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ABSTRACT. We generalize Link Grammars with crossing dependencies and pro-
jective Dependency Grammars with a gradient projectivity condition and mul-
tiple heads. The generalizations rely on right linear grammars that encode the
links and dependencies via index storage instructions. The underlying machinery
and the stepwise refinements of the definitions connect the generalized gram-
mars to Linear Indexed Grammars and the mildly context sensitive hierarchy of
Wartena’s right linear grammars that use composite index storages. The gradi-
ent projectivity measure — the non-projectivty depth — relies on a normalized
storage type whose runs represent particular multiplanar decompositions for de-
pendency graphs. This decomposition does not aim at minimal graph coloring,
but focuses, instead, to rigidly necessary color changes in right linear processing.
Thanks to this multiplanar decomposition, every non-projectivity depth k£ charac-
terizes strictly larger sets of acyclic dependency graphs and trees than the planar
projective dependency graphs and trees.

11.1 Introduction

In this paper, we generalize Link Grammars (Sleator and Temper-
ley 1993) and projective Dependency Grammars (Hays 1964, Gaifman
1965) with crossing dependencies and then characterize the generaliza-
tions using formal language theory.

In terms of Dependency Grammars (DGs) (Tesniere 1959), word-
order is distinct from the dependency tree that analyzes the struc-
ture of the sentence. However, Hays (1964) and Gaifman (1965) have
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formalized Tesniere’s ideas so that their DGs describe only projective
linearisations. There is, however, a need for a mildly context-sensitive
(MCS) superclass of the Hays-Gaifman DGs that would capture also
non-projective dependencies, e.g. scrambling, the possibility of the el-
ements of a sentence to lie in arbitrary permutations. The notion of
mild context-sensitivity is an attempt by Joshi (1985) to characterize
the formal properties of grammars that are needed to describe the se-
mantically coherent structures of natural language. However, it seems
that many grammars capturing unrestricted scrambling fail to be MCS
(Joshi 1985), ¢f. Global Index Grammar (GIG) (Castano 2003).

Limited scrambling is captured by Linear Context-Free Rewriting
Systems (LCFRSs) (Vijay-Shanker et al. 1987) that are currently the
best characterisation for MCS grammars. Linear Indexed Grammar
(LIG) (Gazdar 1988) is a LCFRS that represents nested non-local de-
pendencies through an index pushdown that is associated with nodes in
derivation trees. The additional power of some other LCFRSs is based
on generalizing the index pushdown with an index storage of type S.

We base our investigations on Extended Right Linear Sp;-Grammars
(ERL-S-Gs) whose storage type is a tuple of ¢ pushdowns that are seen
as one pushdown during writing (Wartena 2001). Some new restric-
tions on ERL-S74-Gs are developed to obtain various classes of DGs.
The obtained DGs are used to describe non-projective dependencies
and scrambling. They include also the Hays-Gaifman DGs (Hays 1964,
Gaifman 1965) and Link Grammars (Sleator and Temperley 1993) as
their subclasses. The main contributions of this paper are:

+ to formalize an unambiguous multiplanar decomposition method
(Yli-Jyra 2003, 2004b) using composite storages;

+ to generalize the projectivity condition as the non-projectivity depth

+ to show that there are hierarchies of non-projective DGs and Link
Grammars generating MCS languages;

+ to propose further research on storages and right linear processing.
The paper is structured as follows. Section 11.2 defines basic storage

(refined in Sections 11.3 and 11.4) and grammar types (refined in 11.5

and 11.7). Section 11.6 studies some central formal properties of Colored
Multiplanar Link Grammars. Section 11.8 concludes the paper.

11.2 The Basic Machinery
11.2.1 Storage Type
In this section, we define an abstract storage type S from which we

refine storage types Siiv, Spd, S;;L N (S;;jr) (in Section 11.3), and
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R(N(S;;ir)) (in Section 11.4). The aim of the stepwise refinements of

the storage type is to relate our proposal to prior work.

Definition 1 A storage type is a tuple S = (C, C;, Ct, ®, II, m), where

+ (' is the set of configurations, and Cj, Cy C C' are respectively the
sets of initial and final configurations,

« @ and II are respectively the sets of instructions and predicates,

« m is the meaning function. It associates to each m € II the corre-
sponding function m(w): C — {TRUE, FALSE}, and to each ¢ € ®
the corresponding partial function m(¢): C' — C.

