Proceedings of FG 2006:
The 11th conference on
Formal Grammar

Malaga, Spain
July 29-30, 2006

Editor: Shuly Wintner

CENTER FOR THE STUDY
OF LANGUAGE AND INFORMATION

Preface

FG-2006, the 11th conference on Formal Grammar, was helddlada,
Spain in July 2006. This year’s conference included 12 douited papers
covering, as usual, a wide range of topics in formal gramimaaiddition to
those papers, this volume includes also the abstracts ofnvited talks by
Josef van Genabith (Dublin City University) and Laura Kalyar (Univer-
sitat Tubingen).

The twenty four submissions to the conference were revidayadembers
of the Program Committee; we are grateful to all of them fairtihelp in
making the conference a success: Anne Abeille (Paris 7,FR)re Boullier
(INRIA, FR), Gosse Bouma (Groningen, NL), Chris Brew (Ohiat8, US),
Wojciech Buszkowski (Poznan, PL), Miriam Butt (UnivergiteKonstanz,
DE), Alexander Clark (Royal Holloway University, UK), Baédld Crysmann
(DFKI, DE), Philippe de Groote (LORIA, FR), Denys Duchie@RIA, FR),
Tim Fernando (Trinity College, IE), Annie Foret (IRISA - IKS FR), Nis-
sim Francez (Technion, IL), Gerhard Jaeger (University iglédeld, DE),
Aravind Joshi (UPenn, US), Makoto Kanazawa (National tosti of Infor-
matics), Stephan Kepser (Tuebingen, DE), Alexandra Kirymiversity of
Pennsylvania, US), Geert-Jan Kifiii{DFKI, DE), Shalom Lappin (King’s
College, UK), Larry Moss (Indiana, US), Stefan Mueller (\Jisitaet Bre-
men, DE), Mark-Jan Nederhof (Max Planck Institute for Pgjiciguistics,
NL), James Rogers (Earlham College, US), Ed Stabler (UCLB),Hans
Joerg Tiede (lllinois Wesleyan, US), Jesse Tseng (LORIA), FRllemijn
Vermaat (Utrecht, NL), Anssi Yli-Jyrae (Helsinki, FI).

We are indebted to all the authors who submitted papers tangeting,
and to all participants in the Conference. On behalf of thgaBizing Com-
mittee, which consisted of Paola Monachesi, Gerald Perorgi® Satta and
Shuly Wintner, | am happy to present this volume.

Shuly Wintner, February 2007

Contents

1 Constraint-based compositional semantics in lexicalizktree

adjoining grammars 1
L AurRA KALLMEYER

2 Parsing and generation with treebank-based probabilist LFG

resources 5
JoSEF VAN GENABITH

3 Treating clitics with minimalist grammars 9
M AXIME AMBLARD

4 Linear grammars with labels 21
Houpa ANOUN & A LAIN LECOMTE

5 P-TIME decidability of NL1 with assumptions 35
MaRrIA BuLINskA

6 Program transformations for optimization of parsing
algorithms and other weighted logic programs 45
JasoN E1SNER AND JoHN BLaTz

7 On theoretical and practical complexity of TAG parsers
CarLos GOMEZ-RoDpRIGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

8 Properties of binary transitive closure logics over trees
SrepHAN KEPSER

9 Pregroups with modalities 119
ALEKSANDRA KisLAK-MALINOWSKA

87

103

Vi / ProceeDINGS oF FG-2006

10 Simpler TAG semantics through synchronization 129
REBEccA NESSON AND STUART SHIEBER

11 Encoding second order string ACG with deterministic tree
walking transducers 143

SYLVAIN SALVATI

12 Sidewards without copying 157
EpwarD P. STABLER

13 English prepositional passives in HPSG 171
JessE TSENG

14 Linearization of affine abstract categorial grammars 185
Ryo Y OSHINAKA

15 List of contributors 201

1

Constraint-based compositional
semantics in lexicalized tree adjoining
grammars

LaurAa KALLMEYER

Abstract

This talk presents a framework for LTAG semantics that corepaemantics based on
the LTAG derivation trees such that semantic computatiorsists of feature unifications
parallel to those performed in Feature-Based TAG (FTAG) s\ that this framework
has siiicient expressive power to deal with a large range of seemjprgiblematic phe-
nomena, namely quantifier scope, raising verbs, bridges\enll nested quantificational
NPs. Finally, a compositionality proof is sketched for thimmework that relies on the
fact that the derivation tree locally determines both, agtic and semantic compositidn.

Keywords LExicALIZED TREE ADJOINING GRAMMARS, COMPUTATIONAL SEMANTICS,

COMPOSITIONALITY, SCOPE SEMANTICS, UNDER-SPECIFICATION

1.1 Lexicalized Tree Adjoining Grammar (LTAG)

LTAG is a tree-rewriting formalism. An LTAG consists of a fiaiset ofele-
mentarytrees associated with lexical items. From these treesidrges are
derived by substitution (replacing a leaf with a new treej adjunction (re-
placing an internal node with a new tree). LTAG derivatiors i@presented
by derivation trees that record the way the elementary meeput together.
A derived tree is the result of carrying out the substitusiand adjunctions.
Each edge in the derivation tree stands for an adjunctiorsabatitution.

The elementary trees encapsulate all syntggimantic arguments of the

1The work presented here can be found in Kallmeyer and Ror@@@v{ (for the framework
and the scope analyses) and Richter and Kallmeyer (2007th@gacompositionality proof).

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

2/ LAurA KALLMEYER

lexical anchor. They are minimal in the sense that only tigeiiments of the
anchor are encapsulated, all recursion is factored outalBecof this, sub-
stitutions and adjunctions roughly correspond to comigmnatof a predicate
with one of its arguments. Consequently, they determineasémcomposi-
tion and therefore we compute LTAG semantics on the deoratee.

1.2 LTAG Semantics with Semantic Unification

In our approach, each elementary tree is linked to a pairistimg of a se-
mantic representation and a semantic feature structuceipiésn. These fea-
ture structure descriptions are used to compute assigsn@mntariables in
the representations using conjunction and additionalteapsintroduced de-
pending on the derivation tree.

The semantic representations consist of a set of labeledorgiulas and
a set of scope constraints of the foxn= y wherex andy are propositional
labels or propositional meta-variablesz y signifies that is a component
of the termx. Meta-variables indicate that terms have not been spegiéied
The assignment computed based on the feature structurgpdiess spec-
ifies values for some of the meta-variables in the semangicesentations
while leaving some of them open. This allows for under-digtirepresenta-
tions for scope ambiguities.

1.3 Scope Phenomena
In the talk we present analyses for the scope ambiguitiesphkied in (1)—
®):

(1) Exactly one student admires every professor
A>V,¥V >4

(2) John seems to have visited everybody
seenm> VY,V > seem

(3) Three girls are likely to come
three> likely, likely > three

(4) Mary thinks John likes everybody
thinks> everybody, *everybody thinks

(5) Two policemen spy on someone from every city
¥ > 1> 2 (among others),¥ > 2> 1

Our analysis models theftiérences in scope behavior as follows:

1. Quantifiers scope within a kind of scope window delimitgah upper
boundaryaxs and a lower boundanyins, no matter where they attach
inside a finite clause.

REFERENCES / 3

2. Operators on the verbal spine such as adverbs, raisibg aad bridge
verbs take scope where they attach, i.e., among such opertte at-
tachment order specifies the scope order.

3. Adverbs and raising verbs are not concerned withithe&—mvins scope
window. Therefore, quantifiers can scopally interleavélitem.

4. Bridge verbs embed a finite clause and in particular, tmalgesl the
Mmaxs limit of this clause. Therefore they block quantifier scope.

5. The maximal scope of a quantifier embedded in a quantiicakiNP
is the proposition of the embedding quantifier. Therefdré,scopes
over the embedding quantifier, then this has to be immediatees(no
other quantifier can intervene).

1.4 Compositionality

At first sight, feature logic-based computational semangigstems such as
LTAG do not seem compatible with a notion of compositionyalithe de-
rived trees clearly do not determine the meaning of a phrasedomposi-
tional way. However, a crucial property of LTAG is that theidation process
(i.e., the process of syntactic combination) can be desdiily a context-free
structure, namely the derivation tree. (This is why LTAG igdhy context-
sensitive.) The way our LTAG semantics framework is defitleid, context-
free structure also specifies the process of semantic catidin In other
words, we can define semantic denotations for the nodes tfetfieation tree
in such a way that the semantic denotation of a node depetythedeno-
tations of the daughters, the semantic representationtiierfexicon chosen
for this node and the way the daughters combine with the mothehis
sense, LTAG semantics is compositional.

References

Kallmeyer, Laura and Maribel Romero. 2007. Scope and Siad&inding in LTAG
using Semantic Unification. To appeaResearch on Language and Computation

Richter, Frank and Laura Kallmeyer. 2007. Feature Log&edaSemantic Composi-
tion: A Comparison between LRS and LTAG. To appedPastproceedings of the
Workshop on Typed Feature Structure Grammars, the 22ndd8wanan Confer-
ence of Linguistics

2

Parsing and generation with
treebank-based probabilistic LFG
resources

Joser VAN GGENABITH

Treebank-based acquisition of “deep” grammar resouraestated by the
“knowledge acquisition bottleneck” familiar from otheatfitional, knowl-
edge intensive, rule-based approaches in Al and NLP, fatigithe “ratio-
nalist” research paradigm. Deep grammatical resources bawually been
hand-crafted Butt et al. (2002), Baldwin et al. (2004). Tisiime consum-
ing, expensive and flicult to scale to unrestricted text. Treebanks (parse-
annotated corpora) have underpinned an alternative “éigtirapproach:
wide-coverage, robust probabilistic grammatical resesiare now routinely
extracted (learned) from treebank resources Charnial6)1 2®llins (1997),
Charniak (2000). Initially, however, these resources hawen “shallow”.
More recently, a considerable amount of research has echerggeebank-
based acquisition of deep grammatical resources in the H®5G, CCG
and LFG grammar formalisms. This talk provides an overviévesearch on
rapid treebank-based acquisition of wide-coverage, itppusbabilistic, mul-
tilingual LFG resources. Grammar and lexicon acquisitioD@hovan et al.
(2005) is based on an automatic LFG f-structure annotatgorighm Burke
et al. (2004a), Burke (2006). | show how the acquired LFG uesgs can
be used in wide-coverage, robust parsing Cahill et al. (P@6d generation
Cahill and van Genabith (2006). | provide an overview of dngaesearch
on the induction of Chinese Burke et al. (2004b), Japanesmhié, Span-
ish, French and German Cahill et al. (2005) treebank-ba&&sl lesources.

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

6/ Joser VAN GENABITH

| briefly compare our LFG work with similar research on theetrank-based
acquisition of HPSG Miyao et al. (2003) and CCG Hockenmaner Gteed-
man (2002) resources.

References

Baldwin, Timothy, Emily Bender, Dan Flickinger, Ara Kim, drStephan Oepen.
2004. Road-testing the English Resource Grammar over titistBNational Cor-
pus. InProceedings of the Fourth International Conference on lueayg Resources
and Evaluation (LREC 2004pages 2047—-2050. Lisbon, Portugal.

Burke, Michael. 2006.Automatic Treebank Annotation for the Acquisition of LFG
Resources Ph.D. thesis, School of Computing, Dublin City UniversiBublin 9,
Ireland.

Burke, Michael, Aoife Cahill, Ruth O’'Donovan, Josef van @bith, and Andy Way.
2004a. Evaluation of an Automatic Annotation Algorithm ega the PARC 700
Dependency Bank. IRroceedings of the Ninth International Conference on |.LFG
pages 101-121. Christchurch, New Zealand.

Burke, Michael, Olivia Lam, Rowena Chan, Aoife Cahill, RuifDonovan, Adams
Bodomo, Josef van Genabith, and Andy Way. 2004b. TreebasedAcquisition
of a Chinese Lexical-Functional Grammar.Rroceedings of the 18th Pacific Asia
Conference on Language, Information and Computatfmages 161-172. Tokyo,
Japan.

Butt, Miriam, Helge Dyvik, Tracy Holloway King, Hiroshi Maschi, and Christian
Rohrer. 2002. The Parallel Grammar Project. Pioceedings of COLING 2002,
Workshop on Grammar Engineering and Evaluatipages 1-7. Taipei, Taiwan.

Cabhill, Aoife, Michael Burke, Martin Forst, Ruth O’Donova@hristian Rohrer, Josef
van Genabith, and Andy Way. 2005. Treebank-Based Acquisif Multilingual
Unification Grammar ResourceResearch on Language and ComputatR{@2-
3):247-279.

Cahill, Aoife, Michael Burke, Ruth O’Donovan, Josef van @bith, and Andy Way.
2004. Long-Distance Dependency Resolution in Automdsicatquired Wide-
Coverage PCFG-Based LFG Approximations. Hroceedings of the 42nd An-
nual Meeting of the Association for Computational Lingigstpages 320-327.
Barcelona, Spain.

Cahill, Aoife and Josef van Genabith. 2006. Robust PCFGeB&3eneration using
Automatically Acquired Treebank-Based LFG Approximatonn ACL/COLING
2006 Sydney, Australia.

Charniak, Eugene. 1996. Tree-Bank Grammars.Pioceedings of the Thirteenth
National Conference on Atrtificial Intelligencpages 1031-1036. Menlo Park, CA.

REFERENCES / 7

Charniak, Eugene. 2000. A maximum entropy inspired parserProceedings of
the First Annual Meeting of the North American Chapter of Association for
Computational Linguistics (NAACL 200@ages 132-139. Seattle, WA.

Collins, Michael. 1997. Three Generative, Lexicalized Misdor Statistical Parsing.
In Proceedings of the 35th Annual Meeting of the AssociatioiCfamputational
Linguistics pages 16—23. Madrid, Spain.

Hockenmaier, Julia and Mark Steedman. 2002. Acquiring Garnjexicalized
Grammars from a Cleaner Treebank.Rroceedings of the 3rd International Con-
ference Language Resources and Evaluatias Palmas, Grand Canaria, Spain.

Miyao, Yusuke, Takashi Ninomiya, and Jun’ichi Tsuijii. 200®obabilistic modeling
of argument structures including non-local dependenciesProceedings of the

Conference on Recent Advances in Natural Language Procp@RANLP) pages
285-291. Borovets, Bulgaria.

O’Donovan, Ruth, Michael Burke, Aoife Cabhill, Josef van @bith, and Andy Way.
2005. Large-Scale Induction and Evaluation of Lexical Reses from the Penn-II
and Penn-lll TreebanksComputational Linguistic81(3):329—-365.

3

Treating clitics with minimalist
grammars

M AXIME AMBLARD

Abstract
We propose an extension of Stabler’s version of cliticsttneat for a wider coverage
of the French language. For this, we present the lexicalesnireeded in the lexicon.
Then, we show the recognition of complex syntactic phenanaen(left and right) dislo-
cation, clitic climbing over modal and extraction from deténer phrase. The aim of this
presentation is the syntax-semantic interface for cliticalyses in which we will stress
on clitic climbing over verb and raising verb.

Keywords MINIMALIST GRAMMARS, SYNTAX-SEMANTIC INTERFACE, A-CALCULUS, CLI-
TICS.

Minimalist Grammars (MG) is a formalism which was introddde Sta-
bler (1997), based on the Minimalist Program, Chomsky (19%Be main
idea which is kept from the Minimalist Program is the introtion of con-
stituent move in the formal calculus. Such a “move” operafittroduces
flexibility in a system which seems to be like Categorial Gnaans (CG). We
try to recover the correspondence in CG, between syntatrtictares and
logical forms (interpretative level of the sentence).

This formalization introduces constraints on the use of eraNes, and by
this way makes the syntactic calculus decidable. Thesemgeamare lexical-
ized and all steps of the analysis are triggered by the irdition extracted
from the lexicon: from a sentence, it selects a subset of svdral each word
corresponds a sequence of features, and it is the first eterhire sequence
in the derivation which triggers the next rules.

An advantage of this system is that the structure of the tadds con-
stant. The coverage of the grammar is extended by adding lemaeats to

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

10/ MAXIME AMBLARD

the lexicon, never by adding new structural rules. The siinat system of
these grammars contains only two kinds of rules: move angjen@aut ex-
tensions exist for both). We refer the reader to Stabletislas and others for
presentation of the use of MG, Stabler (1997), Vermaat (1999

Clitics are the normal form for pronoun in romance langudde syn-
tactic and semantic behavior of clitics in these languagesamplex. For
French, clitics often climb over auxiliary verb. Ed Staljpeoposes in Stabler
(2001) a partial lexicon for French clitics recognition arthlysis.

We propose here to extend this lexicon to several well-knbnguis-
tic problems. These problems interfere affelient levels of analysis. Sub-
ject raising is typically a semantic question whereas thie dlimbing over
modals is a syntactic question. We propose a new lexicontgosyintactic
analysis and then we will show how our semantic interfaceesosemantic
questions.

We use the description of clitics proposed by Perimutter enlrRutter
(1971). He proposes a filter to recognize the right orderiti€slfor romance
languages, from where we extract the sub-filter:

[{je/tu/ - - }nel{me/te/se/ - - - JI{le/la/les/ - - - JI{lui/leur}lyler].
[nominative| negative reflexive| accusative dative| locative| genitive].

In the first part, we propose an extension of Stabler’s varsioclitics
treatment for a wider coverage of the French language. Rey we will
present the lexical entries needed in the lexicon. Then, vlleshow the
recognition of complex syntactic phenomena as (left anhtyidislocation,
clitic climbing and extraction from determiner phrase. i of this pre-
sentation is the last part: the syntax-semantic interfacelitics analyses in
which we will stress on clitic climbing over verb and raisiveyb.

3.1 Lexicon for French clitics
3.1.1 Stabler analysis

Stabler’s works on clitics are inspired by Sportiche Spbi (1992), who
proposes the following treatment:

Clitics are not elements moved from position®XBut are co-referent with
this position. The clitics appearing in the structure bditha features their
co-referring XP would bear. Furthermore, clitics do not form an autonomous
syntactic object, but they are built into a unit with somethos

In this work, two parts in the cliticization are distinguéegh The first one
is an empty element which takes an argumental position fl@wverb. The
second is the phonological treatment of the unit — the ciitithe surface
structure.

We introduce lexical entries which are phonologically eyrintt carry spe-
cial features which need to be unified with features of thenplagical part

TREATING cLITICS WiTH MG / 11

of the clitic. The two diferent parts are connected by a move operation. If just
one of these items occurs in the sentence, derivation fails.

We sum up this treatment in the derivation as follows. Theotation re-
calls the main feature of the word and the annotation or tleeall the word
which eisthetrace

(6) donnee_g

Jeany la,g donnee_g = Jeany la donnegy
t. Jeany la donneg,

Jean { tjeanla donneg,.

John t tyeanit givese.

John give it.

In more details, the derivation is the following:

Derivation 1 Derivation of the simple French sentencéean la donne

Lexicon:
Jean D -k e =TC e D-k-G
donne V e =>V=D+k=Dv
€ =Acc3+k T | la =v+GAcc3

Derivation step by step:

1.
2.

3.

o

selection of lexical entry : [donne :: V]

selection of lexical entry :f:: =>V =D +k =D v] (which adds the
syntactic component to the verb).

head movement. This is a merge between the two previomemte
where the phonological part of the argument moves to the plogn
ical part of the head.

. selection of lexical entry i:: D -k -G]. This is the empty argumental

verb position.

. merge.
. There is a licensee “k” in first position, a move operatisrtiiggered.

After this step, the derivation tree is :

e:=Dv
/donng

. selection of lexical entry : [Jean :: D -k].
. merge.
. selection of lexical entry : [la :=v +G Acc3], the clitic takes part in

the derivation.

12/ MAXIME AMBLARD

10. merge.

11. move : the feature in the empty argument of the verb anfittiare in
the clitic are canceled.

12. selection of lexical entry &[:: =Acc3+K T] —to the end of the deriva-
tion.

13. merge.
14. move : resolution of nominative case :

>

Jean :: <

Rea N

la:: >

e/ /\
| €
>

/\
€ <
/ donng PN
€

15. selection of lexical entry &f: =T C] — empty “complement” position.
16. merge ; end of the derivation with feature 'c’ : acceptanc

In his presentation, Stabler proposes a lexicon for acmasatative and
reflexive clitics recognition. He ensures the right ordethvseveral verbal
types. The analysis is driven by the head and the next clidiagroduce will
have to be assigned verbal type as they occur in the Perinfiltiée’s order.
Stabler uses the SMC — shortest move condition — to exclueleisie of a
reflexive and an accusative clitics in the same sentence.

3.1.2 Extension: genitive, obliqgue and nominative clitics

We can extend this first approach of French clitics treatrteeother cases,
in particular genitive, oblique and nominative. This sectwill present the
lexical entries and the process of acceptance of derivation

We call “state of a verb” the basic type of the head currenglydied. For
example, if a verb has a accusative clitic its type will be ¢Ac

For genitive and oblique clitics, we just add in the lexicano thew empty
argumental positions and a list of possible types for eaitib.cl

In a first time, we introduce a new verbal type for beginnirg thticiza-
tion and another where the cliticization is finished. We tiadim “clitic” and
“endclitic”.

TREATING cLITIcS wWiTH MG / 13

Following the Perlmutter filter Perlmutter (1971), the ficfitic we have
to treat for keeping the right order is the genitive one. Wet adenitive state
which is connected to the “clitic” state. The verbal stategas to the genitive
state by means of a lexical entry the phonological form ofchhis “en” and
carries a licensee feature“en”

[en] :: [clitic <=, +EN, genitif].
From this state we pass to all the other states of the chitiicin, for exam-
ple :
[le] :: [genitif <=, +G, acq.
and if there is only a genitive clitic, we use phonologicaiypty entry to
pass to the end of the cliticization.

[]:: [genitif <=, endclitid.
The “oblique” clitics are treated in the same way, except fttan “obli-

que” it is impossible to go back to “genitive”. All lexical &res of this type
have a “y” phonological form.
[y] :: [clitic <=, +Y, obliqud.
[y] :: [genitive<=, +Y, obliqudg.

In the same way, from oblique we can pass to other possilile states,
as for example :

[le] :: [oblique<=, +G, acq.
[leur] :: [oblique<=, +F, da{.
[] :: [obligue<=, endclitid.

The nominative case is treated the same way. But the usesgirtbcedure
to add new clitic treatment is quadratic in the number ofdakentries. For
the nominative pronoun, a discussion could be opened aritsinlitic state.
We consider here that they are clitics.

Another discussion about negative form could rise arouadtatus of the
negation marker whose position is after the pronoun.

For the moment, we do not treat the negative form in a right s@yve
will not include it in this presentation, but we assume tieg treatment of
nominative clitics is outside the clitic cluster. All the giological pronoun
entries take a verbal form in “endclitic” state and give a n@rbal form in
“Nom”(inative) state.

We add an empty verb argument which must be included in theadiem
before the clitic treatment:

[1:[d,—Subj—casé.
The sketch of the analysis is:
* ladonnes_nome

14 /) MAXIME AMBLARD

» Je supjla donnee_nome
= Jetjela donnee

It itgivee

| give it

We add in the lexicon a basic feature “Nom” and the lexicatiestof the
nominative pronouns, for example:

[je] :: [= endclitic +S ubjNoni.

[noug :: [= endclitic +SubjNoni.
The derivation continues with a phonologically empty erstryhe end of
the derivation.
[]:: [=nom +caset].

3.2 Recognition of complex phenomena

This treatment of French clitics is simple and can be intiegkaasily into a
larger analysis.

climbing over modal
We treat the clitic climbing over the whole verbal clusteparticular over
modal.

The modal is combine with the verb in the inflection step. Trifection
is treated with head movement and all clitics take their ovate after this
treatment.

If there are words which must be inserted between the verbthad
modal — for sentences with adverbs — we first build the verbabkttuent
after which we treat the clitics. In this situation, theicktcould climb over
the verb constituent or stand after.

For example, in French we can analyze a sentence as:

(7) Je laivu.
I him have seen.
| have seen him.

by building the constituenﬂf. We can extend to sentences with inserted
word: “Je I'ai souvent vu’ “I have often seen him” with a derivation as :
(8) ai souvent Vie_nom €-F
I’ .r ai souvent Vie_nom - — I @i souvent VUe_ynom €
Je.nom !’ @l souvent Vue_nom - — Je l'ai souvent Ve e

lit often seen
| often saw him.

TREATING cLiTIcS wWiTH MG / 15

dislocation
Clitic can be a direct recovery of a not-“empty verbal argathdor example
in case of nominal dislocation.

There is a non empty verbal argument which must be extracted the
main sentence and become an indirect argument of the verb.

We build a verb with an “argument which must be extracted” —eted
miner phrase (DP) — must be outside the main sentence. ®iesistintro-
duced by a pause or comma. It modifies the determiner phrase idifferent
ways which depend on the side of the extraction:

* it adds a licensee for the left dislocation and cliticizatio
= it adds a licensee for cliticization (and nothing for rigligldcation).

The main problem is to include in the sentence the right phitwill be
replaced by the clitic.

Left dislocation: the DP is extracted from the sentence;qdan first po-
sition and recovered by a clitic.

(9) Marie lg voit tropce type, — Ce typg, Marie lg voit trop.

That guy, Marie him sees too much.
Lexical entry of modifier of DP.
[,]1:[=>d,d,—H, —dislod.

Remark that we use coma to caring this treatment, but it cathroeigh
an empty lexical entry. The analysis would be the same. Thexwawill be
placed after the DP by a head movement. The first licensedwitlanceled
with the licensor of the clitic and the second with anothenethat we must
add in the classical “comp” entry (this last entry is used tésfi the deriva-
tion).

[:[=t.c+DISLOQ.

Right dislocation : In this case the determiner phrase isgulat the end
of the sentence. For the homogeneity of the mechanism, wa ldehsee of
recovered by a clitic, and another for the extraction at titeaf the sentence.

[,]1::[d<=,d,—H, —dislod.

The “comp” phase uses a weak move which lets the phonoloigical of

the constituent in its place — here, at the end of the sentence
(10) Marie lg voit trop, ce type. — Marie lg voit trop, ce type

Marie him sees too much, that guy.

This extraction seems to be very similar to questions: irsjaes, an ar-
gument of the verb is extracted to take another positionarstirface level of

16/ MAXIME AMBLARD

the sentence.

Extraction from DP

With the same kind of mechanism, we can extract an argumeamyton-
stituent. The determiner phrase can be complex and we éstnagrgument
of the DP. For example:

(11) Pierre en voit la fin — (Pierre voit la fin du film).
Peter of-it sees the end — Peter sees the end of the movie.

We build “la fin e_en” and the cliticization allowed the extraction of the
genitive. “Pierre en voit la fin.”

Raising verb
Raising verbs are verbs where one of the arguments is a vdrbramof the
other arguments is shared by both verbs, like in the sentence

(22) Il semble le lui donner.
He seems it him give.
He seems give it to him.

where the pronoun “II” is subject of the two verbs “sembletiddonner”.
The second verb must be in infinitive form.

In this case, the sentence has the following structures:

[subject raisingverb clitic infinitive_verb].

Araising verb takes as an argument a verb in infinitive foriith & special
inflection “infinitive”, and without subject. The infinitivenflection has the
lexical entry:

[-inf]::[=>v, verbe].

“verbe” is the feature needed before starting the clitiatiment. A verbal
form gets a “verbe” type after the verb receives its inflattio
The raising verb selects such a “verb”, then a DP subjecttardliecomes
a VP of type “raisingv” which means a VP which has not yet reegithe in-
flection feature and will be able to receive new clitics (imtjzaular pronoun).
For example:

[semble]::Everbe,=d, raisingv].

This verb should receive its inflection and its subject. lliofws this mech-
anism until the end of the derivation:

=semblda répare-inf

|

=semble € la répare-inf

e —|

= Je semblee la répare-inf

e —|

| seem ¢ it repare-inf

|

TREATING cLITICS WiTH MG / 17
| seem repare it

3.3 Semantic interface
3.3.1 How to use the syntgfsemantic interface

From a sentence, we build a formula of higher order logic Whépresents
its propositional structure. We associate to each lexictyeaA-term and to
each syntactic rule an equivalent semantic rule. We asshatéhte syntactic
analysis drives the semantic calculus.

A-terms application occurs only when an element has no feaitive as-
sume the following functions:

1 if the number of feature of x 0
fealX) =\ g else

_ | 1if feat(x)=1 or feat(y)=1
senfxy) = { Oelse

Syntactic and semantic synchronization: after any opmrat the syn-
tactic calculus, the semantic counter part computes#mefunction and if
sentx,y) = 1, we perform the functional application of the tweterms. To
known which application to perform, we look at the type of #emantic
terms.

A semantic tree represents the semantic counter part oétitersce. Itis a
tree where the leaves are the semantic part of the lexica¢ésmind the inner
nodes contain tha-term built and the direction of the head (of the syntactic
part). We use the following notation:

= breaker between direction head atxterm :r.
= application: @

Applications are carried out when syntax allows it, therefawvhen the
function sem= 1 for one of the two terms. The following applications are
possible:

if sem (A-term 1,2-term 2)=1 else
>+ A-term 1@A-term 2 >+ A-term 1,A-term 2

A-term1l A-term 2 Aterm1l A-term 2

If a move operation canceled the last feature, we represegta unary
branch in the tree.

Remark. There are twofilerent possibilities for the semantic calculus: ei-
ther waiting for elements completely discharged either edrately perform
the application. But both fail in dierent cases: immediate application fails
in case of “late adjunction” and the other possibility faisgquestions treat-
ment. The right solution seems to be intermediate: it cémgisdetermining

18/ MAXIME AMBLARD

a subset of features which must be consumed before applicatiill be per-
formed. For the moment, we choose the first possibility. Laite we shall do
differently but this only involve changes in tfeatfunction.

3.3.2 Example of semantic treatment

Clitic semantics

We present a syntactic treatment of clitics in twfielient parts. One is phono-
logically empty and is the non empty argument of the verbother is syntac-
tically empty but it is a phonological recovery of the firsieohe semantical
part of the clitic is in the argumental position and this iseefvariable which
must be bound in the context. The phonological recovery isl@mtity.

lexical entries| syntactic form | semantic form
la dat<= +G acc| Id
t(la) p —case-G | X'

* Free variable, bound in the context — we could use the Boalatorithm
to determine how this variables are bounded Bonato (2006).

We briefly present a semantic tree for a clitic treatment:

(13) Jean larépare.
John it repairs.
John repairs it.

In the semantic tree of the part of the cliticization above,d® not repre-
sent the identity operator (except for the clitic one).

<+ t(la) @ Infl @ donne, je

|
<t Infl @ donne, je, t(la)

la::ld <~ Infl@ donne, je, t(1a)

T

Infl <+ donne, je, t(la)

N

<+ donne, t(la) je
/\

donne t(la)
The last part of the tree is built by a move which creates aligthveen the
phonological part of the clitic and the argumental part.
Over raising verbs

For the semantic calculus, raising verbs are predicateshathke a subject
and an action as argument. They apply a variable at thisractio
We present the analysis of the sentence:

TREATING cLITIcS wWiTH MG / 19

(14) Je semble la réparer.
| seem it repair.
| seem repair it.

The A-terms, semantic counter-part of lexical entries are:

sembler| ASAv.(seem y S(V))
Je I

€a Y*

réparer | Ax Ay .repair (y, X)

* this variable is bound in the context

The semantic counter part of the pronoun is a constant nefeto the
speaker “I”. The clitic subject climbs over the raising vdtlzan be the sub-
ject of both verbs in the sentence due to the semantic steiofithe raising
verb. If the main verb of the sentence has a subject, thecgtioplh will not
introduce a new variable in the formula, else the main vedtlea variable
which stands at the subject place. The raising verb invdlvissvariable by
duplication of its subject.

The syntactic analysis builds the following structure:

(l@(inflexion@(seen@(la(in finitive@re pare))))

which allows the computation of the formula: “la reparer”
Ax.repair(x, Y)
and this term is applied to the raising veal8Av.(seem y S(v))
Av.seenfv, repair(v, Y))
At the end of the calculus, we construct the formula:
pregseenil, repair(l, Y)))
where Y is bound in the context.

This is the formula we want to construct for representingiitgpositional

semantics of the sentence. The subject clitic syntacficdimbs over the
main verb, and semantically climbs over the two verbs.

3.4 Conclusion and future work

In this paper, we presented an extension of Ed Stabler’'sositipns on
French clitics in minimalist grammars. The new lexicon makeossible to
treat several other syntactic phenomena, the same waytia<kinbing, e.g.
extraction from NP or right and left dislocation.

Then, we proposed a syntax-semantic interface for Minsh&rammars.
The aim of this calculus is to build a formula of higher ordegit. The se-
mantic calculusg-calculus, is driven by the syntactic one. We emphasize on

20/ MAXIME AMBLARD

the way to recognize clitics and semantic implication aihdding with raising
verbs.

For future work, we want to integrate the negation into thengmar. We
consider that the neg-marker “ne” is a clitic and must be ipomated in the
treatment of French clitics. There is another complex phermn to consider
concerning with clitics in the imperative mode (and negatio

Other cases of raising verbs exist which are more complewig sev-
eral syntactic clitic climbings as in:

(15) Je la laisse le lui donner.
| her let it (to) him give.
| let her give it to him.
where clitics take place in fierent orders.
Moreover, we want to continue to model the semanfiea of clitics in
sentences, in particular for interaction between quansepe and clitics,
which can introduce ambiguities in sentences like:

(16) Je la laisse tous les lui donner.
| her let all them him give.
I let her gives all to him.

Acknowledgment

The writer like to thank Christian Retoré and Alain Lecorf@ecrucial sup-
ports and one of the anonymous TALN 2006 referees for impocamments
and examples reuse in this paper.

References

Bonato, R. 2006 An Integrated Computational Approach to Binding TheoRh.D.
thesis, University of Verona.

