – B – A

2. A – B – A – B

3. A – B – A – C

This component is realized with cascaded finite state transducers
that are able to identify and return the substrings that correspond to
the repeating sequences.2

2This addition might be understood to be a sort of supervision in the system.
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All possible alignments for the existing grammar at the current state
are collected and evaluated. The Hypothesis Evaluation and Selection
step uses a set of different criteria to find the best hypotheses. The
following evaluation criteria are used:

. Maximization of Pointwise Mutual Information between the mor-
phemes. Minimization of the Relative Entropy for the resulting grammar. Minimization of the Description Length for the resulting grammar. Minimization of the number of morphemes. Maximization of the length of morphemes. Maximization of the frequency of a morpheme boundary over all
ABL Hypotheses

Each of these criteria is weighted relative to the others. While the
different choices for the relative weights of the criteria were partially
arbitrary in our experiments,3 the choice of criteria is not.

The criteria are related to assumptions we make about cognitive as-
pects of language and grammar. Specifically, we assume that the prop-
erties of natural language grammars are constrained by limited mem-
ory resources resulting in a preference for smaller grammars which are
maximally efficient in terms of run time, computational complexity and
memory space consumption. We employ an interaction of MDL, Max-
imum MI and Minimum RE to reach an optimally- sized and efficient
grammar. We relate efficiency to Information Theoretic notions of cod-
ing length, channel capacity and transmission time, as well as symbol
replacement operations for the processing and generation of natural
language utterances. Thus, indirectly the number of morphemes and
their length is related to usability aspects, since the number of mor-
phemes is related to the number of symbols used in induced rules, and
thus to the number of replacement operations in processing and genera-
tion. Along these lines we group the above listed evaluation constraints
into memory and usability oriented constraints.

The choice of evaluation criteria is also influenced by the expectation
that languages will differ with respect to the importance of particular
constraints at specific linguistic levels. The well-known correlation be-
tween richness of morphology and restrictiveness of word order as well

However, as shown in recent research on human cognitive abilities, and especially on
the ability to identify patterns in the speech signal by very young infants Marcus
et al. (1999), we can assume such an ability to be part of the general cognitive
endowment, maybe not even language specific.

3Currently we are working on automatic adaption of these weights during the
learning process. This is potentially the locus of a self-supervision strategy, as also
pointed out by one reviewer.
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as the quantitative correlation between the number of words per ut-
terance and the number of morphemes per word is expected to be due
to different weights on a set of constraints that natural languages are
subject to.

In the following sections the components of the evaluation module
are described in more detail.

4.2.1 Mutual Information (MI)

For the purpose of this experiment we use a variant of standard Mutual
Information (MI), see Charniak (1996) and MacKay (2003) for some use
cases. Information theory tells us that the presence of a given morpheme
restricts the possibilities of the occurrence of morphemes to the left and
right, thus lowering the amount of bits needed to store its neighbors.
Thus we should be able to calculate the amount of bits needed by
a morpheme to predict its right and left neighbors respectively. To
calculate this, we have designed a variant of mutual information that
is concerned with a single direction of information.

This is calculated in the following way. For every morpheme y that
occurs to the right of x we sum the pointwise MI between x and y,
but we relativize the pointwise MI by the probability that y follows x,
given that x occurs. This then gives us the expectation of the amount
of information that x tells us about which morpheme will be to its
right. Note that p(< x, y >) is the probability of the bigram < x, y >
occurring and is not equal to p(< y, x >) which is the probability of
the bigram < y, x > occuring.

We calculate the MI on the right side of x ∈ G by:

∑

y∈{<x,Y>}
p(< x, y > |x)lg p(< x, y >)

p(x)p(y)
(4.2)

and the MI on the left of x ∈ G respectively by:

∑

y∈{<Y,x>}
p(< y, x > |x)lg p(< y, x >)

p(y)p(x)
(4.3)

One way we use this as a metric, is by summing up the left and right
MI for each morpheme in a hypothesis. We then look for the hypothesis
that results in the maximal value of this sum. The tendency for this to
favor hypotheses with many morphemes is countered by our criterion
of favoring hypotheses with fewer morphemes, a topic we will discuss
in greater detail below.

Another way to use the left and right MI is in judging the quality of
morpheme boundaries. In a good boundary, the morpheme on the left
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side should have high right MI and the morpheme on the right should
have high left MI. Unfortunately, MI is not initially very reliable be-
cause of the low frequency of many words, and removing hypotheses
with poor boundaries prevents the algorithm from bootstrapping itself
as all boundaries are poor in the beginning. We are currently experi-
menting with phasing this in as MI is deemed more reliable in making
these judgments.

4.2.2 Description Length (DL)

The principle of Minimum Description Length (MDL) as used in recent
work on grammar induction and unsupervised language acquisition,
e. g. Goldsmith (2001), Marcken (1996), and Grünwald (1998), explains
the grammar induction process as an iterative minimization procedure
of the grammar size, where the smaller grammar corresponds to the
best grammar for the given data/corpus.