The meaning function m is extended to BY, the Boolean combinations
of the predicates II, in the natural way and to the nonempty strings
of instructions ¢ = ®T by defining m(p1h2) (k) = m(g2)(m(¢p1)(k)),
where k € C.

11.2.2 Concatenating Storage Type

Wartena (2001) defines a trivial (memoryless) storage Styiv, an ordinary
pushdown S,,q and concatenations on storage types. The concatenation
with respect to writing is denoted as o,,.

writing sees these as one pushdown unused

/ﬂ—AJ\

absolute indexes:
Spdl Spa2 Sd@l Sd@ Sd@+l pdc

L\bi bp - !

® @@@@
® @ @

relative indexes:  Spd,-1 Spdo Spd,1

FIGURE 1 Storage type (...(((Striv 0wSpd,1) 0wSpd,2) ©wSpd,3) - --) %wSpd,e
with applicable operations T (t), POP (r) and PUSH (w)

We restrict our attention to storages of type (...(((Seriv ©w Spd,1) Ow
Spd,2)0wSpd,3) - - - )0wSpd,c that is intuitively a tuple (Spd,1, Spd,2, Spd,3s

., Spd,e) of ¢ pushdowns Spq, (Figure 1) with the restriction that
writing new elements into pushdown Spq,, is permitted only if all the
succeeding pushdowns Spd p+1,---,Spd,c are empty. Otherwise each
pushdown can be used independently of the others.

Definition 2 A concatenating tuple of ¢ pushdowns over a stack al-
phabet T is the storage type S;;iF:(C’, Ci, Ct, @, I1, m) where

+ the configurations are C' = (L(I"'U {f})*)¢, where L ¢ T is a special
symbol denoting the bottom of the pushdown, and  is a semaphore
reserved for implementing a restriction in Section 11.3;
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+ the unique initial and final configuration is C; = C¢ = { L}
+ the predicates are Il = {Tp(a) | 1 <p<c,a e TU{L,{}}
+ the instructions are ® = {ID, UNDEF} U {PUSH,(8) |1 <p <,

Be(u {th™} U {pory(B) |1 <p<c, Be (T U{th"}
The basic meanings of predicates II and instructions ® are given by
m(1ID)({on,: -+, ) = (a, - o)
a))((al,- 0p—1, Bb, app, e, 040>) = (a=0b),
(ag, - ap, L L)) = (g, - 0y 1, p B, Ly -+, L)
({01, 0%, iy - sae)) = (o, - o)

where " is the reverse of string 8 € (I' U {f})* and the function
m(¢) : C — C remains undefined for all other cases ¢ € .

m(PUSHp(5§
m(POP, (S

11.2.3 Context-free Linear-S-Grammars
Definition 3 Let S = (C, C;, C¢, @, II, m) be a storage type. A
Context-Free Linear S-Grammar with an Eztended Domain of Local-
ity, EDL-CFL-S-G, is a tuple G = (Vn, Vr, P, S, ko), where
+ the pairwise disjoint finite sets Vy and Vp are the nonterminal and
terminal alphabets, respectively,
« S € Vi is the start symbol, and kg € C; is the start configuration, and
« P is a finite set of productions of the form
X[b] — if 7 then w (11.1)
X[p1] = if 7 then ( Y(po] (o (11.2)
where X, Y €Vy, ¢1,02€®F, 7€ B (1, € (VNUVr)*, and we V.
The set S=((Vy x C) U Vp)* is called the set of sentential forms. A
sentential form o = (X, k)8 € S is said to derive a sentential form
T =ayp € S, written o=-7, for some «, 3,7 € S, if
+ P contains some production r of the form (11.1), m(w)(k)= TRUE,
and v = w, or,
+ P contains some production 7 of the form (11.2), m(7)(m(¢1)(k)) =

TRUE, m($102)(k) € C, and v={{ (Y, m(p1¢2)(k))(, where (] and
¢4 are obtained from ¢; and (s, respectively, by replacing every non-

terminal Z by (Z, ko).
The language generated by the grammar G is defined as L(G) =
{a1...an | ((S,k0)) =* 7,7 € V;}, where =* denotes the reflexive
and transitive closure of the derivation relation =.