Chomsky, N. 1995The Minimalist ProgramMIT Press, Cambridge.

Perimutter, David. 1971.Deep and Surface Structure constraints in Synt&New
York: Holt, Rinehart and Winston.

Sportiche, D. 1992. Clitic constructions. In L. Zaring andRdoryck, eds.Phrase
Structure and the Lexicoloomington, Indiana: IULC).

Stabler, Ed. 1997. Derivational minimalisniLogical Aspect of Computational Lin-
guistic.

Stabler, Ed. 2001. Recognizing head movemeérmgical Aspects of Computational
LinguisticsSpringer-Verlag(2099).

Vermaat, W. 1999.Controlling movement: Minimalism in a deductive perspecti
Master’s thesis, Universiteit Utrecht.

4

Linear grammars with labels

Houpa ANoun & A LAIN LECOMTE

Abstract

The purpose of this paper is to show that we can work in thé spivinimalist Gram-
mars by means of an undirected deductive system célgd, enhanced with constraints
on the use of assumptions. Lexical entries can be linkeddoesees of controlled hy-
potheses which represent intermediary sites. These assmpnust be introduced in
the derivation and then discharged in tandem by their prepély which will there-
fore manage to find its final position: this allows to logigadimulatemoveoperation.
Relevance of this formalism will be stressed by showing li#ity to analyze dificult
linguistic phenomena in a neat fashion.

Keywords LocicAL GRAMMARS, MINIMALIST PROGRAM, SYNTAX/SEMANTICS INTER-

FACE, NON-LINEAR PHENOMENA

4.1 Introduction

Type Logical Grammars (Lambek (1958), Moortgat (1997)) Bfidimalist
Grammars (Chomsky (1995), Stabler (1997)) are two thritivepries dedi-
cated to natural language analysis. Each one has its iictéssets. In fact, the
first framework is computationally attractive as it worksrqmositionally and
gives the semantics for free. While the second one is based apeduced
number of rules guaranteeing processifficency (Harkema (2000)).

Despite their apparentfiierences, these theories share the same philoso-
phy: they are both lexicalized and present universal setsles that allow to
explain various linguistic phenomena in multitude of natleinguages.

Our goal is to bridge the gap between Categorial and Minsh&ram-
mars by proposing a new logical formalisfi £ (i.e. Linear Grammars with
Labels) which captures Minimalist operations (ngergeandmove in a de-
ductive setting. This match between logical framework aridiialist Pro-
gram proves to be fruitful as it gives a better understandintpe diferent

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

21

22/ Houpa ANOUN & A LAIN LECOMTE

mechanisms involved in Minimalist derivations.

Lecomte, A. and Retoré, C. have already proposed a logysabs that
simulates Minimalist Grammars: Lecomte and Retore (20D4ik latter sys-
tem is built upon elimination rules for both the slashes dretensor. The
absence of any form of introduction rules leads to fiitient system. How-
ever, this restriction is not beneficial insofar as it viekthe correspondence
between syntactic types and semantic representationsirinea proposal,
we want to keep a transparent interface between syntax andngies by
reintroducing abstraction rules which are applied in a @dletd fashion.

Like Abstract Grammars and Lambda-Grammars (de Grootel(2&ad
Muskens (2003))LG L grammars are based upon an undirected logical sys-
tem which has two interfaces (syntactic-phonetic, syitesgmantics) owing
to Curry-Howardcorrespondence. A syntactic derivation is then a deductive
proof of a given sequent built using appropriate inferentes:. Both phonetic
form and semantic representation result frafterms combination which is
carried out in parallel with the syntactic derivation, @reach deductive rule
encapsulates a computational step within the simply typedlculus.

The originality of LG L stems from the refinement introduced in hypothet-
ical reasoning. Our model aims at preserving the advantadbis technique
(e.g. dealing with unbounded dependencies) while comstigits use in or-
der to reduce the size of the search space. Thus, insteadsitieoing freely
accessible logical axioms, our system is equipped withefinéquences of
consumable controlled hypotheses which are attached taircdexical en-
tries that are expected to move. Such linked hypothesessepr original
sites occupied by their associated entry in the D-strugiweebefore the dis-
placement operation). They should be introduced duringdtérésation and
then abstracted at the same time by their proper entry whitbamsequently
reach its target. In the case of overt constituent movermgatmediary posi-
tions occupied by non-pronounced variables will be systealéy replaced
by phonetically-empty traces.

In this paper, we will prove thanhoveis a metaphoric notion which can
be rigorously formalized using Logic. Moreover, we will shéow to cap-
ture complex linguistic phenomena (e.g. binding, disaarity) within LG L
thanks to the combination between Logic power and Minin&isgram
ideas.

4.2 BasesoffGL
4.2.1 Types & Terms

In this section, we survey the relevant bases inheredigd .
Following earlier proposal by Curry, HB. in Curry (1961) apither more
recent research work: de Groote (2001), Muskens (2003)system dis-

LINEAR GRAMMARS WITH LABELS / 23

tinguish between two fundamental levels of grammar. The léngel is an
abstractlanguage (tectogrammar) which encapsulates universatiples
The second level is eoncreteone which may contain a range of components
(e.g. phenogrammar, semantics) used to encode crossslicgariation (e.g.
word order, lexical semantics).

Our core logic operates on abstract syntactic types whiehratuctively
defined as follows:

TA)=A|T =TT

A is a finite set of atomic types that contains usual primitesiinimalist
grammars (e.gc (sentence)dacc (hnoun phrase with accusative casé)sm
(noun phrase with nominative case). Composite types ateusimg the lin-
ear implication- and the exponential operator ! introduced in Girard (1987).

Our framework supports a two-dimensional concrete levalidg respec-
tively with phonetics and semantics. Therefore, we comside kinds of
concrete types, namefy-types (o) anda-types (7;) whose definitions are
the following:

To =S| T0 = To
T :=e|t|7~/1—)7~,1

The set7 is composed of only one atomic typevhich represents phonetic
structures (structured trees), wher@asontains two primitive (individu-
als) andt (truth values). Notice that composietypes are built upon linear
implication—, whereas compositetypes use intuitionistic implications.

Both phonetic and semantic representation of expressi@neasily de-
fined owing toA-calculus, thus leading to two sets of terms, nandefierms
Ag andA-termsA,. Let X be a finite set of phonetic constants and finite
set of semantic constants. L®%, (resp.V,) be an infinite countable set of
typed phonetic (resp. semantic) variables. The\ggE) of well-typed linear
®-terms is inductively defined as follows:

1. eeAe(Z) ande is of types!

2. if X thengeAo(X) andg is of types

3. if (Xp: tp)eVe thenxgpeAep(X)

4. if s ands, are®-terms of typesthens;es,eA ¢ (X) and itis of types (e

operator is used to combine phonetic structures, it is aeébsociative
nor commutative)

5. if ¢1 and¢, are®-terms of typeg; andt; —o t, with no common free
variable thend; ¢2)eAqo(Z) and is of typds,

6. if Xp is a variable of typé;, ¢; a ®-term of typet, andxg occurs free
exactly once inp1 then @x. ¢1)eAo(X) and has typé; —t;

Le represents a phonetically empty element used for traces

24/ Houpa ANOUN & A LAIN LECOMTE

. B .
Ao(Z) is provided with the usual relation gfreduction= enhanced with

two additional rewriting rulesp;ee é ¢1 andeegy i @1.

On the other hand, the sat,(C) of A-terms is defined using a simply
typeda-calculus with two basic operations, namely intuitiordstpplication
and abstraction.

Finally, letr,4; be a function which assignsiatype to each atomic abstract
type (we assume for instance thaj(C)=t, T1at(N)= €—t, T1at(dcasd= €).
Two homomorphismsg andr, are defined to link abstract types to concrete
types as follows:

Vte ﬂ,q‘;@(t)zs Vie A, ml(t)= Taat(t)
To(ti—otr)= To(t1) — 7o (t2) | Ta(ti—otz)=7i(t1) — 7a(t2)
7o (! t)=To(t1) (! t)= 7a(ta)

4.2.2 Lexical Entries & Controlled Hypotheses

We now introduce the notion of 2-dimensional signs whichthesbasic units
managed by our system. Such signs are of the following fognly) : ty,
where:

* ty e 7 (A) (abstract type)
* |p € Ag(X) andly is of concrete typeo(ty)
* |, € A (C) andl, is of concrete type,(ty)

We distinguish between three classes of signs, nansigble signs (when
lp € Vo andl, € V,), constansigns (whenrg € £ andl, € C) andcompound
signs (wherg, or I, is a compound term).

These signs are used to define lexical entries. LexicalemtiLG L are
proper axioms which can be coupled with prespecified seseat con-
trolled hypotheses. Such hypotheses will occupy interargdsites, they
should be introduced in the appropriate order and then digeld at the same
time by their associated entry.

Lexical entries obey the syntax below:

F(@s, a) ity 3 lnyps
where:

* (8, , &) : tyis a 2-dimensional sign.

v lhypss ([Hy ot H o t], . [He o t = HY - t]) is a sequence of controlled
axioms of lengthlnypd=k, (¥ ie{1..k}, Hi=(hs , hy) and H{:(h(’ﬁi ,)
wherehy; € Vo (-variable) hy € V, (1-variable) andv;e Ao(X)) -

Lexical entries are classified in two groupistked entries(when k-0) and

free onegwhen k=0). Linked entries are coupled with non-empty sequences
of controlled hypotheses. Each hypothesis is encapsuiasgde an axiom

LINEAR GRAMMARS WITH LABELS / 25

‘(hyi , ha):t - (W), hyi):t " which can be either logical (ifi= hy;) or extra-
logical (if hyi# h;). Extra-logical axioms are extremely useful since they rep
resent pronounced variables or phonetically non-emptgtratemming from
displacement (e.g. pronouns: he, her ...).

The abstract typty of the lexical entry should verify the following speci-
fication:

1. if k=0 then ty is an arbitrary abstract type
2. ifk=1thentyt; - ... o t, —o (t—ot")—t”
3. otherwise tyt;—o... — ty — (It —o t') —t”

Intuitively, the second (resp. third) point above means tha lexical entry
represents a constituent that needs to merge with exagitty0) expressions
of typest; ...t, respectively, and then move once (resp. an unspecified rumbe
of times, e.g. cyclic move) to reach its final position.

Finally, a lexicon is nothing else but a finite set of lexicatrees{ey, ...,
en}.
Let us illustrate the previous definitions in a concrete gxamf we as-
sume that\WhoneX) and (\eC) then the phonetic behavior and the seman-
tic representation of the relative pronowahoni can be modeled using the
linked entry below:
(;ll(é //llr(g /?:('F()\E\;(I‘)]C;\m(s((féf)) “(agc o €) on—on 3 [X:dacch X: e

Our entry is linked to one hypothesis which will occupy thitiah position
of ‘whom, namely the object of its relative clause (e(gook) whom Noam
wrote). This assumption will be discharged afterwards by itsteglantry,
thus guaranteeing the combination between the relativequroand its sub-
ordinate clause. Formal rules that manage this overt displent will be set
forth in the next section.

4.3 Logical simulation of Minimalism
4.3.1 Inference rules
Letlex={e1, e, ...,en} be a lexicon.LG L grammar with lexicorex is based
upon a deductive logical system which deals simultaneouily two inter-
faces (syntactic-phonetic, syntactic-semantic).
Judgments of our calculus are sequents of the following form
Ir(lo.la):ty; E
where:
= T the contextis a finite multiset of 2-dimensional variabnsi
* (lp,1,) : tyis a 2-dimensional sign

26/ Houpa ANoUN & A LAIN LEcOMTE

= Eis a finite multiset containing identifiers of all linked lexri entries that
were used in the course of the derivation and whose assd@atimp-
tions are not yet discharged

Variable signs included in the contdxtcorrespond to controlled hypotheses
that were introduced in the course of the derivation. Eagiothesis will be
marked using a superscrip‘ffwhich points at the lexical entry to which the
assumption is attached (e@,: hypothesis linked te entry).

The first group of£GL inference rules are axioms which coincide with
derivations’ leaves. Figure 1 shows axioms that our systgrpaerts.

e=(ray:ty3l)
Fay:ty; if I =()then0 else{e}

Lex

e=(F--3 |hy‘p) InyplJ] = (X 1 Ak Yy 1 A)

7 Ctrl
X, AR Y A0

FIGURE 1 Axioms of LG L(lex)

Our core logic includes extra-logical axioms which are asted from lex-
ical entries owing to ruléex If the involved entry is linked, then its identifier
is added to the multis&. On the other hand, our system excludes the freely
accessible identity axiom. Available axioms stem from coligd hypotheses
which are coupled with linked lexical entries. These axi@arsbe introduced
in the derivations by means 6ftrl rule.

Linked entries in£G /L can be attached to more than one controlled hy-
pothesis. This specification has a very strong linguistitivaton. In fact, it
can happen that a constituent occupies more than one ird&amesite be-
fore reaching its target. Such phenomenon is illustratednfstance in the
interrogative sentencéVhich book did John file without reading i?’. In
that case, the wh-elementhich book occupied two positions before dis-
placement (in the D-structure), namely the complement efvérbfile and
that of the infinitivewithout reading After movement, the first position be-
comes empty while the second is occupied by a pronounceablarit’. At
the semantic level, both these sites of origin represergahe object.

To account for such non-linear phenomena withG.L, we use the expo-
nential ! whose behavior is described by the usual rulese#li logic (Girard
(1987)). Figure 2 presents the derived rules which are aeleto our study.

The generic process that handles the management of cextiofpothe-
ses can be summarized as follows. On the first hand, each pssarof type

2For the sake of readability, we focus on the syntactic-ptioreterface

LINEAR GRAMMARS WITH LABELS / 27

AsX;i5B"y¢:A; Ex A,x; :!B,yg ABr U, A Eg
‘ L i Le
A’X; 1Brys 1A Eq A,b; ABF Ug[Xs 1= by, Y = by] 1 A Ex

FIGURE2 Relevant derived rules for !

ty will get the decorated typhy if it is related to a linked entrg which is
attached to more than one controlled hypothesis. Thisfiwemsation is car-
ried out by means oiL rule. Intuitively, this means that a hypothesis which
represents only one controlled assumption (i.e. of typés a particular case
of hypotheses that encapsulatdéeastone controlled assumption (i.e. of type
Ity). On the second hand, contraction rulé iIs applied to gather all the hy-
potheses linked to a specific entgyin one assumption. This will make it
possible to abstract these hypotheses in tandem.

Now, the ground is well prepared to present our logical satiah of Min-
imalism. It is not dificult to simulatemergeoperation of Minimalist Gram-
mars in a logical setting. In our case, it is nothing else batdirect— elim-
ination (—E, cf. Fig.3) which merges twd®-terms (respa-terms) by means
of application operation.

'rfs:A—-B E1 Aray:A E]
A+ (fy84): B, E1UE]

—o

[+ fs:(C—D)—B;{e}UE; A,c;i :Crd,y:D;E]
F,A + (f¢ (/1C¢ d¢)) . B, E]_UE&

—-o |E %
FIGURE 3 Behavior of— connective

Moveoperation is logically captured thanks to the refined elation rule
—|E. This rule allows a constituent to reach its final positiynsimultane-
ously discharging its controlled hypotheses which ocatipitermediary po-
sitions. Our logical formalization ahoveoperation shares some ideas with
Vermaat's one in Vermaat (1999). In fact, we both consider dlperation as
the combination of two phases, namelynargestep and dypothetical rea-
soning step (abstraction over sites of origin). Thus, the elemethish are
expected to move are assigned a higher order type [)— B*. Such ele-
ments wait to merge with a constituent of typesM, which results from the
abstraction of the intermediary positions in the initialisture (of type D).

However, Vermaat proposal is encoded in a directional taécmoveop-
eration is then captured using additional postulates wreattroduce struc-

3The introduction rule of< is not freely available, it is rather encapsulated insickE rule
“Vermaat considers only the case wherefD

28/ Houpa ANoOUN & A LAIN LEcOMTE

tural flexibility in a controlled fashion. Our proposal isrgiler as it is based
upon a flexible undirected calculus. Moreover, it makes ggilgle to limit
the operation of hypothetical reasoning used in displacémich is con-
strained to a specific amount of hypotheses explicitly glwgthe lexicon.
Rule —IE cannot be applied unless the pre-conditioms verified: all
linked axioms coupled with the lexical enteymust be introduced in an ap-
propriate order (from the right to the left b s Sequence) during the deriva-

tion of (A, cg :Crd, : D; E)). Once these assumptions are abstracted, entry
e regains its final position and is automatically withdrawonfrthe multiset
of unstable lexical entries involved in the derivation.

To formalize the pre-conditio, we assume that each assumptiénof
the context encapsulates a kindrigtory used to record some relevant data.
This additional parameter does not have any impact on oucdbgystem.

It only ensures theficiency of parsing by making the constraineasier
to check. The notatiow’ || is used when the history of the assumption
x!" is explicitly given. Otherwise, a functiomist() can be applied to a given
hypothesis<' to get its masked history.

Owing to the contraction ruleLf, each hypothesis! gathers a sub-set
of controlled hypotheses related to engryThe history of an assumptiod’
can then be encoded as a set of pairs of natural numbers. $hadimber
of each pair represents the index of an involved controligabthesis taken
from Inyps SEquUence, while the second one is nothing else but the depth
this hypothesis in the current bottom-up derivation.

Each deduction step updates the history of all assumptimhsded in the
context. For instanceCtrl rule enables the introduction of a specific con-
trolled hypothesis of indekand initiates its history with the single pair (j, 0).
On the other hand, rules of Fig.2 and Fig.3 increrf¢im¢ depth of the pre-
viously introduced controlled hypotheses. We show below lvgical rules
enhanced with their explicit management of histories:

€ =("—f3|hyp) |hyp[j] =X Ary, i A c
XL O} A F oyt A0

trl

A, xg lo1] !B, ygLo-zj 1BruU, A Ep

: ILe
A, bj» lo7" Vo™ B Us[Xs := by, Ys = bg] - A Ex

5The number of deduction steps between the introductionehitpothesis and the current
state of the derivation
6Incrementing operation is denoted by*(){...;(,d);..)** =(...; (i, di +1);...}

LINEAR GRAMMARS WITH LABELS / 29

Therefore, the side conditiancan be stated formally as follows:

g oirf | YR LEkSTlnpsl = 3dI K d) € hist(c})
v(k, d) € hist(c)) V(k', d) e hist(c]), k<k = d<d

Finally, it is worth noticing that the constraithtis significant only if the
considered derivations are in normal form. Therefore, tigeace of both the
freely accessible identity axiom and thel rule is necessary to the success
of our approach.

4.3.2 LGL grammars & generated language

LG L grammars have two parameters, namely a lexicon and an adlistiic-
guished type. LetG(lex, ¢) be aLG L grammar andat’ an atomic syntactic
type. We say that a sequence of phonetic constambgr,...m, has abstract
type ‘at’ within G (i.e. le La(G)) iff:

3 X, Xa [Xg € struc{my, ...,my) A (+ (X5, Xa) @ at; 0)

wherestruct(m, ..., m,) is the range of phonetic structures built usingper-
ator and whose leaves arg, m, ..., m, in that order.

Notice that the convergence of derivations requires th@diiction and
the simultaneous abstraction of all controlled assumptietated to involved
lexical entries.

Finally, checking whether a sequence of phonetic constasmtecognized
by the grammag (i.e. le £(G)) amounts to verifying thdthas abstract type
C.

4.3.3 Example of£G L derivations

This section is devoted to the study of a hybrid exampere logicians met
Godel than physicists knew himhich involves two complex linguistic phe-
nomena: binding and discontinuity. The analysis of thesspmena within
the directional approach constitutes a real challengessearchers. All pro-
posed solutions are complex insofar as they led to the agtein$ the core
logic either by defining new syntactic connectives (distarity connectives:
Morrill (2000)) or by introducing additional packages ofgpalates as in Hen-
driks (1995). However, our proposal is able to capture siidnpmenain an
elegant fashion without using any additional material.

Our treatment of binding follows the same ideas of Kayne. Kayne
(2002) where he argues that the antecedent-pronoun rel@ig. between
Godelandhim) stems from the fact that both enter the derivation together
as a doubling constituent ([Godel, him]) and are subsedpseparated after
movement. In our system, we account for this idea by definiligkad entry
e (cf. Fig. 4) associated with the proper no@odel This entry requires the
introduction of two hypotheses (where the firetmY is a pronounced one)

30/ Houpa ANouUN & A LAIN LEcoMTE

which must be discharged at the same time. There&rentry will reach its
final position thus making it possible to semantically lifile toronoun with
its antecedent.

Id O-terms A-terms Abstract types Hyps
e A Py. Py(Godel) A P,. P)(Godel) (!dacc—oC)—oC [X: dace-X:dacd 5
[X: dace-himidacd

& logicians Logician n ()

e physicists Physicist n 0

e AX. y. (ye(metex)) AX. Y. Meetpas(y,X) dacc—onhom— C ()

& | Ax.Ay. (ye(knewex)) | AX.dy. KNOWpas(y,:X) | Gacc—oGnom—oC 0
AX. Y. AP.AQ. AP1. 1Qy. AP3. 1Qs. n—on—o

& | ((morey)eQe)e | More(ax. Qu)AQX), | (dhoroc)—o 0
(thare(xeP(e))) AX. P1(X)AP2(x)) (dnhom—oC)—oC

FIGURE4 Example of£G.L lexicon

On the other hand, we capture discontinuity by gatheringdifierent
components of a discontinuous expression in the same lexitgy. For in-
stance, entrgs defines the phonetic and semantic behavior of the discontin-
uous constituentgore... than).

We present, in the following, the main steps of our examplealysis. For
the sake of legibility, the bottom-up derivation tree isitsipito different key
parts which will be commented on progressively.

Ctrl

Lex 1
A Ay, y e (knewe x) \ .] XY him) . | .
F (A% dy. Knowpas(y, x) |~ Gacc —© nom — C; 0 Xfl " Gace x| Gacc O

1 -
E Y.y (knewe him) \ _
[XE]] *Gacc k- (y. Knowpas(y, 1) | Anom —o C; 0

— E

o d AQ. ((moree logiciang e Q(¢)) o (thane (physicists (e e (knewe him))))) . (dnom—o C)
N R a“*(Q. More(ax. Logician(x) A Qx(X) , Ax. Physicis{(X) A Knowpas(X, X))) —~c0

de,l 1d Q. ((moree logiciang e Q(e)) o (thane (physicists (e e (knewe him)))) \ . (dnom— C)
XE‘ “lacct |)0, More(x. Logician(x) A Q2(X) , Ax. Physicis{x) A Knowpas{X, X))) -0

The derivation above starts by introducing the last colgdohypothesis
(i.e. the assumption representing the accusative proniog)rof the sequence
attached tae; entry. This hypothesis, then, merges with lexical ey
means of-oE rule. On the other hand, a partial derivation is built by ss
utively combining entryes with entriese; ande,. The resulting sequent then
merges with the previous one. The last deduction step dabsgdout deco-
rating the type of the introduced hypothesis by a ! markerdeoto express
its ability to gather with the other controlled hypothesigéd to its proper

LINEAR GRAMMARS WITH LABELS / 31

entry. At this stage of analysis, only the second contrdilgabthesis o&; has
been used. Moreover, it was involved in exactly three dednacteps after its
introduction, so we can deduce that its current historyig(Xi')={(2,3)}.

Ctrl

AX. 1y. y e (Mete X)
AX. Ay. Meetpasdy, X)

Lex "
* Gacc =0 Onom — C; 0 Z!Tpl > acc Z " dace, 0
zZ, Z

—- E

Tl
Zlb . /ly' ye (met. Z(I))) e
(Zj;l] *acc F (Ay. Meetpas(y,) |- Anom —o C; 0

L

Tl
Zy | Ay.ye(metezy) . _
[ZEI] e (Ay. Meetpas(y, 21) | Ghom — C; 0

In this second part of analysis, the first controlled assionpinked toe; en-
try is introduced. Then, it merges wigj entry which represents the past form
of the transitive verlmeet This branch of the derivation ends by a IL step like
the previous one. We can easily check that, at this pointefitrivation, the
history ofz!" assumption is nothing else but higtj={(1,2).

(XI }'Id (szl]'Id '_(((moree logiciang e (e # (mete zy))) @ (thane (physicists (e o (knewe him)))))'c‘@

x;’ ZF More(Ax. Logician(x) A Meetpas(X, 2)) , Ax. Physicisi{(x) A Knowpas(X, X1))

(yg] Aeec (((moree logiciang e (e o (Mete yy))) o (thane (physicists (e o (knews him))))) c0

) More(Ax. Logician(x) A Meetpas(X, Ya) , AX. Physicis{x) A Knowpas(X, y1))

The partial derivation above stems from merging the twoipresly presented
branches into one tree. Contraction rule is then appliechtagsulate both
controlled hypotheses linked & in one assumptiog’ . The current history
of this latter compound assumption is: hjtj={(1,4) ; (2,5).

Lex

APy.Py(Gode) \ . . v (moree logiciang e ... \ .
F (AP,.P.(Gode)) 2 ({dacc — €) — C; {en} (yi"l Ndace F More(...,...) 1c0
((moree logiciang e (mete Gode)) e (thane (physicists (knewe him))) co ~IE
More(Ax. Logician(x) A Meetpas(x, Godel) , Ax. Physicis{x) A Knowpas(x, Godel)) | ™

The whole derivation ends by simultaneously dischargimjrodied hypothe-
ses linked to entrg; by means of-IE rule. In fact, the application of this
rule is allowed since the side-conditidnis entirely verified: agﬂl’s his-
tory shows, the leftmost hypothesis linkedgiowas introduced in the deriva-
tion after the rightmost one. The semantic representatimuosentence is
computed in tandem. Indeed, the final semantics coincidistteé intuitive
meaning of the sentence, namely that the set of logiciansmétoGodel is
larger than the range of physicists that knew him.

32/ Houpa ANoUN & A LAIN LEcOMTE

4.4 EnhancingLGL

It is not difficult to notice that our logic is too flexible as the applicatif
movement is not constrained. For instance, if we assign ity below to
the wh-elementwhich, we can analyze both sentencesgttich man do you
think the child of speaksand which man do you think John loves the child
of _?’, where the first is ungrammatical.
(AM A¢ (whiche_ m) e. ¢(e)
AP 21Q Ax.P(X) A Q(X)

In fact, we need to control displacement operation to ruteatraction from
islands. For that purpose, we propose to enhaf@# with some meta-rules
encoding locality constraints (e.g. SPIC: Specifier Isl@uhdition, SMC:
Shortest Move Condition). We focus in the following on t8BIC defined
in Koopman and Szabolcsi (2000) which stipulates that theed@lement
should be a member of the extraction domain @@nmp': transitive closure
of the complement relation, or a specifier dd@np).

In order to locate the position of the head, the complemeahtizaspecifier
inside a phonetic expression, we decorate the buildingtsire connective
with a mode of composition taken from the get >}. This mode points
towards the sub-tree where the head is locasediresp.s..) if the head is
located on the left (resp. right) sub-tree.

A linked lexical entry which is expected to undergo an overtstituent
movement has a phonetic-term that obeys the following synta

AXy oA Xy A Pp Y1 oo A Yk 91, -0 0 Vi F(X1, -0 s Xn) @5 Po(€))

In the expression abovey, ... , Xy, Y1, ... , Yk (N > 0, k> 0) ared-variables of
arbitrary types, whereds;, is a®-variable of type ses. Moreoverf (resp.g)

is a function that takes (resp. k-1) ®-terms and builds a phonetic structure
using these parameters together with constants of

Intuitively, this syntax means that our entry will firstly mbine with n
structuresxy, ... , X, by means of merge operation, thus leading to a maxi-
mal projectionf(xy, ..., %). Then, the intermediary sites will be replaced by
traces in the initial structurBg and our maximal projection will be placed in
specifier position, hence making it possible to carry outekgected move-
ment. Finally, our resulting constituent can merge witheotstructures, thus
yielding a complete expression (evghomentry in section 2.2).

Notice that this syntax suits the type specification defimegeiction 2.2
(points 2 & 3) if we add additional conditions, namely thatttbdypes t
(type of intermediary sites) and t’ (type of the D-structbhefore movement)
are atomic. The first condition (i.es#) follows from constraints proposed
by Koopman and Szabolcsi (Koopman and Szabolcsi (2000g3wiurces

:N —o (dgat =€) = C 3 [X: dgarF X : dyar

"dgat represent noun phrases with dative case

RErFERENCES / 33

moved elements to be maximal projections (i.e. completeasgions). How-
ever, the latter condition @ A) is a logical formalization of thenerge over
moveprinciple Chomsky (1995) which stipulates that merge ojpenehas

priority over movement because of its simplicity. Therefaa structure that
will undergo move operation should be complete.

According to the syntax of phonetic terms associated wittvadoele-
ments, SPIC condition can be encoded L as a pre-condition ofolE rule
(cf. Fig 3) stipulating the inclusion of all occurrenceslpivariablecy within
the extraction domain of th@-termdy. Therefore, adding this meta-rule to
LG L prevents us from analyzing the previous ungrammaticakseet

4.5 Conclusion & Future Work

LG L is a new logical formalism which proposes a deductive sitahaof
Minimalist Program. Our proposal is powerful enough to diescseveral lin-
guistic phenomena such as medial extraction, bindingasé#liand disconti-
nuity thanks to using linked lexical entries (related tottoled hypotheses).
Moreover, one can solve over-generation problems caus#uetdyeedom of
displacement by adding some meta-rules encoding localitgtcaints.

In addition, it is not dfficult to show that these grammars are richer than
context free grammars as they are able to generate crospethdencies lan-
guages (e.ga"b™c"d™ | n, m> 0}). In fact, this latter language is recognized
by £G L grammar containing the lexicon beldw

Fep (Vie(l.4)
F AX. Ay. AZ. Au. Xe(ye(zeu)): ty
F A P.AX. Ay. Az. Au. P(aX, Y, Cez, U): ty —o ty
F A P.AX. Ay. AZ. Au. P(X, by, z, deu): ty —o ty

The next direction to explore concerns the study’gfL formal proper-
ties: expressive power, decidability, and complexity. W antend to build
bridges betweed G L and other well-known grammatical frameworks (e.g.
Minimalist Grammar, TAGS).

Finally, we are developing a meta-linguistic toolkit usidgq proof assis-
tant (Coq Team (2004)), in order to study logical propertieLG L gram-
mars being enhanced with packages of meta-constraintstddikit can help
users manage complex derivations by automatically hagidlime technical
proofs thanks to powerful computation tools (strategies).

References
Chomsky, N. 1995The minimalist programMIT Press.

8In that caseA={p1,P2,P3,Pa,c} andty denotes the composite type—o p2—o p3—ops—oC

34/ Houpa ANOUN & A LAIN LEcOMTE

Coq Team. 2004. The coq proof assistant, reference mareralpun 8.0. Tech. rep.,
INRIA.

Curry, HB. 1961. Some logical aspects of grammatical stnest In R. Jackobson,
ed.,Symposium in Applied Mathematiggges 56—68.

de Groote, P. 2001. Towards abstract categorial gramnma8@th Annual Meeting of
the Association for Computational Linguisti@®ulouse.

Girard, Jean-Yves. 1987. Linear logitheoretical Computer Sciené&@:1-102.
Harkema, H. 2000. A recognizer for minimalist grammarsIVifPT.

Hendriks, P. 1995Comparatives and Categorial GrammaPh.D. thesis, University
of Groningen, The Netherlands.

Kayne, R. 2002. Pronouns and their antecedents. In S. E.e€ly,Sd. Derivation
and Explanation in the Minimalist ProgranBlackwell.

Koopman, H. and A. Szabolcsi. 2000. Verbal complexesCumrent series in Lin-
guistic TheoryMIT Press.

Lambek, J. 1958. The mathematics of sentence structdineerican Mathematical
Monthly.

Lecomte, A and C Retore. 2001. Extending lambek grammaisgiadl account of
minimalist grammars. 1r39th Annual Meeting of the Association for Computa-
tional Linguistics pages 354—362. Toulouse.

Moortgat, M. 1997. Categorial type logic. In V. B. . ter Menje=d.,Handbook of
Logic and Languagechap. 2. Elsevier.

Morrill, G. 2000. Type logical anaphora. Tech. rep., Unsigat Politecnica,
Catalunya.

Muskens, R. 2003. Language, lambdas, and logidRdsource Sensitivity in Binding
and AnaphoraStudies in Linguistics and Philosophy. Kluwer.

Stabler, E. 1997. Derivational minimalism. In C. Retore,, éadgical Aspects of
Computational LinguisticsSpringer.

Vermaat, W. 1999.Controlling Movement: Minimalism in a deductive perspeeti
Master’s thesis, master’s thesis, Utrecht University.

5

P-TIME decidability of NL1 with
assumptions

M aRr1A BuLINskA

Abstract

Buszkowski (2005) showed that systems of Non-associataraliek Calculus with
finitely many non-logical axioms are decidable in polyndrtime and generate context-
free languages. The same holds for systems with unary niedalstudied in Moortgat
(1997),n-ary operations, and the rule of permutation, studied ged§2004). The poly-
nomial time decidability for Classical Non-associativenlaek Calculus was established
by de Groote and Lamarche (2002). We study Non-associativebek Calculus with
identity enriched with a finite set of assumptions. To prdnat this system is decidable in
polynomial time we adapt the method used in Buszkowski (20DBe context-freeness
of the languages generated of the systems of Non-asseclambek Calculus is also
established.

Keywords Lawmsek caLcurus, P-TIME DECIDABILITY

5.1 Introduction and preliminaries

Non-logical axioms can be of interest for linguistics fovegl reason. We
can use them to describe subcategorization in natural &geguiror instance,
restrictive adjectives are a sub-category of adjectivasthiér, by enriching
Non-associative Lambek Calculus with finitely new axioms,a@&n improve
its expressibility without lacking the nice computatiosghplicity.