The description length metric, as we use it here, tells us how many
bits of information would be required to store a word given a hypothesis
of the morpheme boundaries, using our grammar. For each morpheme
in the hypothesis that doesn’t occur in the grammar we need to store
the string representing the morpheme. For morphemes that do occur in
our grammar we just need to store a pointer to that morpheme’s entry
in the grammar. We use a simplified calculation, taken from Goldsmith
(2001), of the cost of storing a string that takes the number of bits of
information required to store a letter of the alphabet and multiply it
by the length of the string.

lg(length(A)) ∗ len(morpheme) (4.4)

We have two different methods of calculating the cost of the pointer.
The first takes a cue from Morse code and gives a variable cost de-
pending on the frequency of the morpheme that it is pointing to. So
first we calculate the frequency rank of the morpheme being pointed
to, (e. g. the most frequent has rank 1, the second rank 2, etc.). We
then calculate:

floor(lg(freqrank)− 1) (4.5)

to get a number of bits similar to the way Morse code assigns lengths
to various letters.

The second is simpler and only calculates the entropy of the grammar
of morphemes and uses this as the cost of all pointers to the grammar.
The entropy equation is as follows:
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∑

x∈G

p(x)lg
1

p(x)
(4.6)

The second equation doesn’t give variable pointer lengths, but it
is preferred since it doesn’t carry the heavy compuational burden of
calculating the frequency rank.

We calculate the description length for each hypothesis individually
by summing up the cost of each morpheme in the hypothesis. Those
with low description lengths are favored. Note that we do not calculate
the sizes of the grammars with and without any given hypothesis. The
computational load of the algorithm is thus significantly reduced; by
calculating only the relative increase for every suggested hypothesis and
favoring the hypothesis with the smallest increase in overall description
length, a large number of potentially wasteful computational steps are
avoided. In subsequent versions of the algorithm the description length
will be calculated on the basis of the resulting grammars after the
induction step.

4.2.3 Relative Entropy (RE)

We use RE as a measure for the cost of adding a hypothesis to the
existing grammar. We look for hypotheses that, when added to the
grammar, will result in minimal divergence from the original.

We calculate RE as a variant of the Kullback-Leibler Divergence,
see e. g. Charniak (1996) and MacKay (2003). Given grammar G1, the
grammar generated so far, and G2, the grammar with the extension
generated for the new input increment, P (X) is the probability mass
function (pmf ) for grammar G2, and Q(X) the pmf for grammar G1:

∑

x∈X

P (x)lg
P (x)

Q(x)
(4.7)

Note that with every new iteration a new element can appear that is
not part of G1. Our variant of RE takes this into account by calculating
the costs for such a new element x to be the point-wise entropy of this
element in P (X), summing up over all new elements:

∑

x∈X

P (x)lg
1

P (x)
(4.8)

These two sums then form the RE between the original grammar
and the new grammar with the addition of the hypothesis. Hypotheses
with low RE are favored.

This metric behaves similarly to description length, discussed above,
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in that both calculate the distance between our original grammar and
the grammar with the inclusion of the new hypothesis. The primary
difference is that RE also takes into account how the probability mass
function differs between the two grammars and that our variation pun-
ishes new morphemes based upon their frequency relative to the fre-
quency of other morphemes. MDL does not consider frequency in this
way, which is why we include RE as metric. We are currently investi-
gating this to identify under what conditions they behave differently.

4.2.4 Further Metric

In addition to the mentioned metric, we take into account the following
criteria:

. Frequency of Morpheme Boundaries

. Number of Morpheme Boundaries

. Length of Morphemes

The frequency of morpheme boundaries is given by the number of
hypotheses that contain this boundary. The basic intuition is that the
higher this number, i. e. the more alignments are found at a certain posi-
tion within a word, the more likely this position represents a morpheme
boundary. We favor hypotheses with high values for this criterion.

To prevent the algorithm from degenerating into a state where each
letter is identified as a morpheme, we favor hypotheses with lower
numbers of morpheme boundaries. For this same reason, we also take
morpheme length into account, prefering hypotheses with longer mor-
phemes (again, to avoid running into a situation where every letter in
a word is taken to be morphologically significant).

4.2.5 Pre-grammar generation

With every successful evaluation of hypotheses a set of signatures for
each morpheme is generated, similar to the approach suggested in Gold-
smith (2001). An example signature is given in the following, where the
symbol X represents the slot for the respective morpheme left of the
arrow.

. clock → [[[’X’, ’s$’], 1], [[’X’], 1]]

The signature contains the possible realizations of the word clock,
either with the suffix s or alone. Each possible realization contains the
count of total occurencies of the respective word form.

With every evaluation result, the potential hypotheses are evaluated
on the basis of the existing grammar by calculating the likelihood of the
new potential signature, given the existing signatures in the grammar.
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A hypothesis that fits into the general pattern found in the grammar
is prefered.