The following definition and theorems relate some restrictions of
the class of EDL-CFL-S-Gs. The languages generated by a class C of
grammars is denoted by L(C).
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Definition 4 A Right Linear S-Grammar with an Extended Domain
of Locality, EDL-RL-S-G, is a EDL-CFL-S-G whose productions of
the form (11.2) are such that (; € V;t and (> € e. A Right Linear
S-Grammar, RL-S-G, is an EDL-RL-S-G whose productions of the
form (11.2) are such that ¢; = ID and ¢ € P.

Every EDL-CFL-S-Grammar whose productions of the form (11.2),
are such that ¢; = 1D and ¢ € @, is a Context-Free Linear S-Grammar,
CFL-S-G, (Weir 1994).

Every CFL-S-G whose productions of the form (11.2) are such
that ¢; € Vn and (o € Vp U {e}, is an Extended Right Linear S-
Grammar, ERL-S-G, (Wartena 2001).1

Theorem 1 EDL-CFL-S-Gs and CFL-S-Gs generate the same lan-
guages, and EDL-RL-S-Gs and RL-S-Gs generate the same languages.

Proof. The inclusions L(Cgpr.crr.s.c) C L(Ccrr.s.c) and
L(CepL-rL-5-6) C L(CrL-s.¢) follow from the definition of the gram-
mars. To show that the reverse inclusions hold, we replace productions
of the form (11.2) by expanding them syntactically into

X[i0] = if TRUE then (1 Q) r4,[D] o
and defining the productions for new nonterminals QY inductively as

QY [In] — if TRUE then Y [ID]

Y ] —if 7’ then QY [D]

T'w

QY,[1D] — if TRUE then Q) [¢']

where 7/ € B, ¢ € ®*, and where w denotes suffixes of the three-part
string ¢1m¢o. All the productions of the form (11.2) in the expanded
grammar contain only productions where ¢; = ID and ¢o € ®. The
expanded grammar recognizes the language of the original grammar. [

Theorem 2 For every RL-S-G there is an ERL-S-G generating the
same language and the same storage instruction sequences for strings.

Proof. A new nonterminal and a new production are created for each
non-empty prefix of ¢; € VT+ . This allows replacing (; € VTJr with
¢1 € V& in the productions of the ERL-S-G. O

LAlthough ERL-S-Gs have left-linear productions such as X — Y[¢2] a, the
missing right linear production X — a Y[¢2] can be simulated easily via productions
X — (1 Y[¢2] and ¢1 — a where (1 € Viy. The attribute “right linear” signals that
the storage instruction [¢p2] goes with Y rather than ¢;
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11.3 Normalized Storage
11.3.1 The Intuition

If the number of pushdowns is larger than the number of crossings in
the dependency structure that is associated with the terminal string,
EDL-CF L-S;hF—Gs have freedom to allocate different pushdowns for
different stack symbols.

Spd,1 Spd.2 Spd.1 Spd.2
g 1 D D N
L DO O DO D
LIL a b‘ Ii 7777} LIL a|  Jlb 777}
lILa Ii 77771 LILa O i,,,,,:
H O DR DI
strategy 1 strategy 2

FIGURE 2 An example of unmotivated ambiguity in storage allocation

In order to eliminate strategies 2 and 3 shown in Figure 2, the core
restrictions, (1) the LIFO discipline and (2) the concatenating stor-
age type, are complemented with conditions (3) and (4) that say that
writing to an empty pushdown Spq,p, p > 2, is allowed only if

(3) Spa,p—1 has a stack alphabet symbol on it, and

(4) the written symbol stays longer than a symbol previously written
to pushdown Spq,p—1.

Let ® be an extended set of instructions on the Normalized storage
type N(Sf)’dr). It is the union of ® and {RPUSH,(3) | 1<p<c,f € I'"} U
{rPOP,(a) | 1<p<c,a € '}, where the new RPUSH and RPOP instruc-
tions obey the constraints (3) and (4). The primitive instructions PUSH
and POP are restricted to private use.