First we describe the formalism of Non-associative Lambak@us with
identity constant (NL1). Let A& {p,q,r, ...} be the denumerable set of atoms
(primitive types).

The set of formulas (also called types) Tp1l is defined as thadlssh set
fulfilling the following conditions:

« 1eTpl,

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

35

36/ MaRria BuLiNska

At € Tp1l,

if A,Be Tpl,thenfeB) e Tpl, (A/B) e Tpl (A\B) € Tpl, where binary
connectives \ , / ,e , are calledeft residuation, right residuatigrand
product respectively.

The set of formula structures STR1 is defined recursivelpbews:

A € STR1, where\ denotes an empty structure,
Tpl c STR1,; these formula structures are called atomic formulecst
tures,

if X,Y € STR1, thenX o Y) € STR1.

WesetKoA)=(AoX)=X

Substructures of a formula structure are defined in theviatig way:

A is the only substructure df,

if Xis an atomic formula structure, thénandX are the only substructures
of X,

if X = (X10Xy), thenX and all substructures &f; andX; are substructures
of X.

By X[Y] we denote a formula structupé with a distinguished substructure
Y, and byX[Z] - the substitution o for Y in X.

Sequents are formal expressiofs»> A such thatA € Tpl, X € STR1.
The Gentzen-style axiomatization of the calculus NL1 eryplbe axiom

schemas:
(id) A—A (1R) A—>1
and the following rules of inference:
X[A] = A
(L) X[1] - A’
X[AoB] - C X—-A Y->B
L) XAeBSC R v SA.B "
Y—->A XB—-C AoX—B
(L) X[Yo (A\B)] - C ’ R =as
X[A]->C; Y—>B XoB— A
D Sqemevisc R xSas
Y > A XA - B
(CUT) X > B

For any system S we write SX — Aif the sequenX — A is derivable

in S.

The most general models of NL1 are residuated groupoid déhtity.

P-TIME pecipaBiLiTy oF NL1 with Assumptions / 37

A residuated groupoidavith identity is a structure
M= (M7S7'7\7/71)
such that
= (M,-,1) is a groupoid with identity in whicla-1 = a, 1-a = afor all
ae M,
* (M,<)is aposet,
= \,/ are binary operations o¥ satisfying the equivalences:

(RES) ab<c iff b<a\c iff a<c/b

foralla,b,ce M.

Every residuated groupoid fulfills the following monotoitydaws:

(MON) If a<b then ca<cb and ac<bc
(MRE) If a<b then c\a<c\b, a/c<b/c,
b\c<a\c, c/b<c/
foralla,b,ce M.

A modelis a pair (M, i) such thatM is a residuated groupoid with identity
andyu is an assignment of elements BF for atoms. One extends for all
formulas :

pu(1) =1, u(AeB)=u(A) - ubB),
(A\B) = u(A)\u(B), u(A/B) = u(A)/u(B).
and formula structure:

pA) =p(1) =1, u(XoY)=pu(X)-ulY).
A sequentX — A is said to be true in modelM,) if u(X) < wp(A). In
particular a sequemt — Ais said to be true in model,) if 1 < u(A).
One can prove the following property for formula structures

(MON - STR) If u(Y) < u(Z) then wu(X[Y]) < u(X[Z]).

5.2 NL1 with assumptions

LetI be a set of sequents of the foln— B, whereA, B € Tpl. By NL1()
we denote the calculus NL1 with additional $ebf assumptions. NL1 is
strongly complete with respect to the residuated groupwittsidentity, i.e.
all sequents provable in NLI) are precisely those which are true in all mod-
els (M, u) in which all sequents froriv are true. Soundness is easily proved
by induction on derivation in NLI{). Completeness follows from the fact
that the Lindenbaum algebra of NL1 is a residuated groupdldidentity.

In general, the calculus NLLJ has not the standard sub-formula property,
since (CUT) is legal rule in this system. Thus we take intosideration the
sub-formula property in some extended form.

38/ MaRria BuLiNska

Let T be a set of formulas closed under sub-formulas and such lhat a
formulas appearing if" belong toT. By a T-sequent we mean a sequent
X — Asuch thatA and all formulas appearing X belong toT. Now, we can
reformulate the sub-formula property as follows:

EveryT-sequent provable in a system S has a proof in S such thaaiéats
appearing in this proof aré-sequents.

To prove the sub-formula property for NUI)(we will use special models,
namely residuated groupoids with identity of cones oveegipre-ordered
groupoids with identity.

Let (M, <,) be a pre-ordered groupoid, that means, it is a groupoidavith
pre-ordering (i.e. a reflexive and transitive relationjisfging (MON).

A setP C M is called aconeon M if a < bandb € P entailsa € P. Let
C(M) denotes the set of cones bh

The operations \, / onC(M) are defined as follows:

(M1) I=faeM:a<l}
(M2) PiP;={ceM:(JaePi,bePy)c<ab}

(M3) Pi\P,={ce M:(Yae P;)ace Py}

(M4) Pl/Pz = {C eM: (Vb € P2) che Pl}
A structure C(M),c,-,\,/, 1) is a residuated groupoid with identity. It is
called the residuated groupoid with identity of cones over given pre-
ordered groupoid with identity.

Let M be the set of all formula structures all of whose atomic sulstiires

belong toT andA € M. If a sequenX — A has a proof in NL1[() consisting
of T-sequents only, we writeX —1 A.

First, we define oM a relation<y,. X < Y denotesX directly reduces to
Y. The definition of this relation is as follows:

Y[Z] <p Y[A] if Z -7 1,
Y[Z] <p Y[A] if Z -1 A
Y[AeB] <p Y[AoB] if AeBeT.

A pre-ordering< on M is defined as a reflexive and transitive closure of
the relation<,. ThenX < Y iff there existYp, ..., Yo, n > 0 such thatX =
Yo,Y = YyandYi_; <p Vi, foreachi=1,...,n.

Clearly, M, <,0,A) is a pre-ordered groupoid with identity fulfilling
(MON).

Next, we take into consideration the residuated groupoidooies with
identity C(M) = (C(M),<,-,\,/,1) over (M, <, 0, A) defined above. An as-
signmenj onC(M) is defined by setting:

u(p) ={XeM: X -1 p)

P-TIME pecipaBiLiTy oF NL1 witH Assumptions / 39

for all atomsp. One can easily prove that
1(A) = {X €M : X >t Al,
forall AeT.
Fact 1 Every sequent provable ML1(T) is true in(C(M), w).

Proof. It suffice to show, that each axiom fraliis true in C(M), u). Assume
thatA — Bbelongstd'. ltyieldsA —1 B. We need to show tha(A) € u(B).
Let X € u(A). Then,X —t A. By (CUT), we getX —t B, which yields
X € u(B). O

Lemma 2 The systemL1(I') has the extended sub-formula property.

Proof. Let X — A be aT-sequent provable in NLLJ. By fact 1 it is true in
the model C, 1), i.e. u(X) € u(A). SinceX e u(X), we haveX € u(A). But it
meansX —1 A. O

A sequent is said to bbasicif it is a T-sequent of the fornrA — A,
A — B, Ao B — C. LetT be finite, and lefl be a finite set of formulas,
closed under sub-formulas and such thatontains all formulas appearing
in T'. For suchT we shall describe arflective procedure which produces all
basic sequents derivable in NI (

LetSp consist of allT -sequent of the form (Id), all sequents frdh\ — 1
and allT-sequents of the form:

lcA— A Aocl—> A AoB— AeB,
Ao (A\B) — B, (A/B)o B — A.
AssumeS, has already been defineSl,,1 is S, enriched with sequents
resulting from the following rules:
(S1)if(AcB—C)eSpand AeB) € T,then @e B — C) € S1,
(S2)if (Ao X - C) e Spand A\C) € T, then X — A\C) € Spy1,
(S3)if(XoB—C)e Syand C/B) € T, then X — C/B) € Sp.1,
(S4)if (A - A e Spand Ao X - C) € S, then X — C) € Sy,
(S5)if (A > A)e Spand Xo A— C) € Sy, then X — C) € Sp,1,
(S6)if(A— B)e SpandBo X — C) € Sy, then @o X — C) € Sy,
(ST if(A—-B)eSpand XoB— C) € Sy, then Xo A — C) € Spi1,
(S8)if(AcB—C)e Spand C — D) € Sy, then Ao B — D) € Sp,1.
Clearly,S,, € Sp,1 for all n > 0. We defineST as the join of this chairS™
is a set of basic sequents, hence it must be finite. It yiBlds Sy, 1, for the

leastk such thatSk = Sk,1, and thisk is not greater then the number of basic
sequents.

Fact 3 The set $ can be constructed in polynomial time.

40/ MaR1iA BULINSKA

Proof. Let n be the cardinality off. There aren, n> andn® basic sequents
of the formA — A, A - BandA o B — C, respectively. Hence, we have
m = n® + n? + n basic sequents. The s8§ can be constructed in timer).
To getSi;1 from S; we must closes; under the rules (S1)-(S8) which can be
done in at mosin® steps for each rule. For example, to cl&eunder (S1)
we must check ifAo B — C) € S; and (A e B) € T which needs at mosh
andn steps, respectively. The sequéné B — C is added tdS;,; only if it
doesn't belong to this set. To check this fact the masteps are needed. The
leastk such thaS" = Sy is at mosim. Then finely, we can construst’ from

T in time 0(m*) = O(n*?). O
By S(T) we denote the system whose axioms are all sequents$foand
whose only inference rule is (CUT). Then, every proof3(T) consist of
T-sequents only.

If as premises of (CUT) in the proof 8(T) of some sequerX — A only
sequents without empty antecedents are used, then thé lehail sequents
in this proof is not greater than the lengthXf— A. But it doesn’t hold if
we allow in (CUT) the premises of the fora — A. Therefore we introduce
another syster8(T)~ whose axioms are all sequents fr&hand whose only
inference rule is (CUT) with premises without empty anteged, and show
the following lemma.

Lemma 4 Forany sequent X> A, S(T)F X = A iff S(T)" + X - A.

Proof. The 'if’ direction is evident. To prove the 'only if’ direin we show
thatS(T)~ is closed under (CUT), i.e.

™) If S(T)" r X -» BandS(T)™ + Y[B] — A, thenS(T)™ + Y[X] — A.
AssumeS(T)™ + X - BandS(T)™ + Y[B] — A

If X # A, thenS(T)™ + Y[X] — A by definition of S(T)".

If X = A, then the sequeit — Bis of the formA — BandS(T)" +r A —
B, which means that — B is an axiom ofS(T)". To prove (*) we proceed
by induction on derivation of the second premiggB] — A.

If Y[B] — Ais an axiom ofS(T)~, then (Y[B] — A) € ST. ST is closed
under (CUT). Hence Y[A] — A) € ST which yieldsS(T)™ r Y[A] — A.

If Y[B] — Ais a conclusion of (CUT) from premises without empty an-
tecedents, theN[B] = Z[Y’] and for someC € T, S(T)" + Y — C and
S(T)™ + Z[C] — A. We consider the following cases.

I. Bis contained iry’. ThenY’ = Y’[B].
(1) Y’[B] # B. By the induction hypothesis, (*) holds fox — B and
Y'[B] — C, soS(T)” + Y[A] — C. SinceY’[B] # B, we haveY’[A] #
A. Using (CUT), we ge8(T)™ + Z[Y’'[A]] — A, which means$(T)™ +
Y[A] — A
(2) Y’[B] = B. By the induction hypothesis, (*) holds fex — B and

P-TIME pecmasiLITY oF NL1 wiTH ASSUMPTIONS / 41

B — C,soS(T)” + A — C. Using inductive hypothesis t& — C and
Z[C] — A we getS(T)™ + Z[A] — A, which means$(T)™ + Y[A] —
A
II. BandY’ do not overlap. The is contained irnZ and does not overlap
C in Z. We write Z[C] = Z[B,C]. From the assumption we haw =*
A. By induction hypothesis, (*) holds fok — B andZ[B,C] — A, so
S(T)™ + Z[A,C] — A. By (CUT),S(T)” + Z[A,Y’] — A, which means
S(T)" + Y[A] - A
O

Corollary 5 Every basic sequents provable ifT9 belongsto $.

Proof. We proceed by induction on proofs8{(T). AssumeX — Ais a basic
sequent derivable iB(T). If X — Ais an axiom of5(T), then X — A) € ST.
If X — Ais a conclusion of (CUT), we consider three cases.

(1) X = A. By lemma 4,A — Ahas a proof inS(T)". HenceA — Ais an
axiom, which means — A) € ST.

(2) X = B. By lemma 4, there exists a proof such tBat> A is a conclusion
from premiseB — C andC — A, whereC # A. Since proofs in S(T)
consist withT-sequents onlyB — C andC — A are basic sequents. By
induction hypothesis g — C) € ST and C — A) € ST. ST is closed
under (CUT), soB — A) e S™.

(3) X = Bo C. By lemma 4, there exists a proof such tlsat C — Alis a
conclusion from premises without empty premises. Henesy, #ne of the
form: (BoC—-D,D—-A)or(B— D,DoC—-A)or(C— D,BoD —
A). By the same argument as in (2), in each case, weRyeE(— A) € ST.

O

Now, we can state an interpolation lemma 8{iT).

Lemma 6 If S(T) - X[Y] — A, then there exists @ T such that $T) +
Y — Dand ST) + X[D] — A.

Proof. We proceed by induction on proofs8{(T).

I. AssumeX[Y] — A is an axiom ofS(T). We consider the following
cases.

(1) X[Y] = Y. ThenY = X (observe, that this case includes sub case
X = A). We setD = A. We haveS(T) - X — Afrom assumption and
S(T)r A— A since A — A) e ST,

(2) X[Y] =B,Y = A. ThenX[Y] = X[A] = B=BoAorX[Y] =AoBand
D=1 We haveS(T) r A —» 1andS(T) - B— A. (Bo1l— B) e ST,
soS(T) + Bo1l — B. Using (CUT) we getS(T) + X[1] — A. For
X[Y] = A o Bthe argument is dual.

42/ MaRIA BuLINska

(B)X[Y] =BoC,Y # A.ThenY =BorY =C, henceD =BorD =C,
respectively.

(4) X[Y] = BoC, Y = A. ThenX[A] has one of the formA o (B o C),
(BoC)oA, (AoB)oC,(BoA)oC,Bo(AoC),Bo(CoA).In
all these cases we sBt = 1. For example, ifX[A] = A o (Bo C),
we haveS(T) + A — 1 and using (CUT) t&5(T) + BoC — Aand
S(Mr1oA— A wegetS(T)+ 1o (BoC) — A

Il. AssumeX[Y] — Ais a conclusion of (CUT). TheK[Y] = Z[Y’] and for

someB e T: S(T) + Y — BandS(T) + Z[B] — A
In this part the proof is analogous to the proof of lemma 2 isEw@wski

(2005). The following cases are considered.

(1) Y is contained inY’. ThenY’ = Y’[Y]. By the induction hypothesis,
there existd € T such thatS(T) + Y — D andS(T) + Y’'[D] — B.
Using (CUT) with the premiseZ[B] — A andY’[D] — B we get
S(T) + Z[Y’[D]] — A, which mean$(T) + X[D] — A.

(2) Y’ is contained inY. Then X[Y] = X[Y[Y’]] = Z[Y’'] and Z[B] =
X[Y[B]]. By the induction hypothesis, there exidis € T such that
S(T) + Y[B] - D andS(T) + X[D] — A. Using (CUT) with the
premisesy’ — BandY[B] — D we getS(T) + Y[Y’]] — D.

(3) Y andY’ do not overlap. Thel is contained irZ and does not overlap
B in Z. We write Z[B] = Z[B, Y]. By the induction hypothesis, there
existsD € T such thatS(T) + Y — D andS(T) + Z[B,D] — A.
Using (CUT) with the premise¥” — B andZ[B,D] — B we get
S(T) + Z[Y’,D] — A, which means$(T) + X[D] — A.

O

Lemma 7 For any T-sequent X»> A, X -1 Aiff S(T) - X — A.

Proof. Recall, thatX —1 A means that the sequeXit— A has the proof in
NL1(T) consisting withT-sequents only.

To prove 'if’ direction observe thaX —t A, for all sequents — Ain
ST,

TheT-sequents which are axioms of NI[}(belong toSy. Thus, to prove
the ’only if’ direction it sufices to show that all inference rules of NIC)(
restricted toT -sequents, are admissibleS(T). For example, let us consider
(1L). AssumeX[A] — A. By lemma 6, there exidD € T such thatS(T) ~
A — DandS(T) + X[D] — A. Since Dol — D) € ST, thenS(T) - Dol —
D. By two applications of (CUT), we g&(T) + X[A o 1] — A, which means
S(T) + X[1] — A. O

Theorem 8 If T is finite, thenNL1(I") is decidable in polynomial time.

Proof. LetT be a finite set of sequents of the foh— C and letX —» A
be a sequent. Lat be the number of logical constants and atomXir> A

RErFERENCES / 43

andT’. As T we choose the set of all sub-formulas of formulas appearing i
X — Aand formulas appearing In Since the number of sub-formulas of any
formulaB is equal to the number of logical constants and atoni; ih hasn
elements and we can constructit in time)(By lemma 2, NL1[) - X — A
iff X -1 A.Bylemma7X —1 Aiff S(T) v X — A. Proofs inS(T) are actu-
ally derivation trees of a context-free grammar whose petida rules are the
reversed sequents fro8Y. Checking derivability in context-free grammars
is P-TIME decidable. For example, by known CYK algorithntgan be done
in time not exceedt - n%, wherek is the size oS". By the proof of fact 3, the
size of ST is at most 0G%) andST can be constructed in Bf%). Hence, the
total time is 00%?), i.e. NL1() is P-TIME decidable. O

By theorem 8, we have immediately that languages genergtdtblrate-
gorial grammar based on the system NIL)14re context-free. In Buszkowski
(2005) the analogous result was established for)LL(I") with permuta-
tion rule and Generalized Lambek Calculus (GLY(The context-freeness
of the languages generated by Non-associative Lambek IQaluere studied
by Buszkowski (1986), Kandulski (1988) and Jager (2004)ifBka (2005)
obtained the weak equivalence of context-free grammargemmars based
on the associative Lambek calculus with finite set of simm@e-togical ax-
ioms of the formp — q, wherep, q are primitive types.

References

Bulihska, M. 2005. The Pentus Theorem for Lambek Calculitls 8imple Nonlogi-
cal Axioms. Studia Logica81:43-59.

Buszkowski, W. 1986. Generative capacity of Nonasso@dtambek CalculusBul-
letin of Polish Academy of Sciences. Mathemadi#t$07-516.

Buszkowski, W. 2005. Lambek Calculus with Nonlogical Axienin C. Casadio, P. J.
Scott, and R. A. G. Seely, edtanguage and Grammaftudies in Mathematical
Linguistics and Natural Language, pages 77-93. CSLI Paiiias.

de Groote, P. and F. Lamarche. 2002. Clasical Non-Asseeiatambek Calculus.
Studia Logicar1:355-388. Special issue: The Lambek calculus in logiclemd
guistics.

Jager, G. 2004. Residuation, Structural Rules and CoRtednessJournal of Logic,
Language and Informatioh3:47-59.

Kandulski, M. 1988. The equivalence of Nonassociative LeknBategorial Gram-
mars and Context-Free Grammazsitschrift fir mathematische Logik und Grund-
lagen der Mathematik2:34—41.

Moortgat, M. 1997. Categorial Type Logics. In J. van Bentram A. ter Meulen,
eds., Handbook of Logic and Languagpages 93-177. Amsterdam, Cambrigde
Mass.: Elsvevier, MIT Press.

6

Program transformations for
optimization of parsing algorithms and
other weighted logic programs

JAsoN E1sNER AND JOHN Brarz

Abstract

Dynamic programming algorithms in statistical naturalgaage processing can be
easily described as weighted logic programs. We give ainatand semantics for such
programs. We then describe several source-to-sourcefdrarations that fiect a pro-
gram’s éficiency, primarily by rearranging computations for bet&uge or by changing
the search strategy. We present practical examples of treisg transformations, mainly
to optimize context-free parsing algorithms, and we foieeathem for use with new
weighted logic programs.

Specifically, we definaveightedversions of the folding and unfolding transforma-
tions, whose unweighted versions are used in the logic progring and deductive
database communities. We then present a novel transfameadilled speculation—a
powerful generalization of folding that is motivated by gaessing in categorial gram-
mar. Finally, we give a simpler and more powerful formulatiof the magic templates
transformatiort.

Keywords WEIGHTED LOGIC PROGRAMMING, DYNAMIC PROGRAMMING, PROGRAM TRANS-
FORMATION, PARSING ALGORITHMS

6.1 Introduction

In this paper, we show how some algorithmfi@ency tricks used in the nat-
ural language processing (NLP) community, particulartydarsing, can be
regarded as specific instances of transformations on wezidbgic programs.

1This material is based upon work supported by the Nation@&@rBe Foundation under
Grants No. 0313193 and 0347822 to the first author.

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

45

46/ JasoN EisNER AND JOHN BLATZ

We define weighted logic programs and sketch the general @drthe
transformations, enabling their application to new praggén NLP and other
domains. Several of the transformations (folding, unfoddimagic templates)
have been known in the logic programming community, but amegalized
here to our weighted framework and applied to NLP algorithive also
present a powerful generalization of folding—speculatiamhich appears
new and is able to derive some important parsing algorithms.

We also formalize these transformations in a way that we findenmtu-
itive than conventional presentations. Influenced by theharisms of cate-
gorial grammar, we introduce “slashed” terms whose valug Ioe regarded
as functions. These slashed terms greatly simplify ourtcocisons. In gen-
eral, our work can be connected to the well-establishedhtitee on grammar
transformation.

The framework that we use for specifying the weighted loga@gpams is
roughly based on that of Dyna (Eisner et al., 2005), an implaed system
that can compile such specifications infi@ent G++. Some of the programs
could also be handled by PRISM (Zhou and Sato, 2003), an mgnéed
probabilistic Prolog.

Itis especially useful to have general optimization teghes for dynamic
programming algorithms (a special case in our frameworgabnse compu-
tational linguists regularly propose new such algorithBymamic program-
ming is used to parse manyfiirent grammar formalisms, and in syntax-
based approaches to machine translation and language inthdelis also
used in finite-state methods, stack decoding, and gramrdaciion.

One might select program transformations either manuaillgutomati-
cally. Our goal here is simply to illustrate the search spafceemantically
equivalent programs. We do not address the practical qurestisearching
this space—that is, the question of where and when to apglyrénsfor-
mations. For some programs and their typical inputs, a toamstion will
speed a program up (at least on some machines); in other, dagiisslow it
down. The actualféect can of course be determined empirically by running
the transformed program on typical inputs (or, in some casas be rea-
sonably well predicted from runtime profiles of thetransformegbrogram).
Thus, one could in principle use automated methods, suctoekastic lo-
cal search, to search for sets of transformations that geogood practical
speedups.

6.2 Weighted Logic Programming

Before moving to the actual transformations, we will takeesal pages to
describe our proposed formalism of weighted logic programgm

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 47

6.2.1 Logical Specification of Dynamic Programs

We will use context-free parsing as a simple running exaniéeall that one
can write a logic program for CKY recognition (Younger, 19638 follows,
whereconstit(X,1,K) is provable ff the context-free grammar (CFG), starting
at nonterminak, can generate the input substring from positiom position
K. The capitalized symbols avariables.

constit(X,l,K) :- rewrite(X,W), word(W,1,K).

constit(X,1,K) :- rewrite(X,Y,Z), constit(Y,l,J), constit(Z,J,K).

goal :- constit(s,0,N), length(N).

rewrite(s,np,vp). % tiny grammar
rewrite(np,det,n).
rewrite(np,”"Dumbo”).
rewrite(np,’flies”).

rewrite(vp,'flies”).

word("Dumbo”,0,1). % tiny input sentence

word("flies”,1,2).

length(2).

For example, the second line permits us to prove the prapostnstit(X,1,K)

once we can prove that there exist constituemistit(Y,1,J) andconstit(z,J,K)—
which are adjaceft—as well as a context-free grammar ruésvrite(X,Y,2)

(i.e,X — Y Z) to combine them. This deduction is permitted &y specific
values ofX,Y,z (presumably nonterminals of the grammar) an# (presum-
ably positions in the sentence).

We suppose in this paper that the whole program above is figubeit
compile time. In practice, one might instead wait until iome to provide the
description of the sentence (therd andlength facts) and perhaps even of
the grammar (theswrite facts). In this case our transformations could be used
only on the part of the program specified at compile time.

The basic objects of the program daeems, defined in the usual way (as
in Prolog). Following parsing terminology, we refer to sotaems astems;
these are terms that the program might prove in the courds ekéecution,
such asonstit(np,0,1) but notnp (which appears only assub-termof items)
nor constit(foo(bar),baz).* Each line in the program is anference rule (or

2By convention, we regard positions as fallibgtweeninput words, so that the substring
from | to J is immediately adjacent to the substring frdno K.

3This is generally safe provided that the runtime rules mayleéine in the head, nor evaluate
in the body, any term that unifies with the head of a compiteetrule. It is common to assume
further that all the runtime rules are facts, known colleji as thedatabase

4Itis of course impossible to determine precisely which &the progranwill prove without
running it. It is merely helpful to refer to terms as items whee are discussing their provability
or, in the case of weighted logic programs, their valuee(tit does have a more formal meaning

48/ JasoN EisNER AND JOHN BLATZ

clause.

Each of the inference rules in the above examplaige-restricted. In
the jargon of logic programming, this means thatvatiables (capitalized)
in the rule’s left-hand side (rulleead) also appear in its right-hand side (rule
body). A rule with an empty body is called fact. If all rules are range-
restricted, then all provable terms ay@und terms, i.e., terms such asn-
stit(s,0,2) that do not contain any variables.

Logic programs restricted in this way correspond to the figratical
deduction systems” discussed by Shieber et al. (1995)e5{{097) gives
many parsing algorithms in this form. More generally, peogs that consist
entirely of range-restricted rules correspond to coneerati dynamic pro-
gramming algorithms, and we may refer to them informallgwasamic pro-
grams.

Dynamic programs can be evaluated by various techniquesspécific
technique chosen is not of concern to this paper except tiroseg.6. How-
ever, for most NLP algorithms, it is common to use a bottonouforward
chaining strategy such as the one given by Shieber et al., whichiitehat
proves all transitive consequences of the facts in the pragin the exam-
ple above, forward chaining starts with terd, rewrite, andlength facts and
derives successively wideonstit items, eventually derivingoal iff the input
sentence is grammatical. This corresponds to chart pansitiy the role of
the chart being played by a data structure that remembeichviteims have
been proved so far.

This paper deals with general logic programs, not just dyognmograms.
For example, one may wish to state once and for all that anltegsvord
is available aeverypositionK in the sentenceword(epsilon,K,K). We allow
this because it will be convenient for most of our transfaiores to intro-
duce new non-range-restricted rules, whichdarivenon-ground items such
as word(epsilon,K,K). The above execution strategies continue to apply, but
the presence of non-ground items means that they must nownifseation
matching to find previously derived terms of a given form. &le, if the
non-ground itenword(epsilon,K,K) has been derived, representing an infinite
collection of ground terms, then if the program looks up teedf terms in
the chart matchingord(w,2,K), it should find (at leastyord(epsilon,2,2).

in a practical setting—where, foiffeciency, the user or the compiler declaresitem datatype
that is guaranteed to be able to represent at least all geotems, though not necessarily all
terms. We then use “item” to refer to terms that can be reptedeby this explicit datatype.)

5An alternative strategy is Prolog’s top-dowackward-chaining strategy, which starts by
trying to provegoal and tries to prove other items as subgoals. However, tlagegly will waste
exponential time by re-deriving the same constituents fiiedint contexts, or will fail to termi-
nate if the grammar is left-recursive. It may be rescued byoigation, also known as “tabling,”
which re-introduces a chart (Sagonas et al., 1994).

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 49

One can often eliminate non-range-restricted rules (itiqdar, the ones
we introduce) to obtain a semantically equivalent dynamagpam, but we
do not here explore transformations for doing so systerlitic

6.2.2 Weighted Logic Programs

We now define our notion afieightedogic programs, of which the most use-
ful in NLP are the semiring-weighted dynamic programs dsseud by Good-
man (1999) and Eisner et al. (2005). See the latter paperddcassion of
relevant work on deductive databases with aggregation, (€iting, 2002,
Van Gelder, 1992, Ross and Sagiv, 1992).

In a weighted logic program, each provable item haalae Our running
example is the inside algorithm for context-free parsing:

constit(X,l,K) += rewrite(X,W) * word(W,1,K).

constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).

goal += constit(s,0,N) * length(N).

rewrite(s,np,vp) = 1. % p(s—>npvp|s)
rewrite(np,det,n) = 0.5. % p(hp — det n | np)
rewrite(np,”"Dumbo”) = 0.4. % p(np — "Dumbo” | np)
rewrite(np,"flies”) = 0.1. % p(vp — "flies” | vp)
rewrite(vp,’flies”) = 1. % p(vp — "flies” | vp)
word("Dumbo”,0,1) = 1. % 1 for all words in the sentence
word("flies”,1,2) = 1.

length(2) = 1.

This looks just like the unweighted logic program in sect@@.1, except
that now the body of each inference rule is an arbitegressionand the

.- operator is replaced by aygregation operatorsuch asr= or max=. One
might call these rules “Horn equations,” by analogy with (definite) Horn
clauses of the unweighted casefakt is now a rule whose body is a constant
Or an expression on constants.

To understand the meaning of the above program, consideex@am-
ple the itemconstit(s,0,2). The old version of line 2 allowed one farove
constit(s,0,2) if rewrite(s,Y,Z), constit(Y,0,J), andconstit(z,J,2) were all true for
at least one tripler,z,J. The new version of line 2 insteatkfines the valuef
constit(s,0,2)—o0r more precisely, as

Z rewrite(s,Y,Z) * constit(Y,0,J) * constit(Z,J,2)

Y,Z,J
The aggregation operater requires a sum over all ways of grounding the
variables that appear only in the rule body, namelyg, andJ. The rest of
the value ofconstit(s,0,2) is added in by line 1. We will formalize all of this in
section 6.2.3 below.

50/ JasoN EisNer AND JoHN Brarz

To put this another way, one way of grounding line 2 (i.e., ovay
of substituting a ground term for each of its variables}asstit(s,0,2) +=
rewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2). Therefore, one operand to
+= in defining the value ofonstit(s,0,2) will be the value (if defined) of
rewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2).

The result—for this program—is that the computed valueaétit(X,!,J)
will be the traditional inside probabilitg (1, J) for a particular input sentence
and gramma¥.

If the heads of two rules unify, then the rules must use theesaygrega-
tion operator, to guarantee that each provable term’s \Valaggregated in a
consistent way. Eactonstit(. . .) term above is aggregated with.

Substitutingnax= for += throughout the program would find Viterbi prob-
abilities (best derivation) rather than inside probaieiit(sum over deriva-
tions). Similarly, we can obtain the unweighted recognifesection 6.2.1 by
writing expressions over boolean values:

constit(X,1,K) |= rewrite(X,Y,Z) & constit(Y,l,J) & constit(Z,J,K).

Of course, these programs are all essentially recognizther than
parsers. They only compute a boolean or real valuegéat. To recover
actual parse trees, one can extract the proof treegoaf To make the
parse trees accessible to the program itself, one can deBepaaate item
parse(constit(X,1,K)) whose value is a tré&We do not give the details here to
avoid introducing new notation and issues that are orthaljorthe scope of
this paper.

The above examples, like most of our examples, can be habgl¢de
framework of Goodman (1999). However, we allow a wider classules.
Goodman allows only range-restricted rules (cf. our sec@®.1), and he
requires all values to fall in a single semiring and all ruiesise only the
semiring operations. The latter requirements—in pargictie distributivity
property of the semiring—imply that an item’s value can berfd by sep-
arately computing values for all of its complete proof treesl then aggre-
gating them at the end. That is not the case for neural netygedme trees,

6However, unlike probabilistic programming languages (Zlamd Sato, 2003), we do not
enforce that values be reals in [or have probabilistic interpretations.

“Using| for “or” and & for “and.” The aggregation operatogs and&= can be regarded as
implementing existential and universal quantification.

8Another option is to say that the value oonstit(X,l,K) is not just a number but a (num-
ber,tree) pair, and to defirmax= over such pairs Goodman (1999). This resembles the use
of semantic attachments to build output in programming Uagg parsers. However, it requires
building a tree (indeed, many trees, of which the best is)Kepteachconstit, including con-
stituents that do not appear in the final parse. Our prefescheéme is to hold the best tree in
a separatgarse(constit(X,1,K)) item. Then we can choose to use backward chaining, or the
magic templates transformation of section 6.6, to limit computation of parse trees to those
that are needed to assemble the final tpegse(goal).

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 51

practical NLP systems that mix summation and maximizatowther useful
systems of equations that can be handled in our more genanag¥work.

6.2.3 Semantics of Weighted Logic Programs

We now formalize the semantics of a weighted logic programd, define
what it means for a program transformation to preserve timanécs. Read-
ers who are interested in the actual transformations may tsl$ section,
except for the brief definitions of the special aggregatiperator= and of
side conditions.

In an unweighted logic program, the semantics is the set o¥gtie
ground terms.For aweightedogic program, the semantics is a partial func-
tion, thevaluation function, that maps each provable ground terno a
value [r]. All items in our example above take valueskn However, one
could use values of any type or of multiple types.

The domain of the valuation functiofi] is the set of ground terms for
which there exist finite proofs under th@weightedrersion of the program.
We extend[-] in the obvious way to expressions on provable ground terms:
for example[x*y] = [x] * [y] provided thafx] and[y] are defined.