Grammar generation is performed by replacement of all words with
equal signatures with a symbol and merger of all signatures to one. The
resulting grammar represents the basis for calculations of the descrip-
tion length. Further, the resulting signatures are used to derive type
information for the respective morphemes, as described below.

4.3 Evaluation

We used two methods to evaluate the performance of the algorithm.
The first analyzes the accuracy of the morphological rules produced by
the algorithm after an increment of n words. The second looks at how
accurately the algorithm parsed each word that it encountered as it
progressed through the corpus.

The first analysis looks at each grammar rule generated by the al-
gorithm and judges it on the correctness of the rule and the resulting
parse. A grammar rule consists of a stem and the suffixes and prefixes
that can be attached to it, similar to the signatures used in Goldsmith
(2001). The grammar rule was then marked as to whether it consisted
of legitimate suffixes and prefixes for that stem and also as to whether
the stem of the rule was a true stem, as opposed to a stem plus another
morpheme that wasn’t identified by the algorithm. The number of rules
that were correct in these two categories were then summed, and preci-
sion and recall figures were calculated for the trial. The trials described
in the graph below were run on three increasingly large portions of the
general ficiton section of the Brown Corpus. The first trial was run on
one randomly chosen chapter, the second trial on two chapters, and
the third trial run on three chapters. The graph in Figure 1 shows the
harmonic average (F-score) of precision and recall.

The second analysis is conducted as the algorithm is running and
examines each parse the algorihm produces. The algorithm’s parses are
compared with the correct morphological parse of the word using the
following method to derive a numerical score for a particular parse.
The first part of the score is the distance in characters between each
morphological boundary in the two parses, with a score of one point for
each character apart in the word. The second part is a penalty of two
points for each morphological boundary that occurs in one parse and
not the other. These scores were examined within a moving window of
words that progressed through the corpus as the algorithm ran. The
average scores of words in each such string of words were calculated as
the window advanced. The purpose of these windows was to allow the



On Induction of Morphology Grammars / 59

FIGURE 1 Precision and recall

performance of the algorithm to be judged at a given point without
prior performance in the corpus affecting the analysis of the current
window. The following chart shows how the average performance of
the windows of analyzed words as the algorithm progresses through
five randomly chosen chapters of general fiction in the Brown Corpus
amounting to around 10,000 words. The window size for the chart in
Figure 2 was set to 40 words.

We are currently performing detailed testing of the algorithm on Es-
peranto and Japanese corpora. The highly regular morphology of Es-
peranto should provide an interesting comparison against the fractured
morphology of English. Likewise, the agglutinative nature of Japanese
should provide a fertile test bed for morphological analysis.

The primary experiments conducted to date have been performed
using the Brown Corpus of Standard American English, consisting of
1,156,329 words from American texts printed in 1961 organized into
59,503 utterances and compiled by W.N. Francis and H. Kucera at
Brown University.4

4Additional experiments were done each for Classical Japanese and Esperanto.
The Japanese experiment used a roman-character version of “Genji Monogatari”
(The Tales of Genji), compiled by Prof. Eichi Shibuya of Takachiho University. Due
to the highly regular (and pervasive) nature of the morphology, Esperanto provided
an interesting frame for comparison. Tests were conducted on two corpora compiled
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FIGURE 2 Average performance of the windows of analyzed words

4.4 Conclusion

The algorithm generates very good structures for the initial input,
achieving, under certain settings, a precision of up to 100% (mean-
ing that it returns a wordlist consisting entirely of “usable” words).
Recall was significantly less accurate, but still respectable, scoring in
the 60% range on the settings that reached 100% precision. It will have
been noted in the graph provided above that the process is also quite
stable and improves steadily (if slowly) over time, never falling even
temporarily behind.

Our main focus in this project was to derive the necessary type
information for words that can be used in the induction of syntactic
structures. As discussed in Elghamry and Ćavar (2004), the type infor-
mation can be used in a cue-based learning system to derive higher-level
grammatical rules, up to the level of syntactic frames. The high levels
of precision achived suggest that errors in the input will not be a barrier
in this next step. Using the morphological information discovered here,
it should be possible to induce word types based on their morphological
signatures (in context). The main concern would be whether the algo-
rithm generates results with high enough recall to provide a sufficient
amount of information on which to base such an induction. The recall

from the Internet.
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numbers achieved in our experiments strongly suggest that it does.
The weights of the system are not fixed and can be adjusted to

increase recall, decreasing precision. This might be of relevance for other
domains and applications of this approach.

Ongoing studies with different language types will help us in the
development of the necessary self-supervision component, especially in
the adaptation of the weights of the evaluation constraints during run-
time. Given the post-evaluation component that evaluates the relevance
of signatures for words, we are already able to predict that certain
weights should be reduced, specifically those that are responsible for
the generation of irrelevant hypotheses. More results will be available
after detailed evaluation on data from agglutinative and synthetic or
polysynthetic languages.
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