11.3.2 The Implementation

The meanings of the new instructions are given using the primitives
PUSH and POP in combination with an auxiliary semaphore symbol
that signals a need for a crossing read operation (Figure 3):

Spa1 Spaz2 Spa Spa2 Spai Spa2
e Ol DT 0N DT i O
= lIL a Ii | LIL a 1 |
INLJa#] Wib] © [LWL[al#] W]
1L Bip| v [ IRal# W
D D O |
valid use of pds cannot read cannot write cannot write

FIGURE 3 Only a crossing link occupies a new pushdown without a failure
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m(RPUSH,(3))(k

)=
{ m(PUsH,(8))(k), if p =1V —~m(T,(L))(x);
m(PUSH,_1 () PUSH,(8))(k), if p # 1 Am(Ty(L) A Tp1(T))(k),
and m(RPOP,(a))(k
(

) =

m(pPor,(a))(k), if p=cV=m(1,(8))(x);
m(POP, () PORy(a))(k), if p 7# ¢ Am(1p(8) A Tpa (1)) (k).

To write to an empty pushdown Spqp, p > 1, using instruction
RPUSH,, (), pushdown Spq ,—1 must have a stack symbol as its topmost
element. This implements condition (3).

When an empty pushdown Spq,p, p > 1, is written with instruction
RPUSH, (), the semaphore symbol # is inserted into pushdown Spq p—1-
This semaphore is removed only when S,q,,—1 is read while pushdown
Spd,p 1s still nonempty. If the higher pushdown S,,q 5, is read too early,
the derivation is blocked reflecting the condition (4).

Theorem 3 EDL—CFL-N(S;&F)-GS using RPUSH and RPOP instruc-
tions can be reduced to EDL—CFL-S;&F-GS that do not use these in-

structions.

Proof. The new instructions can be regarded as abbreviations extending
the transformation in the proof of Theorem 1 as follows:
Nonterminals QRPUSH (8)w and QRPOP (B)w are replaced, respectively,

with nonterminals qusul( Bw and onp (8w Nonterminals QY
where p # 1, create the grammar rules

Qupusiny (8 [1D] = if =T, (L) then Q) [PUsH, (8)],
Qupusiny (8 [1P] = if Tp(L) AT () then Q) [PUSH, 1 (£) PUSH, (8))],

RPUSHp, (B)w?

and nonterminals QY where p # ¢, create the grammar rules

RPOP, (t)w?

Q;/Popp(a)w[ID} —if = Tp(ﬁ) then QZ [POPP(Q)L
y D] = if Ty, (8) A Tpy1 (D) then QY [POP, (fa)]. 0

RPOPp, ()

Definition 5 A Context-Free Linear Normalized- S L Grammar with
an Extended Domain of Locality, EDL-CFL- N(SC F) G is a EDL-CFL-
SC’ -Grammar whose rules do not directly use PUSH and POP instruc-
tlons but use the RPUSH and RPOP instructions instead.

Proposition 4 EDL—CFL—N(S;&F)—GS allocate pushdowns for differ-
ent stack symbols so that they conform the storage restrictions (1) - (4)
in Section 11.5.1.
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Definition 6 A Nonterminal-Free N(S;’dr)-Gmmmar is a
EDL-RL-N (854 )-G G = (Vi, Vi, P, S, ko) for which Viy = {8, X}
and whose productions are of the following forms:

S[ip] — if TRUE then X([¢2,1] (11.3)
X[p1] =i Ai<p<e Tp(L) then e (11.4)
X1 =if =« then aX[¢2,1] (11.5)
X1, =i« then X([¢2,r+1] (11.6)

where a € Vp, m € B, 1 <r <e¢, ¢1, € {rRPOP,(a) |1 <p<r,a€
I'}*, and ¢o s € {RPUSHy (o) | s < g < ¢, € T}

The sentential forms ((S, ko)) and a(X,SL™) of EDL—RL—N(S;’dF)—G
are abbreviated as S and a8, respectively.

11.4 Relatively Indexed Tuple of Pushdowns

The smallest index of a pushdown that is succeeded only by empty
pushdowns in a given configuration k is denoted by @Q(x). We do not
want to refer to pushdowns by absolute numbers 1, ..., ¢, but by relative
numbers 1 —¢,2 — ¢, ...,0,1 where 0 corresponds to the absolute index
Q(k).