For each ground term that is provable in prograr®, let £(r) be the
non-empty multiset of all expressiots over provable ground terms, such
thatr &= E grounds some rule @®. Herea,= denotes the single aggregation
operator shared by all those rules.

We now interpret the weighted rules as a set of simultanequat®ns
that constrain thé-] function. If &= is +=, then we require that

= > [E]
EeP(r)
(perhaps permittindr] = « if the sum diverges). More generally, we require
that
[[I’ﬂ = [[El]] D [[Ezﬂ S ...
where®(r) = {Ea, Ey, .. .}. For this to be well-definedy, must be associative
and commutative. I, = is the special operatet, as in the final rules of our
example, then we sét] = [E;] if P(r) is a singleton setE;}, and generate
a runtime error otherwise.

Example. In the example of section 6.2.2, lines 1-2, this means thiatrip
particularX, I, K for which constit(X,1,K) is a provable item[constit(X, I, K)]
equals

9Note that if a non-ground term can be proved under the progsantan any one of the
infinitely many ground terms that instantiates (specializhat non-ground term. Our formal
semantics are described in terms of these ground terms only.

52/ JasoN EisNer AND JoHN Brarz

Ywrewrite(X,W)] = [word(W,1,J)]
+ X gyzlrewrite(X,Y,Z)] * [constit(Y,I,J)] * [constit(Z,J,K)]

where, for example, the second summation ranges over téolastd, Y, Z
such that the summand has a value. We sum @véZ because they do not
appear in the rule’s headnstit(X, I, K), which is being defined.

Remark. Our constraints on the valuation functipf are equivalent to say-
ing that it is a fixed point of an “equational update” operdtpr'® which acts

on valuation functiong and is analogous to the “monotone consequence”
operator for unweighted logic programs. Such a fixed poirgdneot be
uniquel! Operationally, one may seek a single fixpoint by initialgin= {},
repeatedly updatingto Tp(l), and hoping for convergence. That is the basic
idea of the forward-chaining algorithm in section 6.2.40vel

Side conditions. A mechanism for handling “side conditions” (e.g., Good-
man, 1999) is to use rules like

a +=b * c whenever ?2d.

We define]b * c whenever 2d] = [b *], independent of the value df But by
our earlier definitions, it will appear iff(a) and be added intfa] only if the
side conditiord, along withb andc, is provable.

Definition. Roughly speaking, a program transformatin— %’ is said
to besemantics-preservingff it preserves the partial functign]. In other
words, exactly the same ground terms must be provable uotlepbograms,
and they must have the same values.

We make two adjustments to this rough definition. First, fmerality, we
must handle the case whePeand?’ do not both have uniquely determined
semantics. In general, we say that the transformation issgos-preserving
iff it preserves theetof valuation functions.

Second, we would like a program transformation to be ablat@duce
new provable items for its own use. Therefore, we only regjhiat it preserve

0Thatis,[-] = Te([-]). Given a valuation functioh, T»(1) is defined as follows: for ordinary
ground terms, put

(Te()(r) = D I(E)
E such thak is a ground expression where
I(E) is defined and €@, = E grounds some rule ¢

if this sum is non-empty, and leave it undefined otherwiseeriféxtendl (1) over expressions
as usual.

11There is arich line of research that attempts to more prigai@aracterize which fixed point
gives the “intuitive” semantics of a logic program with néga or aggregation (see e.g. Fitting,
2002, Van Gelder, 1992, Ross and Sagiv, 1992).

12yhenever ?d is defined to mean “whenever d is provable,” wherghsnever d would mean
“whenever d’s value igrue.” The latter construction is also useful, but not neededis paper.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 53

therestriction of [-] to the Herbrand base @t (more precisely, to the Her-
brand base of all expressible constants and the funct@?$.imhus, a trans-
formed version of the inside algorithm would be allowed toyar additional
temp(...) items, but not additionalonstit(. . .) items. The user may therefore
safely interrogate the transformed program to find out wérettmstit(np,0,5)

is provable and if so, what its value is.

Notice that a two-step transformatigh — #” — £’ might introduce
newtemp(...) items in the first step and eliminate them in the second. This
composite transformation may still be semantics presgreiren though its
second stef?”’ — P’ is not.

All of the transformations developed in this paper are idezhto be
semantics-preserving (except for rule elimination andim@gnplates, which
preserve the semantics of only a subset of the ground teffmg)rove this
formally, one would show that every fixed point & is also a fixed point
of Ty, when restricted to the Herbrand basefpfand conversely, that every
fixed point of? can be extended to a fixed pointD# .

6.2.4 Computing Semantics by Forward Chaining

A basic strategy for computing a semantic interpretatiotidevard chain-
ing.” The idea is to maintain current values for all provesis, and to prop-
agate updates to these values, from the body of a rule to &d, hatil all
the equations are satisfied. This may be done in any orden, margllel (as
for the equational update operator of section 6.2.3). Nweih the presence
of cycles such asg += 0.9 * x, the process can still convergemericallyin
finite time (to finite values or too, representing divergence). Indeed, the for-
ward chaining strategy terminates in practice for many ot of practical
interest!®

As already noted in section 6.2.1, Shieber et al. (1995) gaf@ward
chaining algorithm (elsewhere called “semi-naive bottoprevaluation”) for
unweightedlynamigorograms. Eisner et al. (2005) extended this to handle ar-
bitrary semiring-weighted dynamic programs. Goodman) @@ve a mixed
algorithm.

Dealing with our full class of weighted logic programs—natt semiring-
weighted dynamic programs—is a substantial generaliza@mce we allow
inference rules that are not range-restricted, the alyorihust derive non-
ground items and store them and their values in the charplatadih the value
of foo(3,3), if not explicitly derived, by “backing fi” to the derived value of
non-ground items such & (X,X) or foo(X,3), which are preferred in turn to

130f course, no strategy can possibly terminate on all progrdmecause the language (even
when limited to unweighted range-restricted rules) is ptwv@nough to construct arbitrary Tur-
ing machines. We remark that forward chaining may fail tonieate either because of oscillation
or because infinitely many items are derived (esN) = N).

54/ JasoN EisNErR AND JoHN Brarz

the less specifibo(X,Y). Once we drop the restriction to semirings, the algo-
rithm must propagate arbitrary updates (notice that it istriaal to update

the result ofmax= if one of its operands decreases). Certain aggregation op-
erators also allow important optimizations thanks to tiseiecial properties
such as distributivity and idempotence. Finally, we mayhis allow rules
such aseciprocal(X) = 1/X that cannot be handled at all by forward chaining.
We defer all these algorithmic details to a separate papeusing instead on
the denotational semantics.

6.3 Folding: Factoring Out Subexpressions

Weighted logic programs are schemata that define possitajtensystems of
simultaneous equations. Finite systems of equations dan bé rearranged
without afecting their solutions (e.g., Gaussian elimination). lmghme way,
weighted logic programs can be transformed to obtain newrpras with
better runtime.

Notation. We will henceforth adopt a convention of underlining anyivar
ables that appear only in a rule’s body, to more clearly iagi¢che range of
the summation. We will also underline any variables thateapmnly in the
rule’s head; these indicate that the rule is not rangeicéstk.

Example. Consider first our previous rule from section 6.2.2,
constit(X,1,K) += rewrite(X,Y,2) * constit(Y,l,J) * constit(Z,J,K).

If the grammar ha®l nonterminals, and the input is amword sentence
or ann-state lattice, then the above rule can be grounded in N - n®)
different ways. For this—and the other parsing programs we denkere—
it turns out that the runtime of forward chaining can be kepwd to O(1)
time per grounding? Thus the runtime i©(N?® - n).

However, the following pair of rules is equivalent:

temp(X,Y,Z,1,J) =rewrite(X,Y,Z) * constit(Y,l,J).

constit(X,I,K) +=temp(X,Y,Z,1,J) * constit(Z,J,K).

We have just performed a weighted version of the claséidding trans-
formation for logic programs (Tamaki and Sato, 1984). Thiginal body
expression would be explicitly parenthesizedrasrite(X,Y,Z) * constit(Y,1,J))

* constit(Z,J,K); we have simply introduced a “temporary item” (like a tem-
porary variable in a traditional language) to hold the restithe parenthe-
sized subexpression, then “folded” that temporary itera the computation

14Assuming that the grammar is acyclic (in that it has no unatg cycles) and so is the
input lattice. Even without such assumptions, a meta-trmaasf McAllester (1999) allows one
to derive asymptotic run-times of appropriately-indexedaard chaining from the number of
instantiations. However, that meta-theorem applies anlyntweighted dynamic. Similar results
in the weighted case require acyclicity. Then one can uséwbeghase method of Goodman
(1999), which begins by running forward chaining on an umgtgd version of the program.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 55

of constit. The temporary item mentions all the capitalized varialitethe
expression.

Distributivity. A more important use appears when we combine folding
with the distributive law. In the example above, the secarid's body sums
over the (underlined) free variables, Y, andz. However,Y appears only
in thetemp item. We could therefore have summed over values before
multiplying by constit(z,J,K), obtaining the following transformed program
instead:

temp2(X,Z,1,J) += rewrite(X,Y,Z) * constit(Y,l,J).

constit(X,I,K) +=temp2(X,Z,1,J) * constit(Z,J,K).

This version of the transformation is permitted only beeaudistributes
over=*.1® By “forgetting” Y as soon as possible, we have reduced the runtime
of CKY from O(N2 - n®) to O(N2 - n? + N2 - n%).

Using the distributive law to improve runtime is a well-knovechnique.

Aji and McEliece (2000) present what they call a “generaligéstributive
law,” which is equivalent to repeated application of thedfoy transforma-
tion. While their inspiration was the junction-tree aldbm for probabilistic
inference in graphical models (discussed below), they destnate the ap-
proach to be useful on a broad class of weighted logic program

A categorial grammar view of folding. From a parsing viewpoint, notice
that the itemtemp2(X,z,1,J) can be regarded as a categorial grammar con-
stituent: an incomplet® missing a subconstitueatat its right (i.e., arx/z)

that spans the substring frarto J. This leads us to an interesting and appar-
ently novel way to write the transformed program:

constit(X,l,K)/constit(Z,J,K) += rewrite(X,Y,Z) * constit(Y,I,J).

constit(X,l,K) += constit(X,l,K)/constit(Z,J,K) * constit(Z,J,K).

HereA/B is syntactic sugar faslash(A,B). Thatis,/ is used as an infix functor
and does not denote division, However, it is mearsguggestivision: as the
second rule showsgyB is an item which, if multiplied by, yields a summand
of A. In effect, the first rule above is derived from the original rule Fa t
start of this section by dividing both sides bynstit(z,J,K). The second rule
multiplies the missing factatonstit(z,J,K) back in, now that the first rule has
summed ovey.

Notice thatk appears free (and hence underlined) in the head of the first
rule. The only slashed items that are actugligvableby forward chaining
are non-ground terms such ashstit(s,0,K)/constit(vp,1,K). That is, they have
the formconstit(X,l,K)/constit(Z,J,K) whereX,1,J are ground variables butre-
mains free. The way that appears twice in the slashed item (i.e., internal

15All semiring-weighted programs enforce a similar disttibel property. In particular, the
trick can be applied equally well to common cases discussesétion 6.2.2: Viterbi parsing
(max distributes over eithef or +) and unweighted recognitiondistributes ove&.

56/ JasoN EisNer AND JoHN Brarz

unification) indicates that the missiZgs always at theight of the X, while

the fact thak remains a variable means that the shared right edge of the ful
X and missing are still unknown (and will remain unknown until the second
rule fills in a particulaz). Thus, the first rule performs a computation once
for all possiblex—always the source of folding’diéciency.

Our earlier program withemp2 could now be obtained by a further au-
tomatic transformation that replacesalhstit(X,1,K)/constit(z,J,K) having free
K with the more compactly storedmp2(X,z,1,J). The resulting rules are all
range-restricted.

We emphasize that although our slashed items are inspireategorial
grammars, they can be used to describe foldingrigweighted logic pro-
gram. Section 6.5 will further exploit the analogy to obtainovel “specula-
tion” transformation.

Further applications. The folding transformation unifies various ideas that
have been disparate in the natural language processirgflite. Eisner and
Satta (1999) speed up parsing with bilexical context-fresrgnars from
O(n°) to O(n*), using precisely the above trick (see section 6.4 below}rig

et al. (2005) employ the same “hook trick” to improve the coexjty of
syntax-based MT with an-gram language model.

Another parsing application is the common “dotted ruletkriEarley,
1970). If one’s CFG contains ternary rulgs— Y1 Y2 Y3, the naive CKY-
like algorithm take€D(N* - n%) time:

constit(X,l,L) += ((rewrite(X,Y1,Y2,Y3) * constit(Y1,1,J))

* constit(Y2,J,K)) * constit(Y3,K,L).
Fortunately, folding allows one to sum first ovet before summing sepa-
rately overy2 andJ, and then over3 andK:

temp3(X,Y2,Y3,1,J) += rewrite(X,Y1,Y2,Y3) * constit(Y1,1,J).

temp4(X,Y3,ILK) +=temp3(X,Y2,Y3,1,J) * constit(Y2,J,K).

constit(X,l,L) += temp4(X,Y3,1,K) * constit(Y3,K,L).

This restore©(n®) runtime (more preciselD(N*-n? + N2-n®+ N?-n3))16 by
reducing the number of nested loops. Even if we had declimedin oveiv1
andY2 in the first two rules, then the summation ovawould already have
obtainedO(n®) runtime, in éfect by binarizing the ternary rule. For exam-
ple, temp4(X,Y1,Y2,Y3,l,K) would have corresponded to a partial constituent
matching thedottedrule X — Y1 Y2 . Y3. The additional summations ovet
andY2 result in a more #icient dotted rule that “forgets” the names of the
nonterminals matched so fat,— ? ? . Y3. This takes further advantage of
distributivity by aggregating dotted-rule items (with) that will behave the
same in subsequent computation.

18For a dense grammar, which may have ugNfoternary rules. Tighter bounds on grammar
size would yield tighter bounds on runtime.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 57

The variable elimination algorithm for graphical models e viewed as
repeated folding. An undirected graphical model expreasgeist probability
distribution overP,Q by marginalizing (summing) over a product of clique
potentials. In our notation,

marginal(PQ) += p1(...) *p2(...)*--- *pn(...).

where a function such g%(Q,X,Y) represents a clique potential over graph
nodes corresponding to the random varialgdesy. Assume without loss of
generality that variabl& appears as an argument onlyptQ1, pk:2, - - - » Pn-
We mayeliminatevariablex by transforming to

temp5(...) = preal. X) T T pp(el, X L),

marginal(PQ) +=pa(...) e r () * temp5(....).
Line 2 no longer mentiong because line 1 has summed over it. To elimi-
nate the remaining variables one at a time, the variabldrgition algorithm
applies this procedure repeatedly to the last tihe.

Common subexpression elimination. Folding can also be used multiple
times to eliminate common subexpressions. Consider tHewfislg code,
which is part of an inside algorithm fdwilexical CKY parsing*8
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,1,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)
* constit(Y:H2,1,J) * constit(Z:H,J,K).

Here X:H is syntactic sugar fontlex(X,H), meaning a nonterminal whose
head word is the lexical iterd. The grammar uses two types of lexicalized
binary productions (defined bgwrite facts not shown here), which pass the
head word to the left or right child, respectively.

We could fold together the last two factors of the first rul@lain

temp6(Y:H,Z:H2,1,K) += constit(Y:H,l,J) * constit(Z:H2,J,K).

constit(X:H,1,K) += rewrite(X:H,Y:H,Z:H2) * temp6(Y:H,Z:H2,|,K).

constit(X:H,1,K) += rewrite(X:H,Y:H2,Z:H)

* constit(Y:H2,1,J) * constit(Z:H,J K).

We canreusethis definition of theemp rule to fold together the last two fac-
tors of line 3—which is the same subexpression, modulo krieenaming.

1"Determining the optimal elimination order is NP-compléiewever, there are many heuris-
tics in the literature (such as min-width) that could be u§adtomatic optimization of long rules
is needed.

18This algorithm is obviously an extension of the ordinaryidesalgorithm in section 6.2.2.

The other rules are
constit(X:H,I,K) += rewrite(X,H) * word(H,I,K).
goal += constit(s:H,0,N) * length(N).

58/ JasoN EisNer AND JoHN Brarz

Given a new ruldR in the formr e= F[g] (which will be used to replace a
group of rulesRy, ..., R,in P). LetSy, ..., S, be the complete list of rulgs
in £ whose heads unify witls. Suppose that all rules in this list use as
their aggregation operator.

Now for each, whensis unified with the head &, the tuple (, F, s, S;)*°
takes the formr{, Fi, 5, 5 o= E;). Suppose that for eachthere is a disting
rule R in the program that is equal tpe= Fi[E;], modulo renaming of its
variables.

Then the folding transformation deletes theiulesRy, . . ., Ry, and replace
them with the new rul®, provided that

—

[2)

= Any variable that occurs in any of tHg which also occurs in eithdf;
or r; must also occur irg.?°

»Eithero= is simply=,2! or else the distributive properf{[u] ® F[v]] =
[F[« @ v]] holds for all assignments of terms to variables and all v@na
functions[-].?

19Before forming this 4-tuple, rename the variablesSinso that they do not conflict with
those inr, F, s. Perform the desired unification within the 4-tuple by umityit with the fixed
term(R,F,S,S ©= E), which contains two copies &.

20This ensures that computirggby ruleS; does not sum over this variable, which would break
the covariation of; with F or r as required by the original rulg.

2IFor instance, in the very first example of section 6.3, tér@p item was defined using
and therefore performed no aggregation (see section 6No3jistributivity was needed.

22That is, all valuation functions over the space of grounch&rincluding dummy terms
andv, when extended over expressions in the usual way.

FIGURE 1 The weighted folding transformation.

(Below, for clarity, we explicitly and harmlessly swap themes ofH2 andH
within thetemp rule.)

temp7(Y:H2,Z:H,1,K) += constit(Y:H2,1,J) * constit(Z:H,J,K).
constit(X:H,1,K) += rewrite(X:H,Y:H,Z:H2) * temp7(Y:H,Z:H2,1,K).
constit(X:H,1,K) += rewrite(X:H,Y:H2,Z:H) * temp7(Y:H2,Z:H,| K).

Using the sameemp7 rule (modulo variable renaming) in both folding
transformations, rather than introducing a new tempoiterm ifor each fold,
gives us a constant-factor improvement in time and space.

Formal definition of folding. Our definition, shown in Figure 1, may seem
surprisingly complicated. Its most common use is to repkacingle rule
r &= F[E] with r &= F[g] in the presence of a rulee= E. However, we have
given a more general form that is best understood as prgcseatrsing the
weighted unfolding transformation to be discussed in thd section (Fig-
ure 2). In unfolding, it is often useful fasto be defined by a group of rules

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 59

whose heads unify witk (i.e., they may be more general or specific patterns
thans). We define folding to allow the same flexibility.

In particular, this definition of folding allows an additialuse of distribu-
tivity. Both the original itemr and the temp itens may aggregate values
not just within a single rule (summing over free variableghia body), but
also acros# rules. In ordinary mathematical notation, we are perfogran
generalized version of the following substitution:

Before After
r=Y",(f«xE) = r="fxs
S= Zinzl Ei = S= Zin:l Ei

given the distributive property,;(f = Ej) = f = >, E;. The common context in
the original rules is the function “multiply by expressibfi so the temp item
splays the role of / f.

Figure 1 also generalizes beyond “multiply By It allows an arbitrary
common contexE—a sort of function. In Figure 1 and throughout the paper,
we use the notatioR[E] to denote thditeral substitution of expressiada for
all instances of: in an expressiofr over items, even iK contains variables
that appear irE or elsewhere in the rule containifidE]. We assume that
is a distinguished symbol that does not appear elsewhere.

Generalized distributivity. Figure 1 states the required distributive prop-
erty as generally as possible in terms Bf An interesting example is
[log(p) + log(a)] = [log(p * @)], which says thatog distributes over- and
changes it tor. This means that the definitiosd) *= e(J,K) may be used
to replacer += b(1,J) * log(e(J,K)) with r += b(1,J) * log(s(J)). Heren = 1,

F = b(1,9) * log(u), E1 = e(J,K), ands = s(J).

By contrast, the definition+= e(J) maynotbe used to replacer= e(J)*e(J)
with r += s*s, which would incorrectly replace a sum of squares with a sgjua
of sums. If we takd- to bee(J)*u or u*e(J), it is blocked by the first require-
ment in Figure 1 (variable occurrence). If we tadkeo beu*y, it is blocked
by the second requirement (distributivity).

Introducing slashed definitions for folding. Notice that Figure 1 requires
the rules defining the temp itesto be in the programalreadybefore folding
occurs. If necessary, their presence may be arranged wed tiéfinition in-
troduction transformation that addsash(r,F) o= E; for eachi, whereslash is

a new functor not used elsewhereffnando is chosen to ensure the required
distributive property. We then taketo beslash(r,F) (or if one wants to use
syntactic sugar/F).

Note that thers will be slash(r;,F;), which automatically satisfies the re-
quirement in Figure 1 that certain variables that occufiiror ri must also
occur ins. This technique of introducing slashed items will reappeaec-
tion 6.5, where it forms a fundamental part of our specutettiansformation.

60/ JasoN EisNer AND JoHN Brarz

Let R be a rule inP, given in the formr @= F[g]. Let Sy,..., S, be the
complete list of rules i? whose heads unify witk. Suppose that all rules
in this list useo as their aggregation operator.

Now for each, whensis unified with the head &;, the tuple (, F, s, S;)?3
takes the formr(, Fi, s, 5 o= E)).

Then the unfolding transformation deletes the mleeplacing it with the
new rulesr; = Fi[Ej] for 1 < i < n. The transformation is allowed under
the same two conditions as for the weighted folding tramsédion:

= Any variable that occurs in any of thHg which also occurs in eithdf;
or ri must also occur irs.
*Either © = is simply =, or else we have the distributive propejrty

[Flu] @ F[V]] = [Fluov]].

23Before forming this tuple, rename the variablesSjrso that they do not conflict with those
inr,F, s

FIGURE2 The weighted unfolding transformation.

If no operator can be found such that the distributive property will hold,
andn = 1, then one can still use folding without the distributiveperty
(as in the example that opened this section). In this caseduace a rule
temp(E;) = E;, and takes to betemp(E;), which “memoizes” the value of
expressiork;. Again, this satisfies the requirements of Figure 1.

6.4 Unfolding and Rule Elimination: Inlining Subroutines

Unfolding. The inverse of the folding transformation, callenfolding (Fig-
ure 2), replaces with its definition inside the rule bodye= F[9]. This def-
inition may comprise several rules whose heads unify witli sis regarded
as a subroutine call, then unfolding is tantamount to infirthat call.

Recall that d&olding transformation leaves the asymptotic runtime alone,
or may improve it when combined with the distributive law.rtdeunfolding
makes the asymptotic runtime the same or worse. Howeverytmelp the
practical runtime by reducing overhead. (This is exactly the usualaent
for inlining subroutine calls.)

An obvious example is program specialization. Consideiirible algo-
rithm in section 6.2.2. If we take the second line,

constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).
and unfoldrewrite(X,Y,2) inside it, then we replace the above rule witbediof

rules, one for each binary production of the grammar (i&cherule whose
head unifies withewrite(X,Y,2)):

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 61

constit(s,I,K) += 1 * constit(np,l,J) * constit(vp,J,K).
constit(np,l,K) += 0.5 * constit(det,l,J) * constit(n,J,K).

The resulting parser is specialized to the grammar, perpepsding a
constant-time speedup. It avoids having to look up the valuenrite(s,np,vp)
or rewrite(np,det,n) since these are now “hard-coded” into specialized infer-
ence rules. A compiled version can also “hard-code” patteatching rou-
tines against specialized patterns suchaastit(np,1,J); such pattern matches
are used during forward or backward chaining to determinihviules to
invoke.

Note that recursive calls can also be unfolded. For exampiatit is re-
cursively defined in terms of itself. If we unfold thenstit(np,1,J) inside the
first of the new rules above, we get

constit(s,I,K) += 1 * 0.5 * constit(det,l,L) * constit(n,L,J) * constit(vp,J,K).

constit(s,I,K) += 1 * 0.4 * word("Dumbo”,1,J) * constit(vp,J,K).

constit(s,I,K) += 1 * 0.1 * word("flies”,1,J) * constit(vp,J,K).

Unfolding is often a precursor to other transformations. &le, the
patternconstit(vp,1,J) above can now be transformeddmstit_vp(1,J) for more
efficient storage. Furthermore, constant subexpressionsiie can now be
replaced in the source code by their values—a transformé#tiat is known,
not coincidentally, as constant folding. We will see anotiseful example of
this unfold-refold pattern below, and yet another when wivdehe (Eisner
and Satta, 1999) algorithm in section 6.5.1.

Rule elimination. A practically useful transformation that is closely rethte
to unfolding is what we caltule elimination (Figure 3). Rather than fully
expanding one call to subroutirsgit removes one of the defining clauses of
sand requiresll of its callers to do the work formerly done by that clause.
This may change or eliminate the definitionfso the transformation is
not semantics-preserving. The advantage of changing tharges is that
if some s items become no longer provable, then it is no longer necgssa
to store them in the chaf®. Thus,rule elimination saves spack also shares
the advantages of unfolding—it can specialize a progranvemaification to
compile-time, eliminate intermediate steps, and serve@seursor to other

267 similar space savings—while preserving semantics—cbelérranged simply by elect-
ing not to memoize these items, so that they are computedroantérather than stored. Indeed,
if we extend our formalism so that a program can specify whahémoize, then it is not hard
to combine folding and unfolding to define a transformatibat tacts just like rule elimination
(in that the callers are specialized) and yet preservesrg@saTlhe basic idea is to fold together
all of the other clauses that defing then unfold all calls te (which accomplishes the special-
ization), and finally declare that (which is no longer called) should not be memoized (which
accomplishes the space savings). However, we suppresetdits dis beyond the scope of this
paper. Our main interest in rule elimination in this papetoi€liminate rules fotemp items,
whose semantics were introduced by a previous transfasmatid need not be preserved.

62/ JasoN EisNer AND JoHN Brarz

Let S be a rule ofP to eliminate, with head. LetR;, Ry, ... R, be a com
plete list of rules i whose bodies may depend ef* Suppose that eagh
R can be expressed in the fomre;= Fi[s], wheres is a term that unifie
with sandF; is an expression that is independensgf

For each, whens is unified with the head @8, the tuple (;, Fi, 5, S) takeg
the form ¢/, F{, 5, § o= E/). Then the rule elimination transform remoyes
rule S from # and, for each, adds the new rulg e= F/[E[] (while also
retainingR). The transformation is allowed under the same two conaitio
as for weighted folding and unfolding:

[

= Any variable that occurs in any of tHg which also occurs in eithef/
orr/ must also occur irg.

sEither © = is simply =, or else we have the distributive property
[Flul @ FVI] = [Fluov].
Warning: This transformation alters the semantics of ground terrag th
unify with s.

2That is, the bodies of all other rules fhmust be independent sf The notion of indepen-
dence relies on the semantics of expressions, not on thepartprogran®. An expressiore
is said to bendependentof a terms if for any two valuation functions on ground terms that
differ only in the values assigned to groundings,ahe extensions of these valuation functions
over expressions assign the same values to all groundings of

25For example, supposgis s(X,X). Then the rule(X) += s(X,Y) * t(Y) should be expressed
asr(X) += (u * t(Y))[s(X,Y)], while r(X) min=s(X,Y) * s(X,Y) should be expressed g¥X) += (u *
w[s(X,Y)] andr min= 3 can be expressed amin= 3[s(X,X)]. However,r(X) += s(X,Y) * s(Y,Z)
cannot be expressed in the required form at all. We regaad a ground term in considering
whetherF; is independent o$.

FIGURE 3 The weighted rule elimination transformation.

transformations.

To see the dierence between rule elimination and unfolding, let us start
with the same example as before, and selectively eliminstale single bi-
nary productiomewrite(np,det,n) = 0.5. In contrast to unfolding, this no longer
replaces the original general rule

constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).
with a slew of specialized rules. Ratherkéepsthe general rule but adds a
specialization

constit(np,l,K) += 0.5 * constit(det,l,J) * constit(n,J,K).
while deletingrewrite(np,det,n) = 0.5 so that it does nadlsofeed into the gen-
eral rule.

A recursive example of rule elimination. An interesting recursive exam-
ple is shown below. The original program is in the first colufaliminating

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 63

its second or third rule gives the program in the second od ttolumn, re-
spectively. Each of these changes damages the semansicasofvarned, but
preserves the value of”

s+=1. s+=1.
s += 0.5*s. s += 0.5*s.

s += 0.5*1. s += 0.5*0.5*s.
r+=s. r+=s. r+=s.

r+=1. r += 0.5%s.

Fl=2[=2|El=L[1=2]|l=211=2

Unfolding or rule elimination followed by folding. 28 Recall the bilexical
CKY parser given near the end of section 6.3. The first rulgioailly shown
there has runtim®(N2 - n°), since there ar#l possibilities for each oX,Y,z
andn possibilities for each of,J,K,H,H2. Suppose that instead of that slow
rule, the original programmer had written the followingdet! version:

temp8(X:H,Z:H2,1,J) += rewrite(X:H,Y:H,Z:H2) * constit(Y:H,I1,J).

constit(X:H,1,K) += temp8(X:H,Z:H2,1,.J) * constit(Z:H2,J,K).

This partial program has asymptotic runtimeéNe' -n* 4+ N?- n5). and needs

O(N2 . n“) space to store the items (rule heads) it derives.
By either unfolding the call taemp8 or eliminating thetemps rule, we
recover the first rule of the original program:
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,l,J) * constit(Z:H2,J,K).

This worsens the time complexity ©(N® - n°). The paydf is that now we
can refold this rule dferently—either as follows (Eisner and Satta, 1999),
temp9(X:H,Y:H,J,K) += rewrite(X:H,Y:H,Z:H2) * constit(Z:H2,J,K).
constit(X:H,1,K) +=temp9(X:H,Y:H,J,K) * constit(Y:H,1,J).
or alternatively as already shown in section 6.3 (whes® item had the ad-
ditional advantage of being reusable). Either way, the gggtit time com-
plexity is nowO(N3 n*+ N2 n4)—better than the original programmer’s
version.
How about the asymptotic space complexity? If the first stepdurule
elimination rather than unfolding, then it actually elirated storage for the
temp8 items, reducing the storage requirements fm(mZ . n“) toO (N . n3).

27Sincer was defined to equal the (original) valuesfit provides a way to recover the original
semantics o6. Compare the similar construction sketched in footnote 26.

28Rule elimination can also be usafter another transformation, such as speculation, to clean
away unnecessary temp items. See footnote 42.

64 / JasoN EisNer AND JoHN Brarz

Regardless, the refolding step increased the space coitypleck to the
original programmer’s)(N2 : n4).

6.5 Speculation: Factoring Out Chains of Computation

In the most important contribution of this paper, we now gahee fold-
ing to handle unbounded sequences of rules, including sy@leisspecu-
lation transformation, which is novel as far as we know, is remesmf
gap-passing in categorial grammar. It has many uses; wé dunselves to
two real-world examples.

6.5.1 Examples of the Speculation Transformation

Unary rule closure. Unary rule closure is a standard optimization on cont-
ext-free grammars, including probabilistic ones (StoJck&95). We derive
it here as an instance of speculation. Suppose we begin wigrsion of
the inside algorithm that allows unary nonterminal rulesvaf as the usual
binary ones:

constit(X,l,K) += rewrite(X,W) * word(W,1,K).

constit(X,l,K) += rewrite(X,Y) * constit(Y,I,K).

constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

Suppose that the grammar includes a unary rule cycle. Fongea sup-
pose thatewrite(np,s) andrewrite(s,np) are both provable. Then the values of
constit(np,|,K) andconstit(s,I,K) “feed into each other.” Under forward chaining,
updating either one will cause the other to be updated; thisgss repeats un-
til numerical convergenc®.

This computation is somewhat time-consuming—yet it is et$aklty the
same for everyonstit(np,l,K) we may start with, regardless of the particular
spani— or the particular input sentence. We would prefer to do thepo
tation only once, “dline.”

A difficulty is that the computation does incorporate the pasdicugal
value of theconstit(np,|,K) that we start with. However, if we simply ignore
this factor during our “@line” computation, we can multiply it in later when
we get an actualonstit(np,|,K). That is, we computspeculativelybefore the
particularconstit(np,I,K) and its value actually arrive.

In the transformed code belowmp(X,X0) represents the inside probabil-
ity of building up aconstit(X,10,k0) from aconstit(X0,10,K0) by a sequence of
0 or more unary rules. In other words, it is the total proligbdf all (pos-
sibly empty) unary-rewrite chains —* X0. While line 2 of the transformed

29 we gave the Viterbi algorithm instead, withax= in place of+=, then convergence would
occur in finite time (at least for a PCFG, whereraivrite items have values in [@]). The same
algorithm applies.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 65

program still computes these items by numerical iteratioanly needs to
compute them once for eatXo, since they are now independent of the par-
ticular spano—ko covered by these two constituerfs.

temp(X0,X0) += 1.

temp(X,X0) += rewrite(X,Y) * temp(Y,X0).

other(constit(X,1,K)) += rewrite(X,W) * word(W,I,K).
other(constit(X,1,K)) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).
constit(X,l,K) += temp(X,X0)*other(constit(X0,I,K)).

The temp(s,np) item sums the probabilities of the infinitely many unary-
rewrite chainss —* np, which buildnp up intos using only line 2 of the
original program. Now, to get values likenstit(s,4,6) for a particular input
sentence, we can simply sum finite products téeep(s,np)

* other(constit(np,4,6)), Whereother(constit(np,4,6)) sums up ways of building
anconstit(np,4,6) other thanby line 2 of the original prograrit

The semantics of this program, which can derive non-groands. fully
defined by section 6.2.3. We omit further discussion of hoex#cutes di-
rectly under forward chaining (section 6.2.4). Howevetertbat the program
could be transformed into a more conventional dynamic @nogsy applying
rule elimination to the first rule (the only one that is notgarrestricted§?