Definition 7 Let S;’dr = (C, Ci, C¢, ®, II, m) be a concatenating
storage type. Then storage type R(S;’dr) = (C,C;, Ct, @, {EMPTY}, m/)
is a Relative—S;’dF, R(ng). For this storage type, the basic meanings
of predicates Il and instructions ® are given by
m’(1D)(k) = m(1D)(k);
m'(EMPTY)(k) = m(A1<p<e Tp(L)) (K);

m(INS(p+a(x)) (8)) (k) i 1< (p'+@Q(K)) < ¢
undefined otherwise;

m'(iNsy, (8)) (k) = {

where INS € {PUSH, POP, RPUSH, RPOP} and @(k) is the largest 1<i<c
for which m(T;(L)) = FALSE or i = 1.

11.5 Colored Multiplanar Link Grammar (CMLG)

In some experiments with a multiplanar decomposition of dependency
trees (Yli-Jyrd 2003), a very good coverage of dependency trees was
obtained with only a small tuple of pushdowns that follow the intuition
of N (Sg’(f). In this section, we formalize a multiplanar grammar using
this normalized storage type.
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Definition 8 A Colored Multiplanar Link Grammar (CMLG) is a
structure G = (Vr, Ap, Ay, ¢, ¥) where Vr is the set of terminal sym-
bols, Ap and Ay = {@ | a € Ap} are respectively the sets of dependent
and head labels, ¢ is the number of colors, and W is the set of colored
rules of the forms

x(0/Y1...Yy) (11.7)
(p1/Vh . D/ Via)x (11.8)
ap1/Vi...on/Vi * q¢/Y1...Y0) (11.9)
eP1/Vieo.pn/Ve * q/Y1...Yy) (11.10)

where a € Vp, 0 ¢ Vp,and V1, Vo, ..., V,, Y1, Y5, ...V, € ApUAg, g €
{0,1}, and p1,p2,...,pn € {1 —c,...,0}, with p; < p;4q for 1 < i <mn.
The uses of the rule type (11.10) are restricted in such a way that, (i)
p; < qfor some 1 <i<mnand (ii) forall 1 <i<mand 1 <j<m,
either p; = q or (Y;,V;) ¢ FT, where F is the transitive closure of
F={Vy,Y;) | ai/Vi...pn/Vaxq/Y1... V) €V, 1<i<n1<j<
m}.

The semantics of the grammar G is defined by reducing it to a
Nonterminal-Free R(N(S;’f))—Grammar G = (Vn, Vr, P, S, ko), with
stack alphabet T' = {z,2 | # € Ap} and set P containing the produc-
tion

S[ID] — if TRUE then X [RPUSH1 (Y, - .. y1)]
for each rule of type (11.7) and the production

X[rPOP,, (V) - - - RPOPp, (v1)] — if EMPTY thene

for each rule of type (11.8); and respectively the productions
X[rRPOP), (vy,)---RPOP,, (v1)] — if TRUE then aX[RPUSHq(ym ... y1)],
X[rPOP,, (vy,)---RPOP,,(v1)] — if TRUE then X [RPUSHy(Ym, ... %1)],

where v; € A(V;) and y; € p(Y;) for each rule of type (11.9) and (11.10)
and functions A, p: (Ap U Ay) — 2' that are given by

A@) = Az) = {=} p(T) = p(z) = {x}.

To make the rule syntax more elegant, any colored link 0/V, where
V € Vi, will be written simply as V.

11.6 Mild Context-Sensitivity of CMLGs

Definition 9 A class C of grammars is MCS if the grammars of this
class are (i) polynomial-time parseable, (ii) they capture multiple de-
pendencies, limited crossing dependencies and the copy language, and
if the grammars in C generate (iii) a proper superclass of context-free
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TABLE 1 An overview of the hierarchy of £L(ComLg(e)), ¢ € {0,1,2,...}
0
(CeRL-8,4 1-c¢) = L(Ccra)
= L(Cerruic) < L(Cuic)

L(CemLa(o))
L(Comra)) = L

L(Comra(z)) C L(CERL-S,4.-G)
L(Comraz)) C L(CERL-S,4.5-G)

languages where (iv) all the languages L have the linear growth prop-
erty: for every sufficiently long string w € L there is another string
w’ € L which is at most k symbols shorter.

The class of CMLG with ¢ colors is denoted by Covrc(c)- The language
classes L(Comra(o)), £(Comra)), £(Comra(z))s --- form a hierarchy
(Figure 1). Its levels are strictly contained to the levels of Wartena’s
(2001) hierarchy whose level 2 contains the languages generated by
Extended Right Linear Indexed Grammars (ibid.).

Theorem 5 Any Conmpc(e), ¢ = 2, is mildly context-sensitive.

Proof. We establish the properties (i) - (iv) for Comra(e) as follows:

(i) Every CMLG G € Comia(e) reduces to a polynomially parseable

grammar ERL—S;’;—G that simulates the storage sequences of G and
produces enough structural descriptions to parse G.

(ii) The capability to describe multiple dependencies, limited crossing
dependencies and copying is usually demonstrated using the languages
Ly = {a™"c"” | n > k}, Ly = {a™0"™c"m™ | m,n > k}, and L3 =
{ww | w € {a,b}",i > k}, where k is a positive integer.

« For the language Ly = {a"b"c"™ | n > 1}, we construct a CMLG
G = <VT, AD,AH, 2, \I/> with VT = {a, b,C}7 AD = {A,B,C, b, C},
and the rules U:

*(A) (C )= a(A = ADb) b(bA x Bec)
b(b A % 1/Bc) b(—1/b B % Bc) c(c B x C) c(ec C x C).

E.g., string ’aabbcc’ is derived by S=lA=albA=aalbbA=
aab LbflcB=-aabbl | ccB=-aabbcl L cC=aabbccl L C=-aabbce.

- For the language Ly = {a™b™c™d™ | m,n > 1}, we construct a
CMLG G = <VT, AD7 AH7 2, \I/> with VT = {a,b,c,d}, AD =
{A,B,C, D,c,d} and the rules V:

*(A) (D)« a( A x Ac) a( A x Be)
b(B * 1/Bd) b(B x 1/C d) b( B * C d)
c(—=1/cC % C) c(—=1/cC * D) d(dD x D).
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E.g., string ’abbedd’ is derived by S=1A=alcB=ablcfldB=
abb et L ddC=abbel LddD=-abbcd 1 L dD=abbedd 1l | D=-abbcdd.

- For the language L3 = {ww | w € {a,b},i > 2}, we construct a
CMLG G = <VT, AD7 AH, 27 \I/> with VT = {a, b}, AD = {U7 V7(l7b}
and the rules ¥:

*(T) (V )* a(T * T a) b(T * Tb)
e(aT * 1/Ud’) e bT % 1/UD) e(—=1/aU % Ua') e(=1/bU * Ub)
a(Ua * V) b(Ub + V) a(Va x V) (VY x V)

E.g., string ’abab’ is derived by S=l1T=alaT=ablabT=
ablaf L' U=abl 1V a'U=abal Lb'V=-ababl LV =-abab.

(iii) The inclusion of all context-free languages to Comra(ce) is shown
by reduction from the Hays-Gaifman DGs. The rules in the set P are
of the following three types:

1. %(X) — gives word categories the elements of which may govern
the sentence,

2. X(W...V, % Y1...Y,,) — gives those categories which may
derive directly from the category X and specified their relative
positions, and

3. X :w — gives for word category X a word w belonging to it.

We construct a CMLG G = (Vr, Ap, Ag, ¢, ¥) where Vpr = {w | (X :
w) € P}, Ap ={X | X :w € P} and with the set ¥ consisting of
rules (x(X)) for each (x(X)) € ¥, and of rules

WX Vi Vy % Yi...Yy), and w(Vi...Vy % Yi...Ym X),
foreach (X(Vi Vo ... V, * V1Y, ...Y,,)) € Pand (X :w) € P.

(iv) Languages L£(Ccmra(c)) have the linear growth property because
CMLGs reduce to ERL—S;&F—GS whose languages have the property. [

Let w be a string of terminal symbols w = vyvs...v, and H =
(V, S, E) be a graph with word vertices V = {v; | 1 <i < n}, successor
edges S = {(i,i+ 1) | 1 < i < n}, and other dependency edges E C
V' x V describing the link structure of w.