For dficiency, our formal transformation adds a “filter clause” &xle of
thetemp rules:

temp(X0,X0) += 1 needed_only_if constit(X0,10,K0).

temp(X,X0) += rewrite(X,Y)*temp(Y,X0) needed_only_if constit(X0,10,K0).

The exact meaning of this clause will be discussed in seétib12. It permits
laziness, so that we compute portions of the unary rule cbosuly when
they will be needed. Itsfeect is that for each nonterminad, thetemp items

30Wwe remark that the first steps of this iterative computation could be moved to coenpil
time, by eliminating line 1 as discussed below, speciaiidine 2 to the grammar by unfolding
rewrite(X,Y), and then computing the series sums by alternately unfplietemp items and
performing constant folding to consolidate edemp item’s summands.

31For example, it includes derivations where tigis built from a determiner and a noun, or
directly from a word, but not where it is built directly fronomes or anothemp. Excluding the
last option prevents double-counting of derivations.

32Here is the result, which alters the semantics of the slatdmag item to ignore derivations
of length 0:

temp(X,X0) += rewrite(X,Y) * temp(Y,X0).

temp(X,X0) += rewrite(X,X0) * 1.

other(constit(X,1,K)) += rewrite(X,w) * word(W,I,K).
other(constit(X,1,K)) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K).
constit(X,1,K) += temp(X,X0)*other(constit(X0,1,K)).

constit(X0,1,K) += 1*other(constit(X0,1,K)).

66/ JasoN EisNer AND JOHN Brarz

are proved or updated only once soboestit(X0,10,K0) constituent has been
built.3® At that time, all thetemp(X,X0) values for thisxo will be computed
once and for all, since there is now something for them to doenkwith.
Usefully, these values will then remain static while thengnaar does, even if
the sentence changes.

Adopting the categorial view we introduced in section 6.8,e&n regard
temp(s,np) as merely an abbreviation for th@n-groundslashed itenton-
stit(s,10,K0)/constit(np,10,K0): the cost of building up aonstit(s,10,K0) if we al-
ready had &onstit(np,10,K0). This cost is independent af andKo, which is
why we only need to compute a single item to hold it, albeit tha contains
variables.

As we will see, the slashed notation is not merely expositGuyr for-
mal speculation transformation will actually produce agseon with slashed
terms, essentially as follows:

constit(X0,10,K0)/constit(X0,10,K0) += 1.

constit(X,l,K)/constit(X0,10,K0) += rewrite(X,Y)

* constit(Y,I,K)/constit(X0,10,K0).

other(constit(X,1,K)) += rewrite(X,W) * word(W,1,K).
other(constit(X,1,K)) += rewrite(X,Y,Z)

* constit(Y,l1,J) * constit(Z,J,K).
constit(X,l,K) += (constit(X,l,K)/constit(X0,10,K0))

* other(constit(X0,10,K0)).

A variable-free example. To understand better how the slash anieker
mechanisms work, consider this artificial variable-freeguam, illustrated
by the hypergraph in Figure 4:

a+=b*c.

b+=r.

c+=f*c.

c+=d*e*x

c+=g.

X+=...

The values ok andc depend orx. We elect to create speculative versions of
the first, third, and fourth rules. The resulting programrieh in Figure 5. It
includes rules to compute slashed versions ofandx itself that are “missing

anx .
a/x +=b * c/x.
c/x +=f*c/x.

c/x +=d* e * x/x.
XIX += 1.

33In this example, the filter clause on the second rule is reainindRuntime analysis or static
analysis could determine that it has no actual filterifiga, allowing us to drop it.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 67

FIGURE4 A simple variable-free program before applying the spdauia
transformation.

FIGURE5 The program of Figure 4 after applying the speculation fiamsation. The
x/x rule and variousther(. . .) rules have been eliminated for simplicity.

68/ JasoN EisNer AND JoHN Brarz

It also reconstitutes full-fledged versions afc, andx. Each is defined
by a sum that is split into two cases: summands that were foaitt anx
using a sequence of 0 of the selected rules, and “other” summands that
were not. (Notice that the first rule i®t a += a/x * x; this is because might
in general include derivations that are built from anothgthough not in
this example), and this would lead to double-counting. Bygia += a/x *
other(x), we split each derivation of uniquely into a maximal sequence of
selected rules, applied to a minimal instance.pf

a += a/x * other(x).

C += c/x * other(x).

X += X/X * other(x).

a += other(a).

¢ += other(c).

Finally, the program must define the “other” summands:
other(a) += b * other(c).

other(c) += f * other(c).

other(c) +=g.

other(x) += ...

In Figure 5, this program has been further simplified by elating the
rules forx/x andother(x).

Split bilexical grammars. For our next example, consider a “split” bilexical
CFG, in which a head word must combine with all of its rightidren before
any of its left children. The naive algorithm for bilexicalmtext-free parsing
is O(n®). In the split case, we will show how to derive tt¥n*) and O(n?)
algorithms of Eisner and Satta (1999).

The “inside algorithm” belo# builds uprconstit items by successively
adding 0 or more child constituents to the right ofverd, then builds up
constit items by adding 0 or more child constituents to the left of tbinstit.
As before X:H represents a nonterminawhose head word ig.

rconstit(X:H,l,K) += rewrite(X,H) * word(H,I,K). % O right children so far

rconstit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) % add right child

* rconstit(Y:H,1,J) * constit(Z:H2,J,K).
constit(X:H,l,K) += rconstit(X:H,I,K). % 0 left children so far
constit(X:H,I,K) +=rewrite(X:H,Y:H2,Z:H) % add left child

* constit(Y:H2,1,J) * constit(Z:H,J,K).
goal += constit(s:H,0,N) * length(N).

34We deal here with context-free grammars, rather than thé-hetomaton grammars of Eis-
ner and Satta. In particular, our complete constituentsycaonterminal categories and not just
head words. Note that the algorithm is correct only for aitsgrammar (formally, one that
does not contain two rules of the fomewrite(X:H1,Y:H2,Z:H1) andrewrite(V:H1,X:H1,W:H3)),
since otherwise the grammar would license trees that cdieoonstructed by the algorithm.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 69

This obvious algorithm has runtin@N? - n®) (dominated by line 4). We
now speed it up by exploiting the conditional independerfdefb children
from right children. To build up aonstit whose head word starts latve will
no longer start with g@atrticular, existingrconstit from1 to K (line 3) and then
add left children (line 4). Rather, we transform the progrsonthat it ab-
stracts away the choice of startirgnstit. It can then build up theonstit item
speculativelyadding left children without having committed to any peutar
rconstit. As this work is independent of theonstit, the items derived during it
do not have to specify any value far Thus, work is shared across all values
of K, improving the asymptotic complexity. Only after finishitigs specu-
lative computation does the program fill in each of the vesicuonstit items
that could have been chosen at the start. To accomplishréimisformation,
replace lines 3—4 with

Iconstit(X0:H0,X0,J0,J0) += 1.

Iconstit(X:H0,X0,1,J0) += rewrite(X:HO,Y:H2,Z:H)

* constit(Y:H2,1,J) * Iconstit(Z:H0,X0,J,J0).
constit(X:HO0,1,K0) += Iconstit(X:HO0,X0,1,J0) * rconstit(X0:H0,J0,K0).

The new temp itemconstit(X:H0,X0,1,J0) represents théeft half of a con-
stituent, stretching fromto Jo. We can regard it again in categorial terms: as
the last line suggests, it is just a more compact notatioadonstit missing its
rconstit right half fromJo to somexo. This can be written more perspicuously
asconstit(X:HO,1,K0)/rconstit(X0:H0,J0,K0), whereKo is always a free variable,
so thaticonstit need not specify any particular value .

The firsticonstit rule introduces an empty left half. This is extended with
its left children by recursing through the secaewhstit rule, allowingX and|
to diverge fromxo andJo respectively. Finally, the last rule fills in the missing
right half rconstit.

Again, our speculation transformation will actually preduthe slashed
notation as its output. Specifically, it will replace lines43of the original
untransformed program with the followir?g.

rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0) += 1

needed_only_if rconstit(X0:H0,J0,KO0).

constit(X:H,J,K)/rconstit(X0:H0,J0,K0)
+= rconstit(X:H,J,K)/rconstit(X0:H0,J0,K0)
needed_only_if rconstit(X0:H0,J0,KO0).

35In fact our transformation in Figure 6 will produce somethia bit more complicated.
The version shown has been simplified by using rule elimima¢section 6.4) to trim away all
other(. . .) items, which do not play a significant role in this exampleaflis because the only
slashed items areonstit/rconstit, and there is no other way to buildcanstit except from an
rconstit.

70/ JasoN EisNer AND JoHN Brarz

constit(X:H,l,K)/rconstit(X0:H0,J0,K0)
+= rewrite(X:H,Y:H2,Z:H) * constit(Y:H2,1,J)
* constit(Z:H,J,K)/rconstit(X0:H0,J0,K0)
needed_only_if rconstit(X0:H0,J0,KO0).
constit(X:H,I,K) += constit(X:H,l,K)/rconstit(X0:H0,J0,K0)
* rconstit(X0:H0,J0,KO0).

The first line introduces a slashed item. The next two lineglze result of
slashingrconstit(X0:H0,J0,K0) out of the original lines 3—4; note thab, HO,
Jo, andko appeared nowhere in the original program. The final linemsteo
tutes theconstit item defined by the original program, so that the transformed
program preserves the original program’s semantics.

By inspecting this program, one can see that the only previddns of
the formconstit(X:H,I,K)/rconstit(X0:H0,J0,K0) actually haved=Ho, K=Ko0, and
Ko a free variablé® These conditions are true for the slashed item that is
introduced in the first line, and they are then preserved leyyemle that
derives a new slashed item. This is why in our earlier predimt of this
code, we were able to abbreviate such a slashed itelnofwfit(X:H0,X0,1,J0),
which uses only 5 variables rather than 8. Discovering suiireviations
by static analysis is itself a transformation that we do naéstigate in this
paper.

Filter clauses can improve asymptotic runtime. The special filter clause
needed_only_if rconstit(X0:H0,J0,K0) is added solely for féiciency, as always.
It says that it is not necessary to build a left half that migatuseless (i.e.,
purely speculatively), but only when there is at least ogétrhalf for it to
combine with.

In this example, the filter clause is subtly responsible fmiding an extra
factor of V in the runtime, wher&/ > n is the size of the vocabulary. For
simplicity, let us return to the unslashed notation:

Iconstit(X:HO0,XO0,1,J0) += rewrite(X:H0,Y:H2,Z:H)

* constit(Y:H2,1,J) * Iconstit(Z:HO0,X0,J,JO).
needed_only_if rconstit(X0:H0,J0,K0).

The intent is to build only left halvesconstit(H:H0,X0,1,J0) whose
head wordHO will actually be found starting at the right edgm.
However, without the filter, the above rule could be far mopecsila-
tive, combining a finished left child such asnstit(np:dumbo,4,5) with a
rewrite rule such agwrite(s:flies,np:dumbo,vp:flies) and the non-ground item
Iconstit(X0:H0,X0,J0,J0) (defined elsewhere with value 1) to obtaion-
stit(s:flies,vp,4,5)—regardless of whethdiies actually starts at position 5 or
even appears in the input sentence at all! This would leagtolderation of

36By contrast, we already noted th¥tand| could diverge fromX0 andJO respectively, in
this particular program.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 71

O(V) Iconstit items with speculative head words suchilias thatmightstart at
position 5. The filter clause prevents this by “looking aieéadsee whether
any items of the fornaconstit(vp:flies,5,K0) have actually been proved.

As a result, the runtime is no@(n“) (as compared t®(n5) for the un-
transformed prograny. This is so because the rule above may be grounded
in O(n“) ways reflecting dferent bindings of, J, Jo, and wordH2, whereH2
may in practice be any of the words in the span Although the rule also
mentionsHo, the filter clause has ensured thi's binding is completely
determined byo’s.

As a bonus, we can now apply the unfold-refold pattern toiokkee O n3)
algorithm of Eisner and Satta (1999). Starting with our$farmed program,
unfold constit in the body of each rule where it appedtgiving

rconstit += rconstit * rewrite * (Iconstit” * rconstit’).
Iconstit += (Iconstit’ * rconstit’) * rewrite * Iconstit.

where the symbol marks the halves of the unfoldeshstit, and the three ad-
jacent half-constituents are written in left-to-right erdNow re-parenthesize
these rules as

rconstit += (rconstit * (rewrite * lconstit’)) * rconstit’.
Iconstit += Iconstit” * ((rconstit’ * rewrite) * Iconstit).

and fold out each parenthesized subexpression, usingbdibtity to sum
over its free variables. The items introduced when foldimg large subex-
pressions correspond, respectively, to Eisner and Séatighs trapezoid” and
“left trapezoid” items. The speedup arises because thel@(a) fewer possi-
ble trapezoids thaconstits: aconstit had to specify a head word that could be
any of the words covered by thenstit, but a trapezoid’s head word is always
the word at its left or right edge.

6.5.2 Semantics and Operation of Filter Clauses

Our approach to filtering is novel. Ongeded_only.if clauses may be regarded
as “relaxed” versions of side conditions (Goodman, 19%8hé denotational
semantics (section 6.2.3), they relax the restrictionfievaluation function,
allowing more possible valuations for the transformed paog (In the case
of speculation, these valuations may disagree on the nahesaitems, but
all of them preserve the semantics of the original program.)

Specifically, when constructing(r) to determine whether a ground item
r is provable and what its value is, we magtionallyomit the summand cor-

3"We could also have achieve(ﬂ(n“) simply by folding the original program as discussed

in section 6.3. However, that would not have allowed thehiertreduction ttO(n3) discussed
below.

38Including if desired thegoal rule, not discussed here. The aldnstit rule is then useless,
except perhaps to the user, and may be trimmed away if ddgyrede elimination.

72/ JasoN EisNER AND JOHN BLATZ

responding to a grounded rule, = E if this rule has an attached filter clause
needed_only_if C such that no consistent grounding®has been provet?.

How does this help operationally, in the forward chainingoaithm?
When a rule triggers an update to a growmchon-ground item, but carries
a (partly instantiated) filter clause that does not unifyhvéhy proved item,
then the update has infinitely low priority and need not beppgated further
by forward chaining. The update must still be carried outé filter clause is
proved later.

The optionality of the filter is crucial for two reasons. Fjii§ a filter be-
comes false, the forward-chaining algorithm is not recqitceretract updates
that were performed when the filter was true. In the examglesaion 6.5.1
above or section 6.6.3 below, the filter clauses ensure titges are filled
into the unary-rule-closure and left-corner tables onlyasded. Once this
work has been done, however, these entries are allowedsspeven when
they are no longer needed, e.g., once the facts describénigplut sentence
are retracted. This means that we can reuse them for a figoterse rather
than re-deriving them every time they are needed.

Second, the forward-chaining algorithm is not requiredallyariables in
the rule when it checks for consistent groundings of therfilleuse. Consider
this rule from earlier:

constit(X:H,1,K)/rconstit(X0:H0,J0,K0)

+= rewrite(X:H,Y:H2,Z:H) * constit(Y:H2,1,J)
* constit(Z:H,J,K)/rconstit(X0:H0,J0,K0)
needed_only_if rconstit(X0:H0,JO,KO0).

Recall that the onlyconstit/rconstit items that are actually derived are non-
ground items in whiclk=Ko and is free, such asonstit(s:flies,4,K0)/ rcon-
stit(vp:flies,5,K0). Such a non-ground item actually represents an infinite
collection of possible ground items that specialize it. T&mantics of
needed_only_if, which are defined over ground terms, say that we only need
to derive a subset of this collection: rather than provirgribn-ground item
above, we are welcome to prove only the “needed” ground nitistizons,
with specific values ok0 such thatrconstit(vp:flies,5,K0) has been proved.
However, in general, this would pro@{n) ground items rather than a single
non-ground item. It would destroy the whole point of spetafg which is

to achieve a speedup by leavikg free until specifiaconstit items are multi-
plied back in at the end. Thus, the forward-chaining alanits better & ex-
ploiting the optionality of filtering and proving the nonegmd version—thus

39The “consistent” groundings are those in which variable€dhat are shared with or
E are instantiated accordingly. In the speculation trams&tion, all variables o€ are in fact
shared withr andE. If they were notC could have many consistent groundings, but we would
still aggregate only one copy @, just as if the filter clause were absent, not one per copy per
consistent grounding.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 73

proving more than is strictly needed—as long as at least bitegroundings
is needed (i.e., as long as some item that unifies wmfiistit(vp:flies,4,K0) has
already been proved).
For a simpler example, consider
rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0) += 1
needed_only_if rconstit(X0:H0,J0,KO0).

A reasonable implementation of forward chaining will prakie non-ground
item rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0)—just as if the filter clause
were not present—provided thedmegrounding ofrconstit(X0:H0,J0,K0) has
been proved. It is not required to derive a separate grografithe slashed
item for eachgrounding ofrconstit(X0:H0,J0,K0); this would also be correct
but would be lessfécient.

6.5.3 Formalizing Speculation for Semiring-Weighted Progam
Fragments

To formalize the speculation transformation, we begin witiseful common
case that dtices to handle our previous examples. This definition (Figyre
allows us to speculate over a set of rules that manipulateegah a semiring

of weightsW. Such rules must all use the same aggregation operatorhiwhic
we call =, with identity elemenD. Furthermore, each rule body must be
a simple product of one or more items, using an associativarpioperator

® that distributes ove® and has an identity elemeft This version of the
transformation is only able to slash the final term in suchoalpct; however,

if ® is commutative, then the terms in a product can be reordenedke any
term the final term.

Our previous examples of speculation can be handled bydakisemir-
ing (W, ®,®,0,1)tobe R, +,*0,1). Moreover, any unweighted program can
be handled by takingW/, @, ®, 0,1) to be (F, T},|,&F, T).

Intuitively, other(A) in Figure 6 accumulates ways of buildiagother than
groundings ofFi, ® Fi, ® --- ® Fj, ® x for j > 0. Meanwhile,slash(A,x)
accumulates ways of building by grounding products of the for;, ®
Fi,®---®Fj for j > 0. To *fill in the gap” and recover the final value af
(as is required to preserve semantics), we multidyh(A,x) only by other(x)
(rather than by), in order to prevent double-counting (which is analogaus t
spurious ambiguity in a categorial grammar).

To apply our formal transformation in the unary-rule eliaion example,
take x=constit(X0,10,K0). As requiredX0,10,k0 do not appear in the original
program. TakdR; to be the “unary’constit rule of the original program where
ty is the last item in the body d%. Herek = 0.

To apply our formal specification in the artificial variabftee example
of Figures 4-5, takex = x, Ry = a+=b*c, Ry = c+=f*c, andR; =
c += (d *) * x. Since, among thg, only t3 unifies withx, we havek = 2.

74/ JasoN EisNer AND JoHN Brarz

Given a semiring, o, ®, 0, 1).

Given a termx to slash out, where any variablesxndo not occur any
where in the prograr®. Given distinct ruleszy, . . ., R, in # from which
to simultaneously slaskout, where eack; has the fornr; e= F; ® t; for
some expressioR; (which may bel) and some iter.

Letk be the indef° such that < k < nand

e Fori <k, tj does not unify withx.

e Fori > k, t; unifies withx; moreover, their unification equatis*

Then the speculation transformation constructs the fallgwnew pro-
gram. Recall tha®, denotes the aggregation operator fafwhich may|
or may not bep). Let slash, other, andmatches_x be new functors that do
not already appear iR.

@ slash(X,X) ®y= 1 needed_only_if x.

e (Y1 <i<n)slash(ri,x) &= F; ® slash(t;, X) needed_only_if x.
e (V1 <i < K) other(r;) @= F; ® other(t;).

e (¥ rulesp @p= E not among th&)) other(p) &= E.*?

e matches_x(X) |= true. e matches_x(A) |= false.

o A ®a= other(A) if not matches_x(A).43

o A ®p= slash(A,x) ® other(X).

40If necessary, the program can be pre-processed so thatsintiex exists. Any rule can be
split into three more specialized rules: iag k rule, ani > k rule, and a rule not among tti.
Some of these rules may require boolean side conditionstaatetheir applicability.

“That is,t; is “more specific” tharx: it matches a non-empty subset of the ground terms that
x does.

421t is often worth following the speculation transformatiafith a rule elimination transfor-
mation (section 6.4) that removes some of thether items. In particular, ifp does not unify
with x or any of thet;, then the only rule that usegher(p) is A @p = other(A). In this case,
eliminating the old rulether(p) ®,= E simply restores the original rulg@p= E.

“3Note thatA ranges over all ground terms. (Except those that unify witithich are covered
by the next rule.) The aggregation into a particular growrchtA must be handled using the
appropriate aggregation operator for that ground terrme denotedbs =. (&x= was similarly
used above.) In the example programs, this awkward notatamavoided by splitting this rule
into several rules, which handle variadisjoint classes of item# that have dierent aggregation
operators.

FIGURE6 The semiring-weighted speculation transformation.

To apply our formal transformation in the split bilexicabgnmar example,
take X=rconstit(X0:H0,J0,K0), the R; to be the two rules definingpnstit, each
t; to be the last item in the body &, andk = 1.

Folding as a special case of speculationAs was mentioned earlier, the
folding transformation is a special case of the speculdtiamsformation, in
which application is restricted to rules with a single grdterm at their head,

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 75

and the item to be slashed out must appear literally in efiebtad rule. For
ease of presentation, however, the formulations abovertiguite parallel. In
folding, we adopt the convention that a common functois being “slashed
out” of a set of rules, and the ftiérent items to which that function applies
are aggregated first into a new intermediate item. In spgonlave take the
opposite view, where there is a common item to be slashedresépt as the
argument to dferent functions, so that the functions get aggregated into a
new lambda term. We chose the former presentation for fgltbravoid the
needless complication of using the lambda calculus, buteesled the flex-
ibility of the latter for a fully general version of specutat. In the case of
ordinary semiring-weighted programs , this distinctiotrigal; when slash-
ing out itema from a rule likef += a * b, we can equally easily say that we are
slashing out the function “multiply byg” from its argumenb or that we are
slashing out the item from inside the function “multiply by”. However,

in general, being able to leave behind functions allows utwstruct inter-
mediate terms which don’t carry a numerical value; for exiemwe could
choose to slash out theitem from a rule likef += log(a) and propagate just
the functionslash(f, a) += Ax log(X).

6.5.4 Formalizing Speculation for Arbitrary Weighted Logic Programs

The speculation transformation becomes much more congticahen it
is not restricted to semiring-weighted programs. In gelné¢na value of a
slashed item is &unction just like the semantics of a slashed constituent in
categorial grammar. Functions are aggregated pointwise:i$, we define
(1z 1(2) ® (12 9(2) = 1z (f(2) © 9(2).

As in categorial grammar semantics, gaps are introducdd té iden-
tity function, passed with function composition, and ehatied with function
application.

In the commutative semiring-weighted programs discusdsu/ey all
functions had the form “multiply by’ for some weightw. We were able
to avoid the lambda-calculus there by representing suchetiin simply as
w, and by usindL for the identity function, semiring multiplicatia for both
composition and application, and semiring additifor pointwise addition.

We defer the details of the formal transformation to a latgyep. It is sig-
nificantly more complicated than Figure 6 because we canmgelorely on
the mathematical properties of the semiring. As in foldind anfolding (Fig-
ures 1-2), we must demand a kind of distributive-law properensure that
the semantics will be preserved (recall the log example Beation 6.3). This
property is harder to express for speculation, which isflikging through un-
bounded sequences of rules, including cycles.

Consider the semiring-weighted program in Figures 4-5.dftggnal pro-
gram only used the item early in the computation, multiplying it by * e.

76/ JasoN EisNer AND JoHN Brarz

The transformed program had to reconstitattom a/x andx (andc from
c/x andx). This meant multiplying in later, only after the originad * e had
passed through several levels*and+= in the rulea += b * ¢ and the cyclic
rulec+=f*c.

In general, we want to be sure that delaying the introduafocuntil after
several intermediate functions and aggregations doeshaoige the value of
the result. Hence, a version of the distributive propertystthe enforced at
eachintermediate ruleféecting the slashed items.

Furthermore, if the slashed-out itexncontains variables, then introduc-
ing it will aggregate over those variables. For example,rthie a(B,C) +=
(a(B,C)/x(B0,C0,D0))(x(B0,C0,D0)) not only applies a function to an argument,
but also aggregates ovBo, Co, andD0. In the original version of the pro-
gram, these aggregations might have been performed wiithugaoperators.
Whena(B,C) is reconstituted in the transformed version, we must erthiaite
the samesequence of aggregations is observed. In order to do thisatby,
it is necessary to keep track of the association betweendhables being
aggregated in the original program and the variables in fd&hed item, so
that we can ensure that the same aggregations are performed.

6.6 Magic Templates: Filtering Useless Items

The bottom-up “forward-chaining” execution strategy aftien 6.2.4 will (if

it converges) compute values for all provable items. Tylpichowever, the
user is primarily interested in certain items (often jgsil) and perhaps the
other items involved in deriving them.

In parsing, for example, the user may not care about buildih¢egal
constituents—only those that participate in a full pargmil@rly, in a pro-
gram produced by speculation, the user does not care abitdiniguall pos-
sible slashed items/x—only those that can ultimately combine with some
actualx to reconstitute an itemof the original program.

Can we prevent forward chaining from building at least sofée “use-
less” items? In the speculation transformation (secti@e®d Figure 6), we
accomplished this by filtering our derivations witbeded_only_if clauses.

We now give a transformation that explains and generallzissstrategy.
It prevents the generation of some “useless” items by auioaily adding
needed_only_if filter clauses to an existing program. A version of tiiagic
templates transformation was originally presented in a well-knowmpégra
by Ramakrishnan (1991), generalizing an earlier transition called magic
sets.

6.6.1 An Overview of the Transformation

Since this transformation makes some terms unprovableaiinat be
semantics-preserving. We will say that a ground teriis charmed if we

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 77

shouldpreserve its semantié$.In other words, the semantic valuation func-
tions of the transformed program and the original prograthagree on at
least the charmed terms. The program will determine atmentivhich terms
are charmed: a ground terais considered charmed ithe termmagic(a) is
provable (inevitably with valueue).

The user should explicitly charm the ground terms of inteticekim or her
by writing rules such as

magic(goal) |= true.

magic(rewrite(X,Y,2)) |= true.

magic(rewrite(X,W)) |=true.

magic(word(W,1,J)) |=true.

magic(length(N) |=true.

The transformation will then add rules that charm addititerans by proving
additionalmagic(. . .) items (known as magic templates). Informally, a term
needs to be charmed if it might contribute to the value of a@otharmed
term. A formal description appears in Figure 7.

Finally, filter clauses are added to say that among the grtennas prov-
able under the original program, only the charmed ones lytueed to be
proved. This means in practice (see section 6.5.2) thatai@hwehaining will
only prove an item if at least one grounding of that item isrofed.

The filter clauses in the speculation transformation wéiexgvely intro-
duced by explicitly charming all non-slashed items, rugrtimee magic tem-
plates transformation, and simplifying the result.

6.6.2 Examples of Magic Templates

Deriving Earley’s algorithm. What happens if we apply this transformation
to the CKY algorithm of section 6.2.1, after explicitly chang the items
shown above?

Remarkably, as previously noticed by Minnen (1996), thesfarmed pro-
gram acts just like Earley’s (1970) algorithm. We can deawgeighted ver-
sion of Earley’s algorithm by beginning with a weighted wensof CKY (the
inside algorithm of section 6.2.2y.The transformation adds filter clauses to
theconstit rules, saying that the rule’s head is needed only if charmed:

constit(X,l,K) += rewrite(X,W) * word(W,I,K)

needed_only_if magic(constit(X,l,K)).
constit(X,l,K) += rewrite(X,Y,Z) * constit(Y,l,J) * constit(Z,J,K)
needed_only_if magic(constit(X,l,K)).

44This terminology does not appear in previous literature agimtemplates.

45At least, Earley’s algorithm restricted to grammars in CkynNormal Form, since those
are the only grammars that CKY handles before we transformhié full Earley’s algorithm
in roughly our notation can be found in (Eisner et al., 20063llows arbitrary CFG rules to
be expressed using lists, asriewrite(np,["the”,adj,n]). Section 6.3 already sketched how to
handle ternary rulesfiéciently.

78/ JasoN EisNer AND JoHN Brarz

Based on the structure of thenstit rules, the transformation also adds the
following magic rules to the ones provided earlier by the user. Recall that
?rewrite(X,Y,2) is considered to be truefirewrite(X,Y,2) is provable (foot-
note 12).

magic(constit(s,0,N)) | = magic(goal).

magic(constit(Y,1,J)) | = ?rewrite(X,Y,Z) & magic(constit(X,l,K)).

magic(constit(Z,J,K)) | = ?rewrite(X,Y,Z) & ?constit(Y,l,J)

& magic(constit(X,1,K)).

What do these rules mean? The secmiadic rule above says to charm all
the possible left childrenonstit(Y,1,J) of a charmed constituerbnstit(X,1,K).
The thirdmagic rule says to charm all possible right children of a charmed
constituent whose left child has already been proved.

By inspecting these rules, one can see inductively that gieye only
magic templates of the formagic(constit(X,1,K)) wherex,I are bound and is
free®

The charmed constituents are exactly those constitueatstk possible
given the contextto their left. As in Earley’s algorithmetie are the only ones
that we try to build. Where Earley’s algorithm would prediatp constituent
starting at position 5, we charm all potential constituesftgshat form by
proving the non-ground itemagic(constit(vp,5,K)).

Just as Earley’s predictions occur top-down, theic rules reverse the
proof order of the original rule—they charm items in the bofithe original
rule once the head is charmed. Thagic rules also work left to right within an
original rule, so we only need to chareanstit(vp,5,K) once we have proved
a receptive context such aswrite(s,np,vp) * constit(np,4,5). This context is
analogous to having the dotted rgles np . vp in column 5 of Earley’s parse
table.

In effect, the transformed program uses forward chaining to sitauhe
backward-chaining proof order of a strategy like that ofgpBrolog?’ The
magic templates correspond to query subgoals that woulekaluring back-
ward chaining. The filter clauses prevent the program froowipg items that

“6Note that it would not be appropriate to replace.& ?rewrite(X,Y,Z) with
...needed_only.if ?rewrite(X,Y,Z), since that would make this condition optional, allowing th
compiler to relax it and therefore charm more terms thamiatee. Concretely, in this example,
forward chaining with our usualfigcient treatment oheeded_only_if (section 6.5.2) would
prove overly general magic templates of the famagic(constit(X,l,K)) where not onlyK but
alsoK was free.

4"However, pure Prolog’s backtracking is deterministic, velas forward chaining is free to
propagate updates in any order. It is more precise to sayitbatansformed program simulates
a breadth-firstor parallel version of Prolog which, when it has several ways to matchexyqu
subgoal, pursues them along parallel threads (whose ampeshtion on a serial computer may
be interleaved in any way). Furthermore, since forwardrihgiuses a chart to avoid duplicate
work, the transformed version acts like a version of Proldth tabling (see footnote 5).

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 79

do not yet match any of these subgoals.

Shieber et al. (1995), specifying CKY and Earley’s algaritmemark that
“proofs of soundness and completeness [for the Earley's]ca® some-
what more complex ...and are directly related to the cooedjmg proofs
for Earley’s original algorithm.” In our perspective, thercectness of Ear-
ley’s emerges directly from the correctness of CKY and threaminess of the
magic templates transformation (i.e., the fact that it press the semantics
of charmed terms).

On-demand computation of reachable states in a finite-statenachine.
Another application is “on-the-fly” intersection of weiglt finite-state au-
tomata, which recalls the left-to-right nature of Earlegfgorithm#@

. . X .
In automaton intersection, an & — Ry (in some automatoivl;) may

. . o X .
be paired with a similarly labeled ai@, — R (in some automatoiy,

perhaps equal t¥;). This yields an arc in the intersected machivien M,
whose weight is the product of the original arcs’ weights:

arc(Q1:Q2,R1:R2,X) = arc(Q1,R1,X) * arc(Q2,R2,X).

However, including this rule in a forward-chained prograifi pairs all
compatible arcs in all known machines (including arcs inribes machine
M1 N My, leading to infinite regress). A magic templates transfdimmecan
restrict this to arcs that actually need to be derived in #rwise of some
larger goal—just as if the definition above were backwardiobd.

Consider for example the following useful program (whiclesi®rolog’s
notation for bracketed lists):

sum(Q,[]) += final(Q). % weight of stopping at final state Q
sum(Q,[X | Xs]) += arc(Q,R,X) * sum(R,Xs).

Now the value ofsum(g,[’a”;b""c”]) is the total weight of all paths from state
g that accept the stringpc.

We might like to find (for examplegum(ql:g2,[’a”,’b",’c"]), constructing just
the necessary paths from statey2 in the intersection ofi1’s automaton with
g2's automaton. To enable such queries, apply magic templietasforma-
tion to thesum rules and therc intersection rule, charming nothing in ad-
vance. We can then seiagic(sum(ql:q2, ['a”’b”’c’])) to true at runtime. This
results in charm spreading forward frammg2 along paths in the intersected
machine, and spreading “top-down” from each arc along thik o the arcs
that must be intersected to produce it (and which may theraséle the result
of intersections). This permits the weights of all relevats to be computed
“bottom-up” and multiplied together along the desired gath

48Composition of finite-state transducers is similar.