Theorem 6 There is a CMLG that generates exactly the string w and
processes its link structure H.

Proof. The successor edges and other edges in the link structure graph
H are labeled uniquely to avoid overgeneralization. The corresponding
pushdowns are associated with the links using a multiplanar decom-
position method Yli-Jyrd (2004b) that simulates the behavior of the
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normalized storage in Section 11.3. After the pushdowns have been al-
located, we can extract the rules for a CMLG that generates the string
w and associates the desired derivation tree for it. g

Theorem 7 Link Grammars (Sleator and Temperley 1993) are re-
ducible to grammars in Conpe(i)-

Proof. The lexicon of a Link Grammar uses a minus sign (—) to indicate
left links and plus (+) to indicate right links. For example, a transitive
verb "painted’ would have a lexical entry

painted : S— & O—+.

This lexical entry corresponds to a CMLG rule painted(S x O). The
multi-connectors in a Link Grammars are eliminated by creating chain-
ing lexical entries. Elaborating the details of the reduction is left to the
reader. g

11.7 Colored Non-projective Dependency Grammar
11.7.1 The Intuition

Definition 10 The projectivity condition: If word A depends immedi-
ately on word B and some word C intervenes them, then C' depends
transitively on A or B (Marcus 1967).

A dependency graph G is acyclic and projective if it is 1-planar, loop-
free and its dependency paths follow the writing ordering of pushdowns
(Yli-Jyréd 2005). However, the projectivity condition applies also to mul-
tiplanar dependency graphs: If the multiplanar decomposition is based
on the normalized storage, the non-projectivity coincides with simi-
lar local features that can be observed in planar graphs: If any cyclic
graph in Figure 4 is stripped from its non-projective features by remov-
ing some incident links, only a projective acyclic graph would remain.

N ."spd.i+k

acyclic & projective cyclic & projective a cycle with many nonprojectity features

storage fills

FIGURE 4 Cycles involve a non-projective feature: the path descends
towards the bottom of the pushdown or the concatenating storage

A multiplanar graph is acyclic if the non-projectivity depth is finite
for all dependency paths. In contrast, the non-projectivity depths of the
projective cycles in Figure 4 are undefined. However, if one thick link is
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removed from any of these cyclic graphs, the remaining acyclic graph
would be non-projective and have a nonzero, finite non-projectivity
depth.

Definition 11 The non-projectivity depth of an acyclic dependency
path is the sum of (i) the number of string positions for which the
incoming link is shorter than the outgoing link and (ii) the number
of string positions where the incoming link is stored to a pushdown
whose index is greater than the index of the pushdown containing the
outgoing link.

11.7.2 The Implementation

Directed (dependency) graphs can be produced by CMLGs that dis-
tinguish between incoming (dependent) and outgoing (head) links. We
will now define a subset of CMLGs that can generate acyclic c-colored
dependency graphs up to a given non-projectivity depth.

Definition 12 A Colored Non-projective Dependency Grammar
(CNDG) is a structure G = (Vp, Ay, Ap, ¢, ¥, t) where Vp, Ap,
Ap, ¢, and ¥ are defined in the same way as done for CMLGs, and ¢
is the bound for non-projectivity depth in dependency paths.

The semantics of grammar G is much like in the case of CMLGs
(Definition 8). However, there are the following differences:

- An extended stack alphabet I' = {(Z,4), (Z',i) |z € Ap,0<i <t}
indicates link directions and the non-projectivity depth.

« The functions A\, p: (Ap UAp) — 20 are given by

@) = {(Z,0),...(Z,0}  p(@) = {(F.0),...,(F.0)}
)‘(x) = {(%a 0) Y (Yat)} p(I) = {(73 0) IR (?715)}

+ From the obtained subproductions of the forms (11.5) and (11.6) we
keep only those where the counters 7 in the pairs (X,4) (i) increase
monotonically from incoming (head) links to outgoing (dependent)
links, (ii) increase strictly when an outgoing link is longer than an
incoming link on the same side, (iii) increase strictly in left outgoing

links with color p when there is a right incoming link with a color
g > p+1, and (iv) do not increase more than necessary.

To describe the selection of the subproductions more precisely, let
(@i, ;) = v, 1 < i < n, and (bj,rj) = y;, 1 < j < m, be the stack
symbols and let o € Vi U {e} be the lexical anchor in a constructed
production

X[RPOP,, (vy,)--- RPOP, (v1)] — if TRUE

then aX[RPUSHy(Ym...71)]. (11.11)
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Subproduction (11.11) is kept if the depth counter of every left outgo-
ing link v; = (;,1;) and the depth counter of every right outgoing link
y; = (7, r;) satisfies the contraints

l; = max{0, g, 14+hi11,1+s;} and r; = max{0, g, 1+h;_1 },

where g is the maximum non-projectivity depth of the rule’s incoming
links among v1,...,Vn,¥1,--.,Ym, and integers h;;q and h;_; are, re-
spectively, the maximum non-projectivity depths of such left and right
incoming links that are shorter than the links v; and y; (if there is
none, the default depth is -1), and s; is the maximum non-projectivity
depth (defaulting to -1) of right incoming links that have a higher color
than v;.2

Theorem 8 FEvery CNDG can be reduced to a CMLG.

Proof. Instead of constructing a Nonterminal-Free R(N (Sg’dr))—Grammar
directly from each CNDG as we did above with CMLGs, we construct
a CMLG where counters for non-projectivity depth are visible already
in the stack alphabet I'. a

Theorem 9 Classes of CNDG with at least two colors are MCS.

Proof. The proof can be given in a similar way as in Theorem 11.7.2.
Note in particular, that the links in the grammars for languages L1, Lo
and L3 and the representation for the Hays-Gaifman DGs in Theorem
can be directed in such a way that the non-projectivity depth of the
generated dependency structures is 0. a

If no word is allowed to have more than one head (Section 11.7.3),
it suffices to have one subproduction for each non-projectivity depth.
Moreover, the bound for the non-projectivity depth in natural language
treebanks is likely to be very close to 1.

11.7.3 Restriction to Dependency Trees

DGs that assign dependency trees to the strings are obtained from
CNDGs via three refinements: (i) rules of the forms (11.9) and (11.10)
are restricted to contain exactly one dominating link, (ii) rules of the
forms (11.7) are restricted to contain exactly one dominating word, and
(ii) rules of the forms (11.8) are restricted to contain no dominating
link.

2To capture more structures with a very low ¢, we could split the constant TRUE
in productions into two complementary cases. The first case, where the storage is
tested empty after the POP’s, would not increase counters aq, ..., an on the basis of
b1,...,bm and vise versa.
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11.8 Conclusion and Discussion

We have presented some generalizations of Link Grammars and pro-
jective DGs, namely Colored Multiplanar Link Grammar (CMLG) and
its variant, Colored Non-projective Dependency Grammar (CNDG).
The semantics of these grammars was given by reduction to Extended
Right Linear S;’dF—Grammar Wartena (2001), which immediately re-
lates CMLGs and CNDGs with existing families of grammars. There
remain questions concerning the properties of our grammar hierarchy.
However, the presented ideas can be fruitful because:

« The multiplanar coloring is a simple way to represent and parse
dependency treebanks and measure the complexity of dependency
trees (Yli-Jyrd 2003, Gémez-Rodriguez and Nivre 2013);

+ CMLGs are lexicalized and mildly context-sensitive;

« CNDGs can be approximated with FSMs (Yli-Jyra 2004a);

CMLGs could be made even more powerful by generalizing the stor-
age type. In particular, we could define concatenating storages where
there is no limit for the number of new pushdowns, but all but the
rightmost ¢ pushdowns must be empty at any given time. This requires
a modification to the meaning of POP:

(g e, LY if ap=1;
(o, ) ifag#L.

The formal properties of this generalization are still open. It is no sur-
prise that the safety of the rules type (11.10) will need to be established
to avoid undecidability.

The method of Section 11.7 designed for DAGs can be compared
with a simple method (Yli-Jyrd 2012) that verifies the acyclicity and
connectivity of undirected multiplanar trees.

m(POPP(ﬁ))«alv' CQp—1, apﬁra Qpy1, Q)= {
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