80/ JasoN EisNer AND JoHN Brarz

6.6.3 Second-order magic

Earley’s algorithm does top-down prediction quite agguetg since it pre-
dicts all possible constituents that are consistent wighleft context. Many
of these predictions could be ruled out with one word of |dwad—an im-
portant technique when using Earley’s algorithm in pracifcThis is known
as a “left-corner” filter: we should only bother to prowegic(constit(X,,K))

if there is some chance of provirgnstit(X,1,K), in the sense that there is a
word(W,1,J) that could serve as the first word (“left corner”) in a phrase
stit(X,1,K).

Remarkably, we can get this behavior automatically by appglthe magic
templates transformation secondtime. We now require thenagic items
themselves to be charmed before we will derive them. Thisatain flows
bottom-up in the parse tree: we first chairagic(constit(X,,K)) whereX can
rewrite directly asn, then move up to nonterminals that can rewrite starting
with X, and so on.

Thus, the original CKY algorithm proved constituents bottap; the
transformed Earley’s algorithm filtered these constitadiyt top-down pre-
dictions; and the doubly transformed algorithm will filtéetpredictions by
bottom-up propagation of left corners.

Before illustrating this transformation, we point out sosi@plifications
that are possible with second-order magic. This time we ug#magic2 to
indicate charmed items, to avoid conflict with thhegic predicate that already
appears in the input program. We also assume that the usdlingwo ex-
plicitly charm everything but thenagic terms—since any other terms that the
user regards as uninteresting are presumably already filééngd by the last
transformation. Suppose that the original program coeththe rulea +=b *
c. The input program then also usually contains

magic(b) |= magic(a).

magic(c) |= ?b & magic(a).
However, either of these rules may be omitted if the userieitglcharmed
its head during the first round of magic (i.e., by statinggic(b) |= true or
magic(c) |= true). As we will see, omitting these rules when possible will re-
duce the work that second-order magic has to do.

If we apply a second round of magic literally, the above rul@ken
present) respectively yield the new rules

magic2(magic(a)) |= magic2(magic(b)).
and

magic2(b) |= magic2(magic(c)).

magic2(magic(a)) |= ?b & magic2(magic(c)).

These rules propagate charm on thagic items, frommagic(b) or magic(c)

49Earley (1970) himself described how to Uswords of lookahead.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 81

up to magic(a). However, it turns out that the second and often the third of
thesemagic2 rules can be discarded, as they are redundant with morentenie
rules that prove the same heads. The second is redundaniskettee user
has already explicitly stated thaiagic2(b) |= true. The third is redundarit
the first is present, since if the program has pravéten it must have previ-
ously provednagic(b) and before thathagic2(magic(b)), so that the first rule
(if present) would already have been able to praggic2(magic(a)).

The input program also contains

a +=b * c needed_only_if magic(a).
We want to provenagic(a) if it will be useful in such a clause, so the second
round of magic will also generate

magic2(magic(a)) |= ?b & ?c & magic2(a).

This is the rule that initiates the desired bottom-up chagif magic items. It

too can be simplified. We can drop ttmagic2(a) condition, since the user has
already explicitly stated thatagic2(a) |= true. We can drop thec condition

if the third magic2 rule above is present, and drop the entire rule if the first
magic2 rule above is present. (Thus, we will end up discarding theeunless

b was charmed by the user prior to the first round of magic—nwakithe
appropriate “bottom” where bottom-up propagation begins.

Applying second-order magic with these simplifications tw wersion of
Earley’s algorithm, we obtain the following natural rules fntroducing and
propagating left corners. Note that thesBeet only theconstit terms. Intu-
itively, the other terms of the original program do not needic2 templates
to entitle them to acquire first-order charm, as they werdi@ip charmed
by the user prior to first-order magic.

magic2(magic(constit(X,1,K))) |= rewrite(X,W) & word(W,,K).

magic2(magic(constit(X,l,K))) | = ?rewrite(X,Y,2).

& magic2(magic(constit(Y,1,J))).
The transformation then applies the left-corner filter te thagic templates
defined by first-order magic:

magic(constit(s,0,N)) | = magic(goal)

needed_only_if magic2(magic(constit(s,0,N))).
magic(constit(Y,1,J)) | = ?rewrite(X,Y,Z)
& magic(constit(X,1,K))
needed_only_if magic2(magic(constit(Y,l,J))).
magic(constit(Z,J,K)) | = ?rewrite(X,Y,Z) & ?constit(Y,l,J)
& magic(constit(X,1,K)).
needed_only_if magic2(magic(constit(Z,J,K))).

Note that themagic2(constit(X,1,K)) items proved above are specific to the
spani— in the current sentence: they haxgK all bound. However, one
could remove this dependenceigaby using the speculation transformation
(section 6.5). Then the first time a particular wavds observed via some fact

82/ JasoN EisNer AND JoHN Brarz

==

Given a unary predicateagic that may already appearfn We say that ¢
termt is already charmed® if # contains a rulenagic(s) |= true wheresis
at least as general &s

For each rul® in P, of the formr; = E;, given an orderingy, . . ., &k, of
the items whose values are combined®yincluding any filter clauses):

foreach rule R
unless r; is already charmed
append “needed_only_if magic(r;)” to R;
for j=1,2,...k
unless g; is already charmed
add “magic(g;) |- 761 & - -+ & ?€(j-1) & magic(r;)" to P
optionally relax this new rule by generalizing its head®?

50This test is used only to simplify the output.

51In the examples in the text, this is taken to be the order oftimenwhich is a reasonable
default.

52That is, replace the head with a more general pattern. Fonjgiea one may replace some
variables or other sub-terms in the head with variablesdbatot appear in the rule body. See
section 6.6.4 for discussion.

FIGURE7 The magic templates transformation.

word(W,1,K), the program will derivenagic2(constit(X,10,K0))/word(W,10,K0) for

each nonterminad of whichw is a possible left corner. These left corner table
entries leaveo,Ko free, so once they are computed, they can be combined not
only with word(W,1,K) but also with later appearances of the same word, such
asword(W,12,K2).

6.6.4 Formalizing Magic Templates

Our version of magic templates is shown in Figure 7. Readérs are
familiar with Ramakrishnan (1991) should note that our eneéation focuses
on the case that Ramakrishnan calls “full sips,” where eaom tused in a
rule’s body constrains the bindings of variables in subsatjterms.

However, to allow other “sips” (sideways information-pagsstrategies),
we can optionally rename variables in the headsadic(...) |= --- rules so
that they become free. This results in proving fewer, moregamagic(. . .)
items>3

Ramakrishnan’s construction instead attemprtp these variables—as
well as other variables that provably remain free. Howelvisrconstruction

53This may even avoid an asymptotic slowdown. Why? It is pdssib prove more magic
templates than items in the original program, becamsagic(a) (proved top-down) may acquire
bindings for variables that are still free an(proved bottom-up). It is wise to drop such variables
from magic(a) or leave them free.

TRANSFORMATIONS ON WEIGHTED LOGIC PROGRAMS / 83

is less flexible because it only drops variables that appediract arguments
to the top-level predicate. It also leads to a proliferatidmew and non-
interacting predicates (such magic_constit®®’/2), which correspond to éier-
ent binding patterns in the top-level predicate.

Dropping variables rather than freeing them does have theradge that
it makes terms smaller, perhaps resulting in constant+t@dections of speed
and space. However, we opt to defer this kind of “abbrewviéitaf terms to
an optional subsequent transformation—the same tranafam(not given
in this paper) that we would use to abbreviatedfash(...) items introduced
by speculation in section 6.5.1. Pushing abbreviation &ngeparate trans-
formation keeps our Figure 7 simple. The abbreviation fiansation could
also attempt more ambitious simplifications than Ramakash(1991), who
does not simplify away nested free variables, duplicatathdovariables, or
constants, nor even detect all free variables that are agtsto the top-level
predicate.

6.7 Conclusions

This paper has introduced the formalism of weighted logagpsmming,

a powerful declarative language for describing a wide raofggseful algo-
rithms.

We outlined several fundamental techniques for rearranginveighted
logic program to make it moreflécient. Each of the techniques is connected
to ideas in both logic programming and in parsing, and hadipieluses
in natural language processing. We used them to recoveredasdnown
parsing optimizations, such as

= unary rule cycle elimination

= Earley’s (1970) algorithm with an added left corner filter
» Eisner and Satta’s (199@)n®) bilexical parsing

= on-the-fly intersection of weighted automata

as well as various other small rearrangements of algoritsowh as a slight
improvement to lexicalized CKY parsing.

We showed how weighted logic programming can be made monegsxp
sive and its transformations simplified by allowing non4grd items to be
derived, and we introduced a new kind of side condition ttwegsdnot bind
variables—theneeded_only_if construction—to streamline the use of non-
ground items.

Our specific techniques included weighted generalizatidrislding and
unfolding; the speculation transformation (an originahgelization of fold-
ing); and an improved formulation of the magic templatesgfarmation.
This work does not exhaust the set of useful transformatibasexample,

84 / JasoN EisNer AND JoHN Brarz

Eisner et al. (2005) briefly discuss transformations thaivdgrograms to
compute gradients of, or bounds on, the values computedebgrtginal dy-
namic program. We intend in the future to give formal treaitaeof these.
We also plan to investigate other potentially useful transfations, in partic-
ular, transformations that exploit program invariantseofprm tasks such as
“abbreviating” complex items.

We hope that the paradigm presented here proves usefulde Wit wish
to further study the problems to which weighted logic prognasing can be
applied, as well as to those who wish to apply it to those mnoislthemselves.

In the long run, we hope that by detailing a set of possiblgm trans-
formation steps, we can work toward creating a system thatdsearch au-
tomatically for practically &ective transformations of a given weighted logic
program, by incorporating observations about the progsatnicture as well
as data collected from experimental runs. Such an implexdesytstem could
be of great practical value.

References

Aji, S. and R. McEliece. 2000. The generalized distributase. IEEE Transactions
on Information Theory6(2):325-343.

Earley, J. 1970. Anfécient context-free parsing algorithnComm. ACM13(2):94—
102.

Eisner, J., E. Goldlust, and N. A. Smith. 2005. Compiling gding: Weighted dy-
namic programming and the Dyna languagePioc of HLTEMNLP.

Eisner, J. and G. Satta. 1999fiEient parsing for bilexical context-free grammars and
head-automaton grammars. Rroc. of ACL, pages 457-464.

Fitting, M. 2002. Fixpoint semantics for logic programmiagsurvey. TCS278(1-
2):25-51.

Goodman, J. 1999. Semiring parsir@omputational Linguistic25(4):573-605.

Huang, L., H. Zhang, and D. Gildea. 2005. Machine transtedi®lexicalized parsing
with hooks. InProc. of IWPT, pages 65-73.

McAllester, D. 1999. On the complexity analysis of stati@algses. InProc of 6th
Internat. Static Analysis Symposium

Minnen, G. 1996. Magic for filter optimization in dynamic barh-up processing. In
Proc 34th ACL pages 247-254.

Ramakrishnan, R. 1991. Magic templates: a spellbindingagmh to logic programs.
J. Log. Prog.11(3-4):189-216.

RereRENCES / 85

Ross, K. A. and Y. Sagiv. 1992. Monotonic aggregation in dtde databases. In
PODS '92 pages 114-126.

Sagonas, Konstantinos, Terrance Swift, and David S. Wali@. XSB as anfi-
cient deductive database engifeéCM SIGMOD Recor@3(2):442—-453.

Shieber, S. M., Y. Schabes, and F. Pereira. 1995. Princgsidimplementation of
deductive parsingJ. Logic Prog.24(1-2):3—-36.

Sikkel, Klaus. 1997 Parsing Schemata: A Framework for Specification and Anglysi
of Parsing AlgorithmsTexts in Theoretical Computer Science. Springer-Verlag.

Stolcke, A. 1995. An fiicient probabilistic context-free parsing algorithm thate
putes prefix probabilitiesComputational Linguistic21(2):165-201.

Tamaki, H. and T. Sato. 1984. Unfgldld transformation of logic programs. Froc
2nd ICLP, pages 127-138.

Van Gelder, A. 1992. The well-founded semantics of aggregatIn PODS '92
pages 127-138. New York, NY, USA: ACM Press. ISBN 0-89792-81

Younger, D. H. 1967. Recognition and parsing of contex¢-fenguages in time®.
Info. and Control10(2):189-208.

Zhou, N.-F.. and T. Sato. 2003. Toward a high-performansgesy for symbolic and
statistical modeling. IProc of IJCAI Workshop on Learning Stat. Models from
Relational Data

7

On theoretical and practical complexity
of TAG parsers

Carros GOMEz-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

Abstract

We present a system allowing the automatic transformatfgpacsing schemata to
efficient executable implementations of their correspondiggraghms. This system can
be used to easily prototype, test and compafieidint parsing algorithms. In this work,
it has been used to generate severéledent parsers for Context Free Grammars and
Tree Adjoining Grammars. By comparing their performanceddterent sized, artifi-
cially generated grammars, we can measure their empirarapatational complexity.
This allows us to evaluate the overhead caused by using Tdgenig Grammars to
parse context-free languages, and the influence of stridggeammar size on Tree Ad-
joining Grammars parsing.

Keywords PARSING SCHEMATA, COMPUTATIONAL COMPLEXITY, TREE ADJOINING GRAM-

MARS, CONTEXT FREE GRAMMARS

7.1 Introduction

The process of parsing, by which we obtain the structure @ndesice as a
result of the application of grammatical rules, is a higldiewvant step in the
automatic analysis of natural languages. In the last de;ad@ous parsing
algorithms have been developed to accomplish this taskoAth all of these
algorithms essentially share the common goal of generatitige structure
describing the input sentence by means of a grammar, theagpes used
to attain this result vary greatly between algorithms, st tlifferent parsing
algorithms are best suited tofféirent situations.
Parsing schemata, introduced in (Sikkel, 1997), providermél, simple

and uniform way to describe, analyze and compafieint parsing algo-
rithms. The notion of a parsing schema comes from consiggrdnsing as a

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

87

88/ CarLos GOMEZ-RopRriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

deduction process which generates intermediate resuiks d@ms An ini-

tial set of items is directly obtained from the input sentsrand the parsing
process consists of the application of inference rulesg@dieductive steps
which produce new items from existing ones. Each item costaipiece of
information about the sentence’s structure, and a suadgsasfsing process
will produce at least onénal itemcontaining a full parse tree for the sentence
or guaranteeing its existence.

Almost all known parsing algorithms may be described by asipgr
schema (non-constructive parsers, such as those basedi@ networks,
are exceptions). This is done by identifying the kinds ofni¢ethat are used
by a given algorithm, defining a set of inference rules desugi the legal
ways of obtaining new items, and specifying the set of firehis.

As an example, we introduce a CYK-based algorithm (Vijays@ter and
Joshi 1985) for Tree Adjoining Grammars (TAG) (Joshi andgbes 1997).
Given a tree adjoining gramm& = (Vr,Vn,S,1,A)! and a sentence of
length n which we denote by a, ... a2, we denote byP(G) the set of
productions{(N” — NJNJ...N/} such thatN” is an inner node of a tree
y € (UA),andN]NJ ... N/ is the ordered sequence of direct childremNaf

The parsing schema for the TAG CYK-based algorithm is a fondhat
maps such a grammar G to a deduction system whose domain settloé
items

{[N”.i.], p..ad]]}

verifying thatN” is a tree node in an elementary trees (1 U A), i and |
(0 <i <) are string positionsp andg may be undefined or instantiated to
positionsi < p < q < j (the latter only whery € A), andadj € {true, falsg
indicates whether an adjunction has been performed on Node

The positions and j indicate that a substring. ...a; of the string is
being recognized, and positiopsandq denote the substring dominated by
v's foot node. The final item set would be

{[R*.,0,n,—,—,adj] |a € |}
for the presence of such an item would indicate that ther®aivalid parse
tree with yielda; a; ... a, and rooted aR®, the root of an initial tree; and
therefore there exists a complete parse tree for the sentenc
A deductive steéljfﬂ ® allows us to infer the item specified by its con-

IWhereVr denotes the set of terminal symboi4 the set of nonterminal symbolS, the
axiom, | the set of initial trees and the set of auxiliary trees.

2From now on, we will follow the usual conventions by which remminal symbols are rep-
resented by uppercase lettefs B. ..), and terminals by lowercase lettegs . ..). Greek letters
(a, B-..) will be used to represent treds! a node in the treg, andR the root node of the tree
-

ON THEORETICAL AND PRACTICAL COMPLEXITY OF TAG PARSERS / 89

sequent from those in its antecedents. . . nm. Side conditiong®) specify
the valid values for the variables appearing in the antetsdand consequent,
and may refer to grammar rules or specify other constrdigiisrhust be ver-
ified in order to infer the consequent. An example of one ofdbieema’s
deductive steps would be the following, where the opergpionp’ returnsp

if pis defined, ang’ otherwise:

[O.1.1".p.q,ad 1]
CYK BiNARY: [O =~ J..p.q.adp2] M? — OO} € P(G)
[M7,i,j,pUup,qud, falsqg

This deductive step represents the bottom-up parsing tipex@hich joins
two subtrees into one, and is analogous to one of the de@ustidps of the
CYK parser for Context-Free Grammars (Kasami 1965, You§éri7). The
full TAG CYK parsing schema has six deductive steps (or seNeve work
with TAGs supporting the substitution operation) and cafobed at (Alonso
etal., 1999). However, this sample deductive step is an pkaai how pars-
ing schemata convey the fundamental semantics of pargog@ms in sim-
ple, high-level descriptions. A parsing schema defines afspossible in-
termediate results and allowed operations on them, butndcgsecify data
structures for storing the results or an order for the ojpmrato be executed.

7.2 Compilation of parsing schemata

Their simplicity and abstraction of low-level details makgarsing schemata
very useful, allowing us to define parsers in a simple andgsttorward
way. Comparing parsers, or considering aspects such astregction and
completeness or their computational complexity, also bexoeasier if we
think in terms of schemata.

However, the problem with parsing schemata is that, althdligy are very
useful when designing and comparing parsers with pencilpager, they
cannot be executed directly in a computer. In order to excthe parsers
and analyze their results and performance they must be imgited in a
programming language, making it necessary to abandon gfedhistraction
level and focus on the implementation details in order taivba functional
and dficient implementation.

In order to bridge this gap between theory and practice, we luke-
signed and implemented a compiler able to automaticallysfam parsing
schemata into feicient Java implementations of their corresponding algo-
rithms. The input to this system is a simple and declaragpeasentation of
a parsing schema, which is practically equal to the form&htian that we
used previously. For example, this is the CYK deductive stephave seen
as an example in a format readable by our compiler:

90/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

@step CYKBinary

[Nodel,i,j,p,q,adl]
[Node2,j,j,p,q,ad?2]

Node3 -¢, Nodel Node2
[Node3 , i, j, Union(p;p’) , Union(q;q’) , false]

The parsing schemata compilation technique behind ouesy#t based
on the following fundamental ideas:

= Each deductive step is compiled to a Java class containitg tmomatch
and search for antecedent items and generate the corrésgaahclu-
sions from the consequent.

= The generated implementation will create an instance sfdlaiss for each
possible set of values satisfying the side conditions #fatito production
rules. For example, a distinct instance of the CYikARy step will be cre-
ated for each grammar rule of the fodv — O;O} € P(G), as specified
in the step’s side condition.

= The step instances are coordinated by a deductive parsgigesras the
one described in (Shieber et al., 1995). This algorithm esssa sound
and complete deduction process, guaranteeing that alsiteat can be
generated from the initial items will be obtained. It is a gec, schema-
independent algorithm, so its implementation is the samaifig parsing
schema. The engine works with the set of all items that haee gener-
ated and aragendaimplemented as a queue, holding the items we have
not yet tried to trigger new deductions with.

= In order to attain fficiency, an automatic analysis of the schema is per-
formed in order to create indexes allowing fast access mostdwo kinds
of index structures are generatedistence indexese used by the parsing
engine to check whether a given item exists in the item setevglarch
indexesare used to search for all items conforming to a given speeific
tion. As each dierent parsing schema needs to perforffedént searches
for antecedent items, the index structures that we genaratschema-
specific. Each deductive step is analyzed in order to keel thwhich
variables will be instantiated to a concrete value when ackemust be
performed. This information is known at schema compilatiore and al-
lows us to create indexes by the elements correspondingstantiated
variables. In this way, we guarantee constant-time acce$srs so that
the computational complexity of our generated implemémtatis never
above the theoretical complexity of the parsing algorithms

= Deductive step index@se also generated to provid@eient access to the
set of deductive step instances which can be applicable teea gem.
Step instances that are known not to match the item are tlteu¢ by

ON THEORETICAL AND PRACTICAL COMPLEXITY OF TAG PARSERS / 91

these indexes, so less time is spent on unsuccessful itechimgt

= Since parsing schemata have an open notation, for any mativaifrob-
ject can potentially appear inside items, the system ireduh extensibil-
ity mechanism which can be used to define new kinds of objectsé
in schemata. The code generator can deal with these usaedeijects
as long as some simple and well-defined guidelines are fetiow their
specification.

A more detailed description of this system, including a ntbmough ex-
planation of automatic index generation, can be found an{&Z-Rodriguez
et al., 2006b, 2007).

7.3 Parsing natural language CFGs

Although our main focus in this paper is on performance of Tgegsing al-
gorithms, we will briefly outline the results of some expegims on Context-
Free Grammars (CFG), described in further detail in (GéRedriguez
et al., 2006b), in order to be able to contrast TAG and CFGipars

Our compilation technique was used to generate parsershéICl¥K
(Kasami 1965, Younger 1967), Earley (Earley 1970) and Ceftner (Rosen-
krantz and Lewis Il 1970) algorithms for context-free graams) and these
parsers were tested on automatically-generated sentooethree diferent
natural language grammars: Susanne (Sampson 1994), Abayo(l 1993)
and Deltra (Schoorl and Belder 1990). The run-times forfadl algorithms
and grammars showed an empirical computational complé&xitgelow the
theoretical worst-case bound®{n®), wheren denotes the length of the input
string. In the case of the Susanne grammar, the measuremergslose to
being linear with string size. In the other grammars, thetiones grew faster,
approximatelyO(n?), still far below the cubic worst-case bound.

Another interesting result was that the CYK algorithm perfed better
than the Earley-type algorithms in all cases, despite bgérgerally consid-
ered slower. The reason is that these considerations agel bastime com-
plexity relative to string length, and do not take into aaudime complexity
relative to grammar size, which @(|P|) for CYK andO(|P))? for the Earley-
type algorithms, whergP| is the number of production rules in the grammar..
This factor is not very important when working with small gmaars, such as
the ones used for programming languages, but it becomeaffiueatal when
we work with natural language grammars, where we use thagsairules
(more than 17,000 in the case of Susanne) to parse relasi@l sentences.
When comparing the results from the three context-free grars, we ob-
served that the performance gap between CYK and Earley wagbwhen
working with larger grammars.

3]t is possible to reduce the computational complexity ofl&és parser to linear with respect

92/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

7.4 Parsing artificial TAGs

In this section, we make a comparison of fouffelient TAG parsing al-
gorithms: the CYK-based algorithm used as an example ircge¢tl, an
Earley-based algorithm without the valid prefix propertggdribed in Alonso
et al. 1999 and Alonso et al. 2004, inspired in the one in Sekdl®94), an
Earley-based algorithm with the valid prefix property (Adoret al. 1999) and
Nederhof’s algorithm (Nederhof 1999, Alonso et al. 2004)e3e parsers are
compared on artificially generated grammars, by using dugrsa compiler
to generate implementations and measuring their exectiti@s with several
grammars and sentences.

Note that the advantage of using artificially generated gnars is that we
can easily see the influence of grammar size on performahee. test the
algorithms on grammars from real-life natural languageooa, as we did
with the CFG parsers, we don't get a very precise idea of hevsite of the
grammar &ects performance. Since our experience with CFGs showsd thi
to be an important factor, and existing TAG parser perforcearomparisons
(e.g. Diaz and Alonso 2000) work with a fixed (and small) grzan we de-
cided to use artificial grammars in order to be able to adja#t btring size
and grammar size in our experiments and see the influencelofdmdors.

For this purpose, given an integkr> 0, we define the tree-adjoining
grammarGy to be the grammaBy = (V1,Vn, S, I, A) whereVr = {aj|0 <
j <k}, Vny ={S,B}, and

| = {S(B(ao))}*,

A={B(B(B* a)))l1<j <Kk

Therefore, for a giverk, Gk is a grammar with one initial tree and
auxiliary trees, which parses a language over an alphalibtkw 1 ter-
minal symbols. The actual language definedGyyis the regular language
Ly = ag(alayl..lay)*. ® We shall note that although the languadigsare triv-
ial, the grammar§y are built in such a way that any of the auxiliary trees
may adjoin into any other. Therefore these grammars aratsaitf we want
to make an empirical analysis of worst-case complexity.

to the grammar size by defining a new set of intermediate i@mastransforming accordingly
prediction and completion deduction steps. Even in thie,ca¥K performs better that Earley’s
algorithm due to the lower number of items genera@(V/y UV+| n?) for CYK vs. O(/G| n?) for
Earley’s algorithm, wherf&| denotes the size of the grammar measuréB|qdus the summation
of the lengths of all productions.

“Where trees are written in bracketed notation, and * is uset¬e the foot node.

SAlso, it is easy to prove that the gramn@ is one of the minimal tree adjoining grammars
(in terms of number of trees) whose associated languabg Note that we need at least a tree
containingag as its only terminal in order to parse the senteageand for each X i < k, we
need at least a tree containiagand no otheia; (j > 0) in order to parse the sentenags;.
Therefore, any TAG for the languad® must have at least+ 1 elementary trees.

ON THEORETICAL AND PRACTICAL COMPLEXITY OF TAG PARSERS / 93

Table 1 shows the execution time in millisecohds four TAG parsers
with the grammar&y, for different values of string lengtimand grammar
size K).

From this results, we can observe that both factors (steingth and gram-
mar size) have an influence on runtime, and they interactdesithemselves:
the growth rates with respect to one factor are influencedéyther factor,
so itis hard to give precise estimates of empirical comjmriat complexity.
However, we can get rough estimates by focusing on caseswinerof the
factors takes high values and the other one takes low vatiese(in these
cases the constant factotfsexting complexity will be smaller) and test them
by checking whether the sequenté, k)/ f(n) seems to converge to a pos-
itive constant for each fixell (if f(n) is an estimation of complexity with
respect to string length) or wheth&(n, k)/ f (k) seems to converge to a pos-
itive constant for each fixed (if f(k) is an estimation of complexity with
respect to grammar size).

By applying these principles, we find that the empirical ticoenplexity
with respect to string length is in the range betwe¥n?€) andO(n°) for the
CYK-based and Nederhof algorithms, and betw&¢n?¢) andO(n®) for the
Earley-based algorithms with and without the valid prefingarty (VPP).
Therefore, the practical time complexity we obtain is falolbethe theoreti-
cal worst-case bounds for these algorithms, whichQ(ré®) (except for the
Earley-based algorithm with the VPP, whichOgn’)).

Although for space reasons we don't include tables with thelmer of
items generated in each case, our results show that theieahgpace com-
plexity with respect to string length is approximat€yn?) for all the algo-
rithms, also far below the worst-case boun@g®) andO(n®)).

With respect to the size of the grammar, we obtain a time cerilyl of
approximatelyO(|l U Aj?) for all the algorithms. This matches the theoreti-
cal worst-case bound, which@(]l U A?) due to the adjunction steps, which
work with pairs of trees. In the case of our artificially gesterd grammar,
any auxiliary tree can adjoin into any other, so it's logittelt our times grow
quadratically. Note, however, that real-life grammarshsas the XTAG En-
glish grammar (XTAG Research Group 2001) have relatively d&ferent
nonterminals in relation to their amount of trees, so maryspe trees are
susceptible of adjunction and we can’t expect their beldwibe much better
than this.

Space complexity with respect to grammar size is approxamx(|| U AJ)
for all the algorithms. This is an expected result, sincéhapgmerated item is
associated to a given tree node.

6The machine used for all the tests was an Intel Pentium 4 3Hg Gith 1 GB RAM and
Sun Java Hotspot virtual machine (version 1.812b06) running on Windows XP.

94 / CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

Run-times in ms: Earley-based without the VPP

String Size (n)

Grammar Size (k)

1 8 64 512 4096
2 ~0 16 15 1,156 109,843
4 ~0 31 63 2,578 256,094
8 16 31 172 6,891 589,578
16 31 172 625 18,735 1,508,609
32 110 609 3,219 69,406
64 485 2,953 22,453 289,984
128 2,031 13,875 234,594
256 10,000 101,219
512 61,266
Run-times in ms: CYK-based
) . Grammar Size (k)
Stiing Size (n) 1 8 64 512 4096
2 ~0 ~0 16 1,344 125,750
4 ~0 ~0 63 4,109 290,187
8 16 31 234 15,891 777,968
16 15 62 782 44,188 2,247,156
32 94 312 3,781 170,609
64 266 2,063 25,094 550,016
128 1,187 14,516 269,047
256 6,781 108,297
512 52,000
Run-times in ms: Nederhof’s Algorithm
) . Grammar Size (k)
String Size () 1 8 64 512 4096
2 ~0 ~0 47 1,875 151,532
4 ~0 15 187 4,563 390,468
8 15 31 469 12,531 998,594
16 46 188 1,500 40,093 2,579,578
32 219 953 6,235 157,063
64 1,078 4,735 35,860 620,047
128 5,703 25,703 302,766
256 37,125 159,609
512 291,141
Run-times in ms: Earley-based with the VPP
)) Grammar Size (k)
String Size (n) 1 8 64 512 4096
2 ~0 ~0 31 1,937 194,047
4 ~0 16 78 4,078 453,203
8 15 31 234 10,922 781,141
16 31 188 875 27,125 1,787,140
32 125 750 4,141 98,829
64 578 3,547 28,640 350,218
128 2,453 20,766 264,500
256 12,187 122,797
512 74,046

TABLE 1 Execution times of four dierent TAG parsers for artificially-generated
grammars$sy. Best results are shown in boldface.

ON THEORETICAL AND PRACTICAL COMPLEXITY OF TAG PARSERS / 95

Practical applications of TAG in natural language proaggsisually fall
in the range of values farandk covered in our experiments (grammars with
hundreds or a few thousands of trees are used to parse sentafreeveral
dozens of words). Within these ranges, both string lengthgaammar size
take significant values and have an important influence onugian times,
as we can see from the results in the tables. This leads ugedhed tradi-
tional complexity analysis based on a single factor (stiémgjth or grammar
size) can be misleading for practical applications, sina@an lead us to an
incomplete idea of real complexity. For example, if we arekireg with a
grammar with thousands of trees, the size of the grammaeisnibst influ-
ential factor, and the use of filtering techniques (SchabesJashi 1991) to
reduce the amount of trees used in parsing is essential &r dodachieve
good performance. The influence of string length in theses;am the other
hand, is mitigated by the huge constant factors relatedamgrar size. For
instance, in the times shown in the tables for the gran®ads, Wwe can see
that parsing times are multiplied by a factor less than 3 wherength of the
input string is duplicated, although the rest of the resudige lead us to con-
clude that the practical asymptotic complexity with resgedtring length is
at leastO(n?®). These interactions between both factors must be taken int
account when analyzing performance in terms of computatioomplexity.

Earley-based algorithms achieve better execution timas the CYK-
based algorithm for large grammars, although they are worsamall gram-
mars. This contrasts with the results for context-free gnams, where CYK
works better for large grammars: when working with CFGs, Chés a better
computational complexity than Earley with respect to graansize (see sec-
tion 7.3), but the TAG variant of the CYK algorithm is quadcatith respect
to grammar size and does not have this advantage.

CYK generates fewer items than the Earley-based algoritiines work-
ing with large grammars and short strings, and the opposippéns when
working with small grammars and long strings.

The Earley-based algorithm with the VPP generates the saméer of
items than the one without this property, and has worse é¢xectimes. The
reason is that no partial parses violating this propertygemerated by any
of both algorithms in the particular case of this grammagsaranteeing the
valid prefix property does not prevent any items from beingggated. There-
fore, the fact that the variant without the VPP works bettethis particular
case cannot be extrapolated to other grammars. Howevedijfteeences in
times between these two algorithms illustrates the overbaased by the ex-
tra checks needed to guarantee the valid prefix property artécplarly bad
case.

Nederhof’s algorithm has slower execution times than theeoEarley
variants. Despite the fact that Nederhof’s algorithm israpriovement over

96/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

the other Earley-based algorithm with the VPP in terms of potational
complexity, the extra deductive steps it contains makedsvtex in practice.

7.5 Parsing the XTAG English grammar

In order to complement our performance comparison of the dtgorithms
on artificial grammars, we have also studied the behaviohefgarsers
when working with a real-life, large-scale TAG: the XTAG Hish gram-
mar (XTAG Research Group 2001).

The obtained execution times are in the ranges that we capletegiven
the artificial grammar results, i.e. they approximatelychahe times in the
tables for the corresponding grammar sizes and input deirgghs. The most
noticeable dierence is that the Earley-like algorithm verifying the dglre-
fix property generates fewer items that the variant withbet VPP in the
XTAG grammar, and this causes its run-times to be fasterttBsidifference
is not surprising, as explained in the previous section.

Note that, as the XTAG English grammar has over a thousamaegitary
trees, execution times are very large (over 100 seconds) wheking with
the full grammar, even with short sentences. However, whieeeaselection
filter is applied in order to work with only a subset of the graar in function
of the input string, the grammar size is reduced to one or twadhed trees
and our parsers process short sentences in less than 5 seBSarkhr's XTAG
distribution parser written in Capplies further filtering techniques and has
specific optimizations for this grammar, obtaining betieess for the XTAG
than our generic parsers.

Table 2 contains a summary of the execution times obtainedibgarsers
for some sample sentences from the XTAG distribution. Nb&t the gen-
erated implementations used for these executions applyngrgioned tree
filtering technique, so that theffective grammar size is fierent for each
sentence, hence the high variability in execution timesrévitetailed infor-
mation on these experiments with the XTAG English grammartmafound
at (Gbmez-Rodriguez et al., 2006a).

7.6 Overhead of TAG parsing over CFG parsing

The languageky that we parsed in section 7.4 were regular languages, so in
practice we don’t need tree adjoining grammars to parse,takhough it was
convenient to use them in our comparison. This can lead utaer how
large is the overhead caused by using the TAG formalism teepaintext-free
languages.

Given the regular languads = ag(az]azl..|lax)*, a context-free grammar
that parses it i€, = (N, X, P, S) with N = {S} and

"Downloadable at: ftpftp.cis.upenn.edpubyxtagleny

ON THEORETICAL AND PRACTICAL COMPLEXITY OF TAG PARSERS / 97

Run-times in milliseconds

Sentence Ear. no| Ear

CYK VPP VPP Neder.
He was a cow 2985 750 750 2719
He loved himself 3109 1562 1219 6421
Go to your room 4078 1547 1406 6828
He is a real man 4266 1563 1407 4703
He was a real man 4234 1921 1421 4766
Who was at the door 4485 1813 1562 7782
He loved all cows 5469 2359 2344 11469
He called up her 7828 4906 3563 15532
He wanted to go to the city 10047 4422 4016 18969
That woman in the city contributed tq
this article 13641 6515 7172 31828

=3

That people are not really amateurs [a
intellectual dueling 16500 7781 15235 56265

[¢)

The index is intended to measure futuf
economic performance 16875 17109 9985 39132

They expect him to cut costs through
out the organization 25859 12000 20828 63641

=

He will continue to place a huge burde
on the city workers 54578 35829 57422 | 178875

He could have been simply being a jerk 62157 | 113532 | 109062 | 133515

A few fast food outlets are giving it 3
try 269187 | 3122860 | 3315359

TABLE 2 Run-times obtained by applyingftérent XTAG parsers to several
sentences. Best results for each sentence are shown iad®ldf

P={S—ajU{S—Sall<i<k

This grammar minimizes the number of rules needed to pargé + 1
rules), but has left recursion. If we want to eliminate l&ftursion, we can
use the grammdg) = (N, X, P, S) with N = {S, A} and

P={S—>aAlU{A-> gAl<i<KlU{A— ¢

which hask + 2 production rules.

The number of items generated by the Earley algorithm foteodsfree
grammars when parsing a sentence of lemgtiom the languagéy by using
the grammag, is (k+2)n. In the case of the gramm@y/, the same algorithm
generate§(+4)n+”(“T‘1)+1 items. In both cases the amount of items generated
is linear with respect to grammar size, as in TAG parsersh\idspect to
string size, the amount of items @(n) for G andO(n?) for G/, and it was
approximatelyO(n?) for the TAGGy. Note, however, that the constant factors

98/ CarLos GOMEZ-RopriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

behind complexity are much greater when working wighthan with Gy,
and this reflects on the actual number of items generateceff@mple, the
Earley algorithm generates 16,833 items when working @{thand a string
of lengthn = 128, while the TAG variant of Earley without the valid prefix
property generated 1,152,834 items).

The execution times for both algorithms appear in table 8nfthe ob-
tained times, we can deduce that the empirical time comylexiinear with
respect to string length and quadratic with respect to gransie in the case
of G}; and quadratic with respect to string length and linear wétpect to
grammar size in the case Gf/. So this example shows that, when parsing
a context-free language using a tree-adjoining grammaget@n overhead
both in constant factors (more complex items, more dedestieps, etc.) and
in asymptotic behavior, so actual execution times can berakwrders of
magnitude larger. Note that the way grammars are desigisedhals an in-
fluence, but our tree adjoining grammag are the simplest TAGs able to
parse the languagés by using adjunction (an alternative would be to write
a grammar using the substitution operation to combine)rees

n Grammar Size (k), gramm&,
1 8 64 512 4096
2 ~0 ~0 ~0 31 2,062
4 ~0 ~0 ~0 62 4,110
8 ~0 ~0 ~0 125 8,265
16 ~0 ~0 ~0 217 15,390
32 ~0 ~0 15 563 29,344
64 ~0 ~0 31 1,062 61,875
128 ~0 ~0 109 2,083 | 122,875
256 ~0 15 188 4,266 | 236,688
512 15 31 328 8,406 484,859
n Grammar Size (k), gramm&y/
1 8 64 512 4096
2 ~0 ~0 ~0 ~0 47
4 ~0 ~0 ~0 15 94
8 ~0 ~0 ~0 16 203
16 ~0 ~0 ~0 46 688
32 ~0 ~0 15 203 1,735
64 31 31 93 516 4,812
128 156 156 328 1,500 13,406
256 484 547 984 5,078 45,172
512 1,765 2,047 3,734 18,078

TABLE 3 Run-times obtained by applying the Earley parser for cdrfree grammars
to sentences ihy.

RErFERENCES / 99

7.7 Conclusions

In this paper, we have presented a system that compilengasshemata
to executable implementations of parsers, and used it to&eathe perfor-
mance of several TAG parsing algorithms, establishing @mmpns both be-
tween themselves and with CFG parsers.

The results show that both string length and grammar sizébeampor-
tant factors in performance, and the interactions betwhemtsometimes
make their influence hard to quantify. The influence of stterggth in prac-
tical cases is usually below the theoretical worst-casentis(betwee®(n)
andO(r?) in our tests for CFGs, and slightly bela®(n3) for TAGs). Gram-
mar size becomes the dominating factor in large TAGs, makegfiltering
techniques advisable in order to achieve faster execuitioest

Using TAGs to parse context-free languages causes an @cebath in
constant factors and in practical computational compjexiitus increasing
execution times by several orders of magnitude with reqpeCEG parsing.

Acknowledgments

The work reported in this article has been supported in part b
Ministerio de Educacion y Ciencia and FEDER (TIN2004-06-2203-
01, TIN2004-07246-C03-02), Xunta de Galicia (PGIDITO5EZ0501PN,
PGIDITO5PXIC10501PN, Rede Galega de Procesamento da &xegei Re-
cuperacion de Informacion), and Programa de becas FPhigtdrio de Ed-
ucacion y Ciencia).

References

Alonso, Miguel A., David Cabrero, Eric de la Clergerie, an@el Vilares. 1999.
Tabular algorithms for TAG parsing. Froc. of EACL'99, Ninth Conference of the
European Chapter of the Association for Computational Listics pages 150—
157. ACL, Bergen, Norway.

Alonso, Miguel A., Eric De la Clergerie, Victor J. Diaz,caiManuel Vilares. 2004.
Relating tabular parsing algorithms for LIG and TAG. In H.rBuJ. Carroll, and
G. Satta, edsNew Developments in Parsing Technolpggl. 23 of Text, Speech
and Language Technology Serieshap. 8, pages 157-184. Dordrecht-Boston-
London: Kluwer Academic Publishers,.

Carroll, J. 1993. Practical unification-based parsing dfirzd language. PhD thesis.
Tech. Rep. 314, Computer Laboratory, University of Cang@idCambridge, UK.

Diaz, Victor J. and Miguel A. Alonso. 2000. Comparing tibyparsers for tree ad-
joining grammars. In D. S. Warren, M. Vilares, L. Rodrigue#ares, and M. A.
Alonso, eds.Proc. of Tabulation in Parsing and Deduction (TAPD 200pages
91-100. Vigo, Spain.

100/ Carros GOMEZ-RopRriGUEZ, MIGUEL A. ALONSO, MANUEL VILARES

Earley, J. 1970. Anfécient context-free parsing algorithn€Communications of the
ACM 13(2):94-102.

Gomez-Rodriguez, Carlos, Miguel A. Alonso, and Manudaiés. 2006a. Generat-
ing XTAG parsers from algebraic specifications. Rroceedings of the 8th Inter-
national Workshop on Tree Adjoining Grammar and Relatedr@isms. Sydney,
July 2006 pages 103-108. East Stroudsburg, PA: Association for Qtatipnal
Linguistics.

Gbmez-Rodriguez, Carlos, Miguel A. Alonso, and Manudhids. 2007. Genera-
tion of indexes for compiling fcient parsers from formal specifications. Rroc.
of Eleventh International Conference on Computer Aidede®ys Theory (EURO-
CAST 2007)Las Palmas, Spain.

Gbmez-Rodriguez, Carlos, Jesls Vilares, and Miguel fango. 2006b. Auto-
matic generation of natural language parsers from dealarapecifications. In
L. Penserini, P. Peppas, and A. Perini, e@TAIRS 2006 - Proceedings of the
Third Starting Al Researchers’ Symposium, Riva del Gartiy,| August 28-29,
2006 vol. 142 ofFrontiers in Atrtificial Intelligence and Applicationpages 259—
260. AmsterdanBerlin/Oxford/Tokyg/Washington DC: 10S Press. Long version
available at httg/www.grupocole.orflGomVilAlo2006along.pdf.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-adjoiniagngnars. In G. Rozen-
berg and A. Salomaa, edslandbook of Formal Languages. Vol 3: Beyond Words
chap. 2, pages 69-123. BeyliteidelbergNew York: Springer-Verlag.

Kasami, T. 1965. Anféicient recognition and syntax algorithm for context-free-la
guages. Scientific Report AFCRL-65-758, Air Force Camtei®Research Lab.,
Bedford, Massachussetts.

Nederhof, Mark-Jan. 1999. The computational complexitthefcorrect-prefix prop-
erty for TAGs. Computational Linguistic25(3):345—-360.

Rosenkrantz, D. J. and P. M. Lewis Il. 1970. Deterministiét IGorner parsing. In
Conference Record of 1970 Eleventh Annual Meeting on Sngi@nd Automata
Theory pages 139-152. IEEE, Santa Monica, CA, USA.

Sampson, G. 1994. The Susanne corpus, release 3.

Schabes, Yves. 1994. Left to right parsing of lexicalizezb{adjoining grammars.
Computational Intelligenc&0(4):506-515.

Schabes, Yves and Aravind K. Joshi. 1991. Parsing with #&izied tree adjoining
grammar. In M. Tomita, edCurrent Issues in Parsing Technologiebap. 3, pages
25-47. Norwell, MA, USA: Kluwer Academic Publishers. ISBN/023-9131-4.

Schoorl, J. J. and S. Belder. 1990. Computational lingzssit Delft: A status report,
Report WTMTT 90-09.

RerereNCES / 101

Shieber, Stuart M., Yves Schabes, and Fernando C. N. Peté®a. Principles and
implementation of deductive parsingournal of Logic Programmin@4(1-2):3—
36.

Sikkel, Klaas. 1997 Parsing Schemata — A Framework for Specification and Anal-
ysis of Parsing AlgorithmsTexts in Theoretical Computer Science — An EATCS
Series. BerlifHeidelbergNew York: Springer-Verlag. ISBN 3-540-61650-0.

Vijay-Shanker, K. and Aravind K. Joshi. 1985. Some compoaitatl properties of tree
adjoining grammars. 183rd Annual Meeting of the Association for Computational
Linguistics pages 82-93. ACL, Chicago, IL, USA.

XTAG Research Group. 2001. A lexicalized tree adjoiningngmear for English.
Tech. Rep. IRCS-01-03, IRCS, University of Pennsylvania.

Younger, D. H. 1967. Recognition and parsing of contex¢-fenguages in time®.
Information and ControlL0(2):189—-208.

8

Properties of binary transitive closure
logics over trees

SrepHAN KEPSER

Abstract

Binary transitive closure logic (FCfor short) is the extension of first-order predicate
logic by a transitive closure operator of binary relatioBsterministic binary transitive
closure logic (F&*) is the restriction of FOto deterministic transitive closures. It is
known that these logics are more powerful than FO on arpisauctures and on finite
ordered trees. Itis also known that they are at most as polasfmonadic second-order
logic (MSO) on arbitrary structures and on finite trees. Wé study the expressive
power of FO and FG* on trees to show that several MSO properties can be expressed
in FOP* (and hence FQ.

The following results will be shown.
= Alinear order can be defined on the nodes of a tree.
The class EVEN of trees with an even number of nodes can beedefin
On arbitrary structures with a tree signature, the clasttses and finite trees can be
defined.
= There is a tree language definable in%@hat cannot be recognized by any tree

walking automaton.
= FO" is strictly more powerful than tree walking automata.
These results imply that FO and FO are neither compact nor do they have the
Lowenheim-Skolem-Upward property.

Keywords BINARY TRANSITIVE CLOSURE LOGIC

8.1 Introduction

The question about the best suited logic for describingdreperties or defin-
ing tree languages is an important one for model theoretitagyas well
as for querying treebanks. Model theoretic syntax is a rebgarogram in
mathematical linguistics concerned with studying the dptge complex-

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

103

104/ SrepHAN KEPSER

ity of grammar formalisms for natural languages by definimgjrtderivation
trees in suitable logical formalisms. Since the very inflisdiook by Rogers
(1998) it is monadic second-order logic (MSO) or even momggrful logics

that are used to describe linguistic structures.

With the advent of XML and query languages for XML documemtgar-
ticular XPath, the interest in logics for querying treebanbse dramatically.
There is now a large interest in this topic in computer s@ehtdependent of
that, but temporarily parallel, large syntactically aratet treebanks became
available in linguistics. They provide nowadays a rich amgartant source
for the study of language. But in order to access this sosuiéable query
languages for treebanks are required.

One of the simplest properties that are known to be inexjieds first-
order predicate logic (FO henceforth) is the transitivesglte of a binary rela-
tion. Itis therefore a natural move to extend FO by a binaaggitive closure
operator. And this move has been done before in the defirdfiouery lan-
guages for relational databases, in particular for the S§h&dard. But it
seems that the expressive power of FO plus binary transitogures (FO
for short) to define tree properties is not much studied yleis & somewhat
surprising, because there is reason to believe thatis@ore user friendly
than MSO. Most users of query languages, in particular istguunderstand
the concept of a transitive closure very well and know howdeitt It is a lot
more dificult to use set variables to describe tree properties. Ampiafor
this claim is the fact MSO is capable of defining binary tréwsiclosures, as
shown by Moschovakis (1974). A formula expressing the ftaesclosure
in MSO is given at the end of the next section. It is questita#iat ordi-
nary users (without profound knowledge of MSO) would be a@blénd this
formula.

There exists a more restricted version of transitive clesnamely de-
terministic transitive closure (FO). The deterministic transitive closure of
a binary relation is the transitive closure of the functiooadeterministic
part of the relation. We propose to seriously considet*Fa3 a language for
defining tree properties. We do so by showing that severabitapt MSO
definable properties can be defined in"E@ne such example is the ability
to define a linear order on the nodes of a tree. The order rdsemepth-first
left-to-right traversal of a tree. A linear order is a powgidoncept that can
be used defining additional properties. For example, it edus count the
number of nodes in a tree modulo a given natural number. Aariesg is the
definition of the class EVEN of all trees with an even numbenaodles in
FO™.

Arguably an important reason for Rogers’ choice of MSO isaitslity
to axiomatize trees. l.e., there exists a set of axioms duahan arbitrary
structure (of a suitable signature) is a tree — finite or itdiriiff it is a model

PROPERTIES OF BINARY TRANSITIVE CLOSURE LOGICS OVER TREES / 105

of the axioms. It is known that this characterization of sreannot be done
using FO. But the full expressive power of MSO may not reallyrieeded

for the axiomatization, because we show that arbitrarystege finite trees

can be axiomatized in FO This capability of axiomatizing finite and infinite
trees implies that F© (and hence also FQis neither compact nor does it
possess the Lowenheim-Skolem-Upward property.

There exists a tree automaton concept that defines settiehohef parallel
processing of nodes in a tree, namely tree walking autonTaté]. As the
name implies, a tree is processed by walking up and down indtigspect-
ing nodes serially. One may therefore believe that thesenzath could be
the automaton-theoretic correspondent of* FBut we show here that FO
is more powerful. Every tree language that is recognized BWA can be
defined in FO. The relationship towards FOis less clear. There are PO
definable tree languages that cannot be recognized by any. TWA

8.2 Preliminaries

Let M be a set. We write(M) for the power set oM. LetRC M x M be a
binary relation oveM. Thetransitive closure T(R) of R is the smallest set
containingRand for allx,y,ze M such thatx,y) € TC(R)and {/,2) € TC(R)
we have k.2 € TC(R). l.e.,

TC(R) := ﬂ{W| RCWCMxMVYxXy,ze M :
XY, (.2 eW = (x,2) € W}.

Deterministictransitive closure is the transitive closure of a determini
tic, i.e., functional relation. For an arbitrary binaryatbn R we define its
deterministic reducby

Ro:={(x,y) eR|VzZz: (X, eR = y=12.

Now
DTC(R) := TC(Rp).

We consider labeled ordered unranked trees. A tree is atdfettee set of
child nodes of every node is linearly ordered. A tree is ukealif there is no
relationship between the label of a node and the number chitdren. For
brevity we just writetreefor labeled ordered unranked tréa Sections 8.3
and 8.5 we only consider finite trees, in Section 8.4 we alssider infinite
trees.

Definition 1 A tree domainis a non-empty subs@t C N* such that for all
uveN*:uve T = ueT (closure under prefixes) and for alke N* and
ieN:uieT = ujeT forall j <i(closure under left sisters).

Let £ be a set of labels. Areeis a pair [, Lab) whereT is a tree domain
andLab: T — Lis a node labeling function.

A tree isfiniteiff its tree domain is finite.

106/ SrepHAN KEPSER

We remark that a tree domain is at most countable, since suibaet of a
countable union of countable sets.

The languages to talk about trees will be extensions of dirdéer logic.
Their syntaxes is as follows. L&t = {X,y,Z w, U, X1, X2, X3, ... } be a denu-
merable infinite set of variables. The atomic formulaelgpg for each label
Le £, x>y x|y andx = y. Complex formulae are constructed from
simpler ones by means of the boolean connectives, exiatertd univer-
sal quantification, and transitive closure. l.e.¢iindy are formulae, then
G, dANY, PV Y, EIX:¢’ VX:¢! and [TC(1,X2 ¢](X’ y)! [DTCX1,X2 ¢](X’ y)! respec-
tively, are formulae.

The semantics of the first-order part of the language is stahd et
(T, Lab) be a tree. A variable assignmemt: X — T assigns variables to
nodes in the tree. The root node has the empty addrédsw [L(X)]2 =T
iff Lab(a(x)) = L. [x | y]? = T iff a(y) = a(x)i for somei € N, i.e., | is
the parent relation.)] — y]? = T iff there is au € T andi € N such that
a(x) = ui anda(y) = ui + 1, i.e.,— is the immediate sister relation.

Boolean connectives and quantification have their standéetpretation.
NOW’ I[[TCX1,X2 ¢](X’ y)]la =Tiff

(a(¥). a(y)) € TC({(b,d) | [¢] ™9 = T)

whereab/x;d/x; is the variable assignment that is identicabtexcept that
X, is assigned td andx; to d. If ¢ is a formula with free variables, o, it
can be regarded as a binary relatigr;, o). Then [TG, x, ¢] is the transitive
closure of this binary relation. This language is abbredd&C.

And [[DTC,, 5, ¢1(x.y)]? = T iff

(a(¥), a(y)) € DTC({(b, d) | []** % = T)).

This language is abbreviated FOIt is simple to see that everything express-
ible in FO”* can also be expressed in F®ecause

[DTCX1,X2 ¢(Xl7 XZ)](X’ y) <
[TCux, #(X1, X2) AVZP(X1,2) — Z= X2 (X, Y).

It is an open question whether there are tree languages bliefimaFO" that
cannot be defined in FO

FO* is amongst the smallest extension of first-order logic. kinewn that
the transitive closure of a binary relationnist first-order definable (Fagin,
1975). But when talking about trees, people frequently wartblk about
paths in a tree. And a path is the transitive closure of aetiase steps. FO
and FO have at most the expressive power of monadic second-orgir lo
(MSO). Itis an old result, which goes back at least to Moselkis/(1974,
p. 20), that the transitive closure of every MSO-definabtehy relation is
also MSO-definable. The following formula is due to Coure€l1990). Let

PROPERTIES OF BINARY TRANSITIVE CLOSURE LOGICS OVER TREES / 107

R be an MSO-definable binary relation. Then

VX (Vzw(ze XAR@zW) = we X)AVZR(X,2) = ze€ X))
= yeX

is a formula with free variablesandy that defines the transitive closureff
It follows that every tree language definable in*F&n be defined in MSO.
Whether the two logics are equivalent, seems an open que§iw FO*,
the question is settled. Recently, Bojanczyk et al. (20@§ktshown that the
expressive power of MSO for defining tree languages propedgnds the
expressive power of FO.

8.3 Definability of Order

One of the abstract insights from descriptive complexiwotty is that or-
der is a very important property of structures. The relatiop between cer-
tain logics and classical complexity classes is frequertjricted toordered
structures, i.e., structures where the carrier is lineantiered. The reason for
this restriction is to be found in the fact that computatismn ordered pro-
cess. Definability and non-definability results for certaigics over ordered
structures frequently do not extend to unordered strustuirés therefore an
important property of a logic, if the logic itself is capalolieexpressing order
without recourse to an extended signature. The probablyKyesvn logic
with this property i1, the extension of first-order logic by arbitrary relation
variables that are existentially quantified. It is obvigugbssible to define
order inZ}, because we can say there is a binary relation that has gfdipe
erties of a linear order. These properties are known to bedider properties.
It is hence the ability to say “there is a binary relation"ttisathe key.

There is no way that FO or FO' could define order on arbitrary finite
structures. But if we only consider ordered trees as mo&€); can define
order. Indeed it is possible to give a definition of the deft$t-left-to-right
order of nodes in a tree (and some variants).

Proposition 9 There is an explicit definition of a linear order of the nodes i
atree inFOP*.

Proof. Define the proper dominance relation of tr&@esn(x, y) as [DTG,x x |
vl(y, X). The idea of how to define dominance deterministically byking
upwards from the descendants to the ancestors goes backgsaRti and
Immerman (1995). Similarly but simpler, define the sistdatien SigXx,y)
as [DTG.y x — y](x y). Now definex <y as

Dom(x,y) v (Aw,v: Sigw,V) A
(w=xVv Domw, X)) A (v=yV DomV,Y))).
The first disjunct expresses the “depth-first” part of thesor@he more com-
plicated second disjunct formalizes the “left-to-righ#rp It expresses that

108/ SrepHAN KEPSER

there is a common ancestor of nodesndy and nodex is to be found on a
left branch whiley is to be found on a right branch. Care is taken that mu-
tual domination is excluded. Hence the two disjuncts areuatlyt exclusive.
Since the dominance and the sisterhood steps are bothxivefl¢the whole
relation< is irreflexive. Furthermore for each pair of distinct nodes itree,
either one dominates the other, or there is a common ancastbrthat one
node is on a left branch while the other is on a right branchnddehe rela-
tion is total. Transitivity can easily be checked by consitigthe four cases
involved in expanding < y andy < z O

The proposition basically states that ordered trees aereddstructures in
any logic at least as powerful as FONote that the root node is the smallest
element of the order. If the tree is finite, the largest elenethe leaf of the
rightmost branch of the tree. The root node is FO-definatde-dy : y | x.
The largest elemeriflax of the order is FO*-definable bydx—-3y : x < y.
The successoy of a nodex in the linear order $ ucgx,y)) is also FO*-
definable:xx < yA -3z : X < zA z < y. Using a linear order it is possible
to count modulo some natural number on trees. That is\fkre N we can
define the class of finite trees such that each tree in the bt x n + k
nodes (for some € N). As an example, we define the class EVEN of trees
with an even number of nodes (ire= 2,k = 0).

Proposition 10 The class of finite trees with an even number of nodes is
FOP*-definable.

Proof. We only consider the case where a tree has more than two.nbues
formula

Iw : SucgRootw) A [DTCyyIz: Sucgx, 2) A Sucgz y)(w, Max)

expresses that we go in one step from the root to its succesgerom w
we can reach the last element of the order by an arbitrary eumbtwo
successor steps. If we take the two-successors-step patigththe linear
order from the root to the maximum, we have an odd number oés,agince
a path ofn double-successor-steps has 1 nodes. O

Corollary 11 FOP* has no normal form of the typgdDTCyy ¢(x, Y)(r,1)
whereg(x,y) is an FO formula and r the root. The same is true mutatis mu-
tandis forFO".

Proof. With a single application of a DTC-operator we can definegneith
a linear order. If FO with a single DTC-operator is interpgebver finite
successor structures, then it is equivalent to FO with oBler over finite
orderings, EVEN is not definable in FO. O

The above corollary is stated here because it contrastsavfithdamental
result in descriptive complexity theory. Let FO(TC) be tliéemsion of FO by

PROPERTIES OF BINARY TRANSITIVE CLOSURE LOGICS OVER TREES / 109

transitive closure operators of arbitrary width, that is thansitive closure of
binary relations on tuples of arbitrary width. Let FO(DT@)its deterministic
counterpart. Immerman (1999) showed that both FO(TC) an@®FQG) on

ordered structures have a normal form consisting of a simgfier application
of the (deterministic) transitive closure operator on dreotvise FO formula.

8.4 Definability of Tree Structures

In previous and all following sections we assume that we cplysider tree
models as defined in the Preliminaries section. But in thitige we take a
more general view, a view that has its origin in model théorgtntax. The
aim is to find whether it is possible to give an axiomatizatdmhose struc-
tures linguists are interested in. This task has two subpahte first consists
of defining trees, or more precisely finite trees, as the oedmodels. The
second part consists of axiomatizing linguistic princisech as the Binding
theory in the given logic. We will only be concerned with thestfipart here.
This section is inspired by the book by Rogers (1998). Moezijzally we
show that the main results of Chapter 3 carry over t8‘F®/e will frequently
cite this chapter in the current section.

The language of this section is deterministic binary tré@restlosure logic
with equality over the following base relations:

< parentrelation

<* dominance relation

<" proper dominance relation

< left-of relation
We also assume there to be a £edf unary predicate symbols representing
linguistic labels. We write F&« for this language to indicate that the base
relations dffer from the ones in the other sections of this paper.

A model for FO*« is a tuple {, P, D, L, Lab) whereU is a non-empty
domain,P, D andL are binary relations oveéy interpreting<, <* and<. And
Lab: £ — p(U) interprets each label as a subsetof

Since the intended models of this language are trees, wetbaestrict
the class of models by giving axioms of trees. Many propgietrees can
be defined by first-order axioms. The following 12 axioms &atedcfrom
(Rogers, 1998, p. 15f.).

Al IxVy: x <"y
(Connectivity . dominance)
A2 VX y: (X<*yAYy<* X) > X=Y
(Antisymmetry of dominance)
A3 VXV, Z: (X<*YAY <" 2) - X< Z
(Transitivity of dominance)
Ad VXY X<T Yo (XS YAXEY)

110/ SrepHAN KEPSER

(Definition of proper dominance)

A5 VX y:X<ay o (X<t YyAVZ: (X< ZAZ<Y) > (Z<" XV Y < 2)
(Definition of immediate dominance)

A6 VX, z: X<t z— ((Ay: X<yAy<" 2 AAy:y<2)
(Discreteness of dominance)

A7 VXY (X< YAY < X) & (XELYAY£X)
(Exhaustiveness and exclusiveness)

A8 YW, X, Y,Z: (X<YAX<WAY< 2 5>W<2Z
(Inheritance of Left-of wrt. dominance)

A9 VX, V,Z: (X<YAY<2) > X<Z
(Transitivity of left-of)

AlO VX, y:X<y—->Yy£X
(Asymmetry of left-of)

All ¥YX(Ay: X<ay) > (AY: X<y AVZ:X<azZ—> ZLY)
(Existence of a minimum child)

Al2 VX, 2:Xx<z2— (AY: X<YAYW:X<W->WLY)A

Ay y<zZAYW:W<Zo Yy £W)

(Discreteness of left-of)

A discussion of these axioms can be found in (Rogers, 1998%fp. Ev-
ery tree (finite or infinite) obeys to these axioms. But theeereon-standard
models, i.e., structures that are models of theses axiotwedudd not be con-
sidered as trees. Actually, itit possible to give a first-order axiomatization
of trees, as was shown by Backofen et al. (1995). The simplestple of a
non-standard model can be gained by adapting the well-kreoxample of
a non-standard model of FO arithmetics to tree structureis. odel is de-
picted in Figure 1. The carrier is the disjoint union of théumal numbers and
the integers. The dominance relation is defined by takinghdteral order
on natural numbers and integers plus every natural numbaindoes every
integer. Formallyl = NwZ, P ={(n,n+1)|ne NUZ},D = {(n,m) | n,me
Non<mpu{(n,m)|nmezZn<miu{(n,2 | neN,ze Z}, andL = 0. This
model is not a tree because the integers are infinitely fay &oan the root.

The FO axioms demand that the proper dominance relationromesmly
contain the immediate dominance relation but also theitreaslosure of the
immediate dominance. In the non-standard model, propefirdore truly
extends the transitive closure of immediate dominancenafiral numbers
properly dominate all integers. But this part of the domg®relation is not
contained in the transitive closure of immediate dominahtea proper tree
model, the proper dominance is always identical to the i@aslosure of
immediate dominance. This insight can be expressed Fi4&3 an axiom.

ATl VX, y: X<ty — [DTCy.z<W](Y, X)
(Proper dominance is the transitive closure of immediataidance)

PROPERTIES OF BINARY TRANSITIVE CLOSURE LOGICS OVER TREES / 111

0
|
1
|
2
|
3

S —
N = o - '

FIGURE1 A non-standard model of the first-order tree axioms.

r

FIGURE2 Another non-standard model of the first-order tree axioms.

Another way of reading this axiom is to say that the path fronaibitrary
node back to the root is finite.

AT1 together with the first-order axioms does still noffsie to axiomatize
proper trees. An example of a non-standard model for which Aglds true
is given in Figure 2. Formally, we set = {r}uNwZ, P = {(r,2) | ze NUZ},
D=PuU{(i,i)|ie{rfUNUZ}, andL = {(n,m) |n,me N,n < m}U{(n,m) |
nmezZn<miu{(nz|neN,ze Z}. Consider the sisters of a node. They
are ordered by, and there is a left-most sister. Now, in a proper tree, the
number of sisters to the left is finite for every node. In thedelon Figure 2 all
integers have infinitely many left sisters. This configuratias to be avoided
by means of one more axiom as follows. We can easily defineoth@ahode
is the immediate sister of another node. The relati®(x, y) is defined as
Az:z<«XAZ<ayAX<YA-=Iw: X<w<y. Now we can spell out an axiom
analog to AT1.

112/ SrepHAN KEPSER

AT2 VX V,Z: (X<YAX<ZAY<2Z) — [DTCywlIS(v,W)](y,2)
(Finitely many left sisters)

Theorem 12 Axioms A1-A12, AT1, and AT2 define the class of tree models.

The proof is analogous to the proof of Theorem 3.9 in (RogE®98).
Consider in particular Footnote 8 on page 23.

Proof. Rogers showed that every tree (in the sense of Definitios 4 model
of axioms A1-A12 and for each nodee U the setsA; = {(y, X) € D} of

ancestors okandLy = {y| 3z: (z X),(z y) € D and {, x) € L} of left sisters
of x are finite (Lemma 3.5). And every tree obviously satisfie®irs AT1
and AT2.

Furthermore, each model of axioms A1-A12 whéseand Ly are finite
for each nodex € U is isomorphic to a tree (Lemma 3.6).

Now suppose a model of A1-A12 satisfies AT1. Then for each madl¥
the setA is finite, because it contains the root (Al) and is constaictie
parent-child steps (AT1), and a transitive closure of @rgjéps cannot reach
a limit ordinal. An analogous argument can be made with reiSjpemodels
of A1-A12 and AT2. Hence for every model of of A1-A12, AT1, af@2
and all nodex € U we see that the sefs, andLy are finite. By the above
guoted Lemma 3.6, these models are isomorphic to trees. O

The tree models of Axioms A1-A2, AT1, and AT2 can be finite a8 a®
infinite. But since they are all tree models, they are at moshtable. This
is because every tree domain is at most countable (see raftarkDefini-
tion 1). And every tree model is isomorphic to a tree. As an adiate con-
sequence we get that POdoesnot have the Lowenheim-Skolem-Upward
property. This property states that if a theory (i.e., pt&dly infinite set of
sentences) has a model of sizét has models of arbitrary infinite cardinali-
ties. Itis a typical property of FO logic.

Corollary 13 The logics=OP* and FO* do nothave the Lowenheim-Skolem-
Upward property.

Linguists are mostly (if not exclusively) concerned withtértrees. Hence
it would be nice if we could restrict the class of models ferttown to finite
trees. This can indeed be done. Rogers (1998) defines a tingar on the
nodes of a tree as follows. Node< y iff X <* y v x < y. By Axiom A7, each
pair of nodes is either a member of the dominance relationroember of
the left-of relation. Hence this defines indeed a linear oietually, the or-
der is the same as the one in the previous section: depthefirsd-right tree
traversal. As in the previous section we &ecgXx, y) for y being the imme-
diate successor ofin the order. Finiteness can now be defined in two steps.
Firstly we demand the linear order to be the deterministiogitive closure
of the immediate successor relation. The consequencesofiéimand is that

PROPERTIES OF BINARY TRANSITIVE CLOSURE LOGICS OVER TREES / 113

for every element in the order there is only a finite numberarfes that are
smaller than this element. Secondly we demand the ordenv®daaximal
element. If the maximal element has only a finite number ahelats smaller
than it, the tree is obviously finite.

AF Vxy:x<y = [DTCyy Sucgx, V)I(Xy) A
AXVY Yy < XVy=X
(Finiteness of the ordet)

Theorem 14 Axioms Al1-A12, AT1, AT2, and AF define the clasfirfe
tree models.

Proof. By Theorem 12, every model of the Axioms A1-A12, AT1, and AT2
is isomorphic to a tree model. If a model is finite, then AF ig@ialy true.
For the converse, assume tWady : x <y = [DTCyy Sucgx, y)I(X.y).

By definition of the DTC-operator, the sigt| y < x} of elements smaller than
x is finite for every nodex. If the order has additionally a maximal element
m, then it is finite. O

This theorem implies that another property of FO, namely gacimess,
does not extend to FO.

Corollary 15 The logics=COP* and FO* are notcompact.

FO, on the other hand, is not capable of defining the class ité firees.
It is well known that compactness and definability of finitem@f models
mutually exclude each other.

8.5 Transitive Closure Logics and Tree Walking Automata

Tree walking automata were introduced by Aho and Ullman)%& se-
quential automata on trees. At every moment of its run, a T8 ia single
node of the tree and in one of a finite number of states. It watksnd the
tree choosing a neighboring node based on the current gtatigbel of the
current node, and the child number of the current node.

More formally, we consider trees of maximal branching degré& he fol-
lowing definition is mainly cited from (Bojanczyk and Colcbet, 2005). Ev-
ery nodev has a type. The possible values are Types, 1,2,...,k} x {I,i}
wherer stands for the rootj € {1,...,k} states thav is the j-th child, |
states that is a leaf,i thatv is an internal node. A direction is an element of
Dir = {7, l1,..., L stay} where? stands for ‘move to the parent; ‘move
to the j-th child, andstayto ‘stay at the current node’. A TWA is a quintuple
(S,%, 6, 50, F) whereS is a finite set of stateg is the alphabet of node labels,
S € S is the initial state andF C S is the set of final states. The transition
relations is of the form

6 C (S x Typesx X) x (S x Dir).

114/ SrepHAN KEPSER

A configuration is a pair of a node and a state. A run is a sequehconfig-
urations where every two consecutive configurations arsistant with the
transition relation. A run is accepting it starts and ends at the root of the
tree, the first state i) and the last state is a memberrafThe TWA accepts
atree ff there is an accepting run. The setbfrees recognized by a TWA is
the set of trees for which there is an accepting run.

Bojanczyk and Colcombet (2005) showed that TWA cannot reizegall
regular tree languages. This means that MSO and tree awtarastrictly
more powerful than TWA. In an extension of their proof we vgitlow that
even FO is more powerful than TWA.

Theorem 16 The classes of tree languages definabl&®i strictly extend
the classes of tree languages recognizable by TWA.

Proof. The proof consists of two parts. We will first show that evEkyA-
recognizable tree language is F@efinable. Secondly we will show that
there is an FO-definable tree language that cannot be recognized by any
TWA.

The first part of the proof is based on recent results by NemdrSahwen-
tick (2003). They showed that a tree language is recogredaba TWA if and
only if it is definable by a formula of the following type: [KG ¢(x, y)I(r, r)
wherer is a constant for the root of a tregjs an FO formula with additional
unarydepthy, predicates. Apart from thdepth, predicates, these formulae
are obviously in FO. Now, depthy(x) is true if x is a multiple ofm steps
away from the root. For eveny, the predicateepth, can be defined by an
FO'-formula: [TCq x, IX1,..-Xm-1 : Xo L X1 A -+ A Xm1 | Xm](r,X) is @
predicate that is true on a nodgust in case there iskae N such thaix is at
depthk x m. Thus every TWA-recognizable tree language is f@finable.

To show the second half of the theorem, we will indicate thatgeparat-
ing languagéd. given by Bojanczyk and Colcombet (2005) can be defined in
FOP*. The authors consider binary trees. They show (in Fact 1)Ltltan be
defined in first-order logic with the following three basidatens: left and
right child, and ancestor relation. Now, left and right dhife obviously FO
definable relations. And the ancestor relation is — as in theipus sections
— FO*-definable by [DTGyx x | YI(Y, X). O

Corollary 17 There exists akOP*-definable tree language that ot TWA-
recognizable.

Please note that there exists an alternative proof of Theafe Engelfriet
and Hoogeboom (2006) have recently shown that transitbsice logics cor-
respond to certain pebble automata. (A pebble automatoh\geenhanced
by a finite sets of pebbles.) More precisely, the determigtbble automata
have exactly the same expressive power as determinisgybiransitive clo-

PROPERTIES OF BINARY TRANSITIVE CLOSURE LOGICS OVER TREES / 115

sure logic. And non-deterministic pebble automata have#nee expressive
power as binary transitive closure logic where each trivesitosure operator
is under the scope of an even number of negations. Since a $\&Aébble
automaton with 0 pebbles, the first half of above theorenofdl from the
equivalence results of (Engelfriet and Hoogeboom, 200i6¢.Second half of
the theorem follows from new results by Bojanczyk et al. @0&ho show
that each additional pebble extends the expressive poveepelbble automa-
ton. Bojanczyk et al. (2006) also provide an alternativeopod Corollary 17.
As aresult, either TWA and DPA are incomparable, or TWA ass [@owerful
than DPA.

8.6 Conclusion

We showed a range of properties of F@nd FO to indicate that they should
seriously be considered as logics for defining tree langaia§jighough the
addition of binary transitive closure to first-order logannche seen as a small
one, FO* is capable of expressing important second-order progeotier
trees. It is possible to define a linear order over the nodadriee. And using
this order one can count modulo any natural number. On aristructures
with appropriate signature one can axiomatize the clagseses and finite
trees. These axiomatizations showed that*H® neither compact nor does
it have the Lowenheim-Skolem-Upward property. Furtheradthough tree
walking automata look like they might serve as an automatodehfor FO,

it turns out that FOis more powerful than TWA.

A word about complexity issues may be in place"Fénd FO have quite
a good data complexity. By translating Fformulae into MSO formulae and
using the equivalence between MSO and tree automata oneedhat FO
has a linear time data complexity. And since*H®a sub-logic of FO(TC), it
also has NLOGSPACE data complexity wherea$'H@as LOGSPACE data
complexity. A straight-forward implementation of tramgit closure yields a
PTIME query complexity. It is unclear to the author whethgs tresult can
be improved upon.

The main open question is of course whethet Estrictly less powerful
than MSO. Itis also interesting to study the relationshipof to modal lan-
guages for trees like PQkee (Kracht, 1995). Marx (2004) basically showed
that PDLyree is at most as powerful as EQwhere FQ is the restriction of
FO* where every formula has at most 3fdrent variables. ten Cate (2006)
recently showed that queries in XPath with Kleene star ang loredicate
have the same expressive power ag.FO

One may also ask what happens if we introduce the transitosuie
of arbitrary relations, not just binary ones. This logicl{edviated FO(TC))
was introduced by Immerman (see Immerman, 1999) to logickcribe

116/ SrepHAN KEPSER

the complexity class NLOGSPACE. Tiede and Kepser (2006¢ magently
shown that FO(TC) is more expressive than MSO over treessfdtement
remains true even if one only consideeterministicransitive closures.

Acknowledgments

The author wishes to thank four anonymous referees whosmeaois helped
improving the quality of the paper. This research was furitjea grant of the
German Research Foundation (DFG SFB-441).

Stephan Kepser

Collaborative Research Centre 441
University of Tubingen

Germany

References

Aho, Alfred V. and Jé&rey D. Ullman. 1971. Translations on a context-free grammar
Information and Controll9:439-475.

Backofen, Rolf, James Rogers, and Krishnamurti Vijay-&earl995. A first-order
axiomatization of the theory of finite tree¥ournal of Logic, Language, and Infor-
mation4:5-39.

Bojanczyk, Mikolaj and Thomas Colcombet. 2005. Tree-wajkautomata do not
recognize all regular languages. In H. N. Gabow and R. Fagis.,The 37th ACM
Symposium on Theory of Computing (STOC 20p&yes 234-243. ACM.

Bojanczyk, Mikotaj, Mathias Samuelides, Thomas Schwéntand Luc Segoufin.
2006. Expressive power of pebble automata. In M. BugliesPri@neel, V. Sassone,
and |. Wegener, edsAutomata, Languages and Programming, ICALP 2006CS
4051, pages 157-168. Springer.

Courcelle, Bruno. 1990. Graph rewriting: An algebraic angid approach. In J. van
Leeuwen, ed.Handbook of Theoretical Computer Scieneel. B, chap. 5, pages
193-242. Elsevier.

Engelfriet, Joost and Hendrik Jan Hoogeboom. 2006. Nestbblps and transitive
closure. In B. Durand and W. Thomas, e@®&TACS 2006vol. LNCS 3884, pages
477-488. Springer.

Etessami, Kousha and Neil Immerman. 1995. Reachabilitytbegower of local
ordering. Theoretical Computer Sciendd8(2):261-279.

Fagin, Ronald. 1975. Monadic generalized specaitschrift fir Mathematische
Logik und Grundlagen der Mathemat?d:89—-96.

REFERENCES / 117

Immerman, Neil. 1999Descriptive ComplexitySpringer.

Kracht, Marcus. 1995. Syntactic codes and grammar refinendeirnal of Logic,
Language, and Informatiof(1):41-60.

Marx, Maarten. 2004. XPath with conditional axis relationsin E. Bertino,
S. Christodoulakis, D. Plexousakis, V. Christophides, MuBarakis, K. Bohm,
and E. Ferrari, edsAdvances in Database Technology — EDBT 20@1. LNCS
2992, pages 477-494. Springer.

Moschovakis, Yiannis. 1974Elementary Induction on Abstract Structureslorth-
Holland Publishing Company.

Neven, Frank and Thomas Schwentick. 2003. On the powerafiegking automata.
Information and Computatioh83(1):86—103.

Rogers, James. 1998A Descriptive Approach to Language-Theoretic Complexity
CSLI Publications.

ten Cate, Balder. 2006. Expressivity of XPath with tramsittlosure. In J. van den
Bussche, edRroceedings of PODS 200fages 328-337.

Tiede, Hans-Jorg and Stephan Kepser. 2006. Monadic sewroed logic over trees
and transitive closure logics. In G. Mints, edth Workshop on Logic, Language,
Information, and Computation

9

Pregroups with modalities

ALEKSANDRA KISLAK-M ALINOWSKA

Abstract

In this paper we concentrate mainly on the notiog-giregroups, which are pregroups
(first introduced by Lambek Lambek (1999) in 1999) enrichetth wodality operators.
B-pregroups were first proposed by Fadda Fadda (2002) in 20G1motivation to in-
troduce them was to (locally) limit the associativity in tbalculus considered. In this
paper we present this new calculus in the form of a rewritygjesn, and prove the very
important feature of this system: that in a given derivatioe non-expanding rules must
always precede non-contracting ones in order for the dagivao be minimal (normal-
ization theorem). We also propose a sequent system for dhislas and prove the cut
elimination theorem for it.

Keywords PREGROUP, 3-PREGROUP, NORMALIZATION THEOREM, CUT ELIMINATION

9.1 Introduction

Definition 2 A pregroup is a structureés, <, -,1,r,1) such thatG, <,-,1) is
a partially ordered monoid, aridr are unary operations da, fulfilling the
following conditions:

da<l<adandad <l<aa (9.1)

for all a € G. Elementa (a" respectively) is called the left (right) adjoint of
a.

The notion of a pregroup, introduced by Lambek Lambek (1989¢on-
nected to the notion of a residuated monoid, known from teer of par-
tially ordered algebraic systems.

Theorem 18 (Lambek (1999))In each pregroup the following equalities
and inequalities are valid:

1=1=1 d =a=4a", (9.2)

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

119

120/ ALEKSANDRA KISLAK-M ALINOWSKA

(ab) =b'd, (ab) =ba, (9.3)

a<b iff b<d if b<a. (9.4)
For any arbitrary elemers of a pregroup we define an eleme?, for
n e Z, in a following way:a° = a, a™? = (@), a™b = (@), As a

consequence of (2) and (9.4) we obtain:
aWa™D < 1 < g (9.5)
if a<bthen&" < b@ and 2D < am1) (9.6)

forallne Z.

Let (P, <) be a poset. Elements of the $tare treated as constanierms
are expressions of the forpi”?, for p € P, n € Z; p© is equalp. Typesare

finite strings of terms, denoted XY, Z, V, U etc. The basic rewriting rules
are as follows:

= (CON) - contraction:
X, p™, p Dy 5 X, Y;
= (EXP) - expansion:
XY = X, p™D, p,y;
= (IND) - induced step:
X, p@.Y — X, q@,Y,
X, gD,y - X, p@*DY, forp<qw (P,<).

Furthermore, we consider derivatioks= Y in F(P) (free pregroup gener-
ated by P, <)). Following Lambek (2001), we distinguish two specialess

= (GCON) - generalized contraction:
X, p(2n), q(2n+l)’ Y - X, Y;
X, gD p@) Y - X Y; wherep < qin (P, <).
* (GEXP - generalized expansion:
X, Y - X, p(2n+l)’ q(2n), Y;
XY = X, g, p@-1Y; wherep < qin (P, <).
The relation= is a reflexive and transitive closure of the relation

Theorem 19 (Lambek switching lemma, Lambek (1999))f X = Y isin
F(P), then there exist types U, V such that we can go from type X % & (
U) using only generalized contractions, from type U to V £J V) using
only induced steps, and from type V to Y &/ Y) using only generalized
expansions.

From the above mentioned lemma we obtain:

Corollary 20 (Buszkowski (2003)) If X = Y in F(P), and Y is a simple type
or an empty string, then X can be transformed into Y only bynsieg§ CON)

PrREGROUPS WITH MODALITIES / 121

and(IND). If X = Y in F(P), and X is a simple type or an empty string, then
X can be transformed into Y only by meang$®XP) and (IND).

9.2 Pregroups with modalities

In this section we generalize some definitions and result€eming pre-
groups introduced in Lambek (1999). The definition of a poegrwith 3-
operator was proposed by Fadda (2002). The motivation todnte modal-
ity operators stems from the fact there was a need to (Igdaijt associa-
tivity in the calculus considered.

Definition 3 A pregroup with3-operator is a pregroup enriched addition-
ally with a monotone mapping: G — G.

Definition 4 A p-pregroup is a pregroup wigroperator such thatoperator
has the right adjoing (3-operator), i.e., there exists a monotone mapping
B : P — P with the property that for ath andb in P, (a) < b if and only if

a < B(b).

Itis easy to show that-operators, if they exist, are uniquely defined and con-
nected tg3-operators with the following rules of expansion and cocttom,
forallae P.

a<pB@) and BB@A)<a. (9.7)

The basic rewriting rules are as follows:

1. Contracting rules
*(CON) - contraction:
X, p™, p™DY - X Y;
*(B - CON) - B-contraction:
X, [BY)]™, [B(Y)]™D,Z — X,Z; whereB € {8, 3}.
=*(B — CON) - g-contraction:
X, BB, Z — X, Y@, Z;
X, [B(:B(W)](ZMD’ Z > X, Y(2n+1)’ Z:
*(B-IND.) - B; induced step:
X, [B(Y)I®,Z — X, [B(Y2)]?", Z;
whereB € {ﬂ,,@}, andY; — Y is a contracting rule.
Xv [B(YZ)] (2n+1)» Z- Xv [B(Yl)] (2n+1)7 21
whereB € {3,8}, aY1 — Y is an expanding rule.
2. Expanding rules
*(EXP) - expansion:
XY = X, p™), p®y;
*(B - EXP) - B-expansion:
X, Z = X [B(Y)]™D,[B(V)]™,Z; whereB ¢ {3,3}.

122/ ALEKSANDRA KISLAK-MALINOWSKA

*(8— EXP) - B - expansion:

X Y®), Z > X BB, Z;

X, Y@ 7 5 X [B(B(Y))] @D, Z.
*(B—-INDy) - Be induced step:

X, [B(YD]I®Y,Z — X, [B(Y2)]*", Z;

whereB € {3,8}, aY1 — Y is an expanding rule.

X, [B(Y2)]", Z — X, [B(Y)] ™Y, Z;

whereB € {3,8}, aY1 — Y is a contracting rule.

3. P-rules (neither expanding nor contracting)

*(IND) - induced step:

X, p@Y — X, q@,Y,

X, @Y - X, p@ Y, forp<qw (P,<).
*(B-INDy) - Bp induced step:

Xv [B(Yl)] (Zn)» Z- Xv [B(YZ)] (2n)’ 21

whereB € {8,8}, andY; — Y is a P-rule.

X, [B(Y2)]@™D,Z — X, [B(Y1)]@™D, Z;

whereB € {8,3}, andY; — Y is a P-rule.

In the above mentioned rules we assume fhatare elements d?, whereas
XY, Z Y1, Yo are elements of’. The relation= is a reflexive and transitive
closure of the relatior-.

Fadda (2002) gives some examples illustrating the usage -ofore-
groups for natural language. Among others, he shows thagraisg a type
[BOOI"X[B(X)]" to the conjunctiorand(whereX is an arbitrary type), will let
us see the structure of a sentence more clearly.

Consider the sentencdohn and Mary leftApplying the calculus of pre-
groups without modalities we can show that the string of syassigned to
given words can be reduced to the type of a sentence. Howbeeavyder of
consecutive contraction is important hengfeans a noun phrase):

(*) John and Mary left.
np ngnpng np ngs
np ng np ngs
np ngs
(**) John and Mary left.
np ngnpng np ngs —
np np np ngs -
np np s - s

In the second case (**) we do not get a typeApplying the calculus of
B-pregroups, we could handle the above mentioned sentetice following
way:

(**) John and Mary left.
Bnp) [BMPI'np[B(nP]' Bnp) npPs — s

Ll

PrREGROUPS WITH MODALITIES / 123

In that case the structure of types 'induces’ the order ofreations.

Normalization theorem for g - pregroups
Further we consider derivations of a tyle= Y.

Definition 5 A derivation is called non-expanding, if there are no expagd
rules present.

Definition 6 A derivation is called non-contracting, if there are no caot-
ing rules present.

Definition 7 Composition of derivationsg)(X = U) anddx(U = Y) is a
derivationY from X, which transforms firsX into U according tod;, and
thenU into Y according tads.

Definition 8 A derivationd(X = Y) is called normal, if it is a composition
of some non-expanding derivatiah(X = U) and some non-contracting
derivationd,(U = Y).

On elements oP” we introduce a measure in the following way:
ule) =0,
u(p") =1, i
u(B(Y)) = u(Y) +1, forBe (8.5}
p(Y1, oy Yi) = p(Y1) + oo+ p(Yid).

A measure on the rewriting rules is defined as follows:

u(CON) = 2,
WEXP) =2,
u(B—-CON) =2,
u(B—EXP) =2,

u(B—CON) = 2+ 2u(Y),

(B —EXP) =2+ 2u(Y),

u(IND) =1

p(Bec — IND) = 1+ p(d(Y1 — Y2))

p(Be — IND) = 1+ p(d(Y1 — Y2))

#(Bp — IND) = 1+ u(d(Y1 > Y)),

pu(d(Xo = X)) = p(d(Xo = X)) + ... + p(d(Xi-1 = X)),
whereXy = Xy meansXg — X; — ... = X.

Definition 9 A derivationd(X = Y) is called minimal, if it has the least pos-
sible measure of all derivationsfrom X, and the least possible complexity
(which is understood as a sum of measures of all rules usée iddrivation).

Definition 10 The position of a given rule in the derivatioty —» X; —
.. = X, is numbelti, such thatX_; — X; is the occurrence of this rule in the
derivation.

124/ ALEkSANDRA KISLAK-M ALINOWSKA

Definition 11 A degree of non-normal derivatia(X = Y) is the minimal
position of a contracting rule which occurs (not necesgdiilectly) after an
expanding rule. A degree of normal derivation is number 0.

Theorem 21 (Normalization theorem forg-pregroups) Every minimal deri-
vation is normal.

Proof. Let Xg — X3 — ... = X, be a minimal derivation. Ldtbe a degree of
this derivation. We will show théat= 0, and as a consequence our derivation
is normal. Assume that> 0. Of course 1< i < nfrom the definition of a
degree. Lefj be the greatest number less thasuch thatX;_; — X; is the
occurrence of an expanding rule.
Let R; denote the rule used on the positipnandR; the rule used in the
positioni. The following cases are to be considered:

11. Ri=(EXP R;=(CON),

1.2. R =(EXP) R;=(B-CON),

1.3. R =(EXP) Ry=(8-CON),

14. R =(EXP R,=(B-INDy),

21. Ri=(B-EXP) R;=(CON),

22. Ri=(B-EXP R,=(B-CON),

23. Ri=(B-EXP) Ry;=(8-CON),

24. Ri=(B-EXP) R,=(B-IND),

31 Ri=@B-EXP) R;=(CON),

32. Ri=(B-EXP) R,=(B-CON),

33. Ri=(B-EXP) R,=(B-CON),

34. Ri=(B-EXP) Ry=(B-INDy),

41. Ri=(B-INDg) Ry;=(CON),

42. Ri=(B-INDg) R,=(B-CON),

43. Ri=(B-INDg) R;=(8-CON),

44. R =(B-INDe) R»=(B-INDy),

In the proof of this theorem the above mentioned cases arsidened.
In all cases we assume that the riRe occurs on the positionj, and the
rule R, on the positioni. All stepsX; — Xj;1 — ... = Xi_1 consist of
application of non-expanding and non-contracting rulé®se must be of the
form of either (ND) or (B,—IND). None of this steps cannot be independent
from Xi_; — X;, as otherwise we could do the last of independent steps after
Ry, getting the derivation with the same measure but the lowgreke. We
can also assume that none of this steps is not independem®fia — X;;
otherwise it would transform our derivation performing first step before
Ry, increasing the numbgr and changing neithemor u(d(X = Y)).
If the rulesR; and R, are adjacent (without intermediate P-rules), we

change the order in case they are independent from each (g#téng the
derivation of smaller complexity); in case they are depenétem each other

PrREGROUPS WITH MODALITIES / 125

we show that this part of derivation can be transformed usifes of smaller
complexity - thus showing that the initial derivation wag normal.

Considering the sixteen cases mentioned above, we showntirat
expanding rules must always precede non-contracting d@ierwise our
derivation would not be minimal, which would be a contraidictto our as-
sumption. Thus every minimal derivation must be normal.

As the proof is long and technical, we show as an example omtyad
above mentioned sixteen cases:

Case1l.1. R =(EXP R;=(CON),

Xj-1 — Xjis of the formS, T — S, p™b, p™ T; X;_; — X; is of the form
U,q", g™,V — U, V. The derivationXj_; — X; — ... — Xi_3 — X; could
be as follows:

S, p§)2n)’ TS, p§)2n)’ pﬁ2n+l)’ p(an)’ TS, péZn)’ p(k2_n1+1)’ pﬁZn)’ T .
— S, p&, p&™ Y, " T — S, p®", T, (assumingpo < p1 < ... < p), its
measure ig(d(Xj-1 = X)) =2+ k+2=k+ 4.

The above mentioned derivation can be changed by the derivat

ST - S, p? T - .S, p).T — S, p, T, (assumingpo <
p1 < ... £ px). The measure of a new derivationi@(Xj_1 = X)) = k (k
times the rule (ND) was used). We reach a contradiction, as the measure of
the second derivation is smaller. We showed that the irdgailvation was not
normal. O

Corollary 22 If X = Y in a freep-pregroup, and Y is a simple type or an
empty string, then Y can be derived from X only by means oerpanding
rules.

If X = Y in a freeB-pregroup, and X is a simple type or an empty string,
then Y can be derived from X only by means of non-contractilegr

9.3 Axiom system for pregroups with modalities

The rewriting system given in the previous section can atspiesented as
the calculus of sequents in a Gentzen style. IRk] be fixed. Atoms and
types are defined as befofgequentare of the formX = Y, whereX, Y are
types. The axiom and inference rules are as follows:

(Id) X=X,
XY=>Z X=VY.Z
(LA) X 0. g Y = 7 (RA) X = Y, p™ D, oM, 7
(2n) (2n)

(LND) 24 -v=2 (RIND) 2= XE o2

X pY=2 X=Y,q"2Z

X, p(2n+l)’ Y = Z X = Y, q(2n+1)’ Z

X q(2n+1)’ Y= 7 X=Y, p(2n+1)’ 7

In rules (LINb) and (RIND) we assume that< qin P. X,Y,Z are any

126/ ALEKSANDRA KISLAK-M ALINOWSKA

arbitrary typesp, q are arbitrary elements &f, forn € Z.

XT=Z
BLA 9.
(BLA) X [BYI™, [BY)™,T = Z
X=>T,Z
BRA)
() X = T,[B(Y)]™Y, [B()]™, Z
XY T=27 X = T,Y® 7
@A X [BBEYN, T = Z BRA) X = T, BB, Z
XY T =7 X = T.Y@"D, 7
X, [ﬂ(ﬁ(y))](2n+1)’T =7 X=T, [ﬂ(ﬁ(Y))](Zn+1)’ 7
X[BY)*,Z=>T X = T, [B(Y)]®™,Z
(BLIND) XBV)T 25T (BRIND) T BN 2
X[BY)]® .z T X = T,[B(Y2)]?D, Z
X [B(Y)]®D,Z=>T X = T,[B(Y)]?D,Z

In rules (BLA), (BRA), (BLIND) and (BRIND),B € {8,3}. Addition-
ally, in rules (BLIND) we assume thaf; — Y, arises as a result of a non-
expanding rule in an even case, and a non-contracting mukes odd case, in
a rewriting system from a former section. In rules (BRIND) assume that
Y1 — Y, arises as a result of non-contracting rule in an even casenam-
expanding rule in an odd case, in a rewriting system form méorsection.

The cut rule is of the form

(CUT) X =>XY,:>YZ=> Z_

Let MS denote the system axiomatized by (Id), (LA), (RA), (LIND),
(RIND), (BLA), (BRA), (8- LA), (8- RA), (BLIND) and (BRIND). LetMS’
denote the systelS enriched additionally with a cut rule (CUT).

9.3.1 Cut elimination for the systems with modalities
We show that for above mentioned systems the following #@srhold:

Theorem 23 For all types XY, X = Y holds in the sense of a rewriting
system if and only if X% Y is provable in M3,

Proof. AssumeX = Y holds in the sense of the rewriting system.Then, there
exist typesZy, ...,Z,, n > 0, such thazy = X, Z, = Y, andz_; — Z,
1 <i < n. We show thaZ_; = Z; is provable in MS’, for 1< i < n. (Here
we show it only for a few chosen cases.)
1.1f Z_; — Z is the case of (CON), so it is of the forxy p™, p™1, Y —

. XY = X, Y
XY, we apply (LA) to axiomX, Y = X, Y. We gets P DY = XY

7.1fZ_1 — Z is the case of (IND), so it is of the form:
7.1.%X, p@Y — X, g@, Y for p < g, we apply (LIND) to axiom

Xy (Zn)9 Y= X7 (Zn)9 Y
X, q(ZH)’ Y = X q(2n)’ Y. We QEIX g(Zn) Y = X g(Zn) Y

: X PPV Y = X pP, Y
(RIND) to axiomX, p@,Y = X, p@,Y. We obtalnx, FIS(Z"), Yo X S(Zn), v

. We can also apply

PRrREGROUPS WITH MODALITIES / 127

7.2. XD Y — X p@+DY, for p 2 ci)we apply ((ZLIll\)lD) to axiom
N+ Y = X N+

X p(2n+l) Y = X p(2n+l) Y. We get g(2n+l) v X E(2n+l) v
also apply (RIND) to the axionX, q(2”+1) Y = X q(z"*l) Y. We get then:

q(2n+1) Y = X q(2n+1) Y
X, q(2n+l), Y = X, p(2n+l), Y '

So, ifn =0, thenX = Yis an axiom (Id), ifn > 0, thenX = Y is provable
in MS’, using cut rule (CUT).

Assume thaiX = Y is provable MS. We show that = Y holds in the
sense of the rewriting system.

If X = Y jest (Id), then the claim is true. For inference rules we show
that if the premise (premises) holds (hold) in the rewritaygtem, then the
conclusion holds in this system. (Again, only a few chosesesg

1. For (LA), the antecedent of the conclusion can be transédrinto the
antecedent of the premise by (CON).

7. For BLA)the antecedent of the conclusion can be transformedtirego
antecedent of the premise 8+CON).

11. For (CUT),if the premises hold in the rewriting systehert the con-
clusion also holds in this system, sineeis transitive. O

We can

Theorem 24 (Cut elimination theorem) For all types XY, X= Y is prov-
able in MS if and only if ¥X= Y is provable in MS’.

Proof. The 'only if’ part is obvious. If for all types{, Y, X = Y is provable
in MS (without CUT), it is also provable in MS’.

Assume thaKX = Y is provable in MS'’. By the theorem 23 = Y holds
in the rewriting system. From the theorem 21 there existl $yjpe U, that
X = U holds only by using non-expanding rules, wherdas> Y holds only
by using non-contracting rules. Thus, there exist tyggs.., Zm, (m > 0),
such thatZzg = X, Zn, = Uandforall1<i <m, Z_, — Z is a result
of non-expanding rules. We show that = U is provable in MS, for all
0<i<mZ,= Uisanaxiom (Id). Assume th@& = U is provable in MS,
i >0.1fZ_1 - Z is (CON), thenz_; = U is a result of applying (LA) to
Z = U.If Z_; — Z is (B— CON), thenz_; = U is a result of applying
(BLA)to Z; = U.If Z_; — Z is (B— CON), thenz,_; = U is a result of
applying BLA) to Z = U. If Z_; — Z is (IND), thenz_; = U is a result
of application (LIND) tozZ; = U. If Zi_; — Z is (B— IND), thenZ;_; = U
is a result of applying (BLIND) t&Z; = U. If Zi_; — Z; is (B— IND)), then
Zi_1 = U is aresult of applying (BLIND) t&; = U.

Now, there exist type¥y, ..., Vh, N > 0, such thavy = U, V,, = Y, an for
alll <i <n, Vi1 - Vis aresult of applying a non-contracting rule. We
show thatX = V; is provable in MS, for all < i < n. X = V; is provable
in MS from the first part of the proof. Assume thét= V,_; is provable in

128/ ALEKSANDRA KISLAK-M ALINOWSKA

MS, 1<i.If Vi.1 — V;is (EXP), thenX =V, is a result of applying (RA)
toX = Vi_1. If Vi1 - Vjis (B— EXP), thenX = V; is a result of applying
(BRA)to X = V1. If Vi_1 - Vjis (8- EXP), thenX = V,; is a result of
applying BRA) to X = Vi_1. If Vi_1 — Vj is (IND), thenX = V,; is a result
of applying (RIND) doX = V,_;. If Vi_.1 — V, is (B—INDg), thenX = V; is
a result of applying (BRIND) tX = Vi_1. If Vi_1 — V; is (B - INDy), then
X =V, is aresult of applying (BRIND) t&X = Vi_.

Thus, we showed tha¢ = Y is provable in MS. O

9.4 Conclusion

In this paper we presented pregroups with modalities. ,Rivst presented
them in the form of a rewriting system, then we proposed tlgeset system
for them and finally showed the connections between thospitesentations.
Using those connections we were able to prove the cut elimiméeorem.

References

Buszkowski, Wojciech. 2003. Sequent systems for compénehi logic. Mathemat-
ical Logic Quarterly49:467-474.

Fadda, Mario. 2002. Towards flexible pregroup grammarsNeéw Perspectives in
Logic and Formal Linguisticgpages 95-112. Roma: Bulzoni Editore.

Lambek, Joachim. 1999. Type grammars revisitedLdgical Aspects of Computa-
tional Linguistics pages 1-27. Berlin: LNAI 1582, Springer.

Lambek, Joachim. 2001. Type grammars as pregro@psmmars4:21-39.

10

Simpler TAG semantics through
synchronization

ReBECccA NESSON AND STUART SHIEBER

Abstract

In recent years Laura Kallmeyer, Maribel Romero, and thellaborators have led
research on TAG semantics through a series of papers refirsygtem of TAG seman-
tics computation. Kallmeyer and Romero bring together #ssdns of these attempts
with a set of desirable properties that such a system shavle. lirirst, computation of
the semantics of a sentence should rely only on the reldtipsexpressed in the TAG
derivation tree. Second, the generated semantics showlgazily represent all valid in-
terpretations of the input sentence, in particular wittpees to quantifier scope. Third,
the formalism should not, if possible, increase the exjpriggof the TAG formalism.
We revive the proposal of using synchronous TAG (STAG) toutiameously generate
syntactic and semantic representations for an input seatéyithough STAG meets the
three requirements above, no serious attempt had preyikesin made to determine
whether it can model the semantic constructions that haweegrdificult for other ap-
proaches. In this paper we begin exploration of this quesiioproposing STAG analy-
ses of many of the hard cases that have spurred the resedhit amea. We reframe the
TAG semantics problem in the context of the STAG formalisr Erthe process present
a simple, intuitive base for further exploration of TAG serties. We provide analyses
that demonstrate how STAG can handle quantifier scope,dstgnce WH-movement,
interaction of raising verbs and adverbs, attitude verliscarantifiers, relative clauses,
and quantifiers within prepositional phrases.

Keywords SYNCHRONOUS TREE-ADJOINING GRAMMAR, STAG SEMANTICS

10.1 Introduction

In recent years Laura Kallmeyer, Maribel Romero, and theitaborators
have led research on TAG semantics through a series of pegfergg a
system of TAG semantics computation using evolving tealmesgncluding
enriched derivation tree structure (Kallmeyer, 2002dl&)jble composition

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

129

130/ ReBEccA NESSON AND STUART SHIEBER

of feature-based TAG with a semantic representation assutiwith each
elementary tree (Kallmeyer and Joshi, 2003, Joshi et a032Rallmeyer,

2003), semantic features in a more expressive extensi@anfre-based TAG
(Gardent and Kallmeyer, 2003), and, most recently, sem&sdiures on the
derivation tree itself (Kallmeyer and Romero, 2004, Rometr@al., 2004).

Kallmeyer and Romero (2004) bring together the lessons edefattempts
with a set of desirable properties that such a system shawiel. lirirst, com-
putation of the semantics of a sentence should rely only emélationships
expressed in the TAG derivation tree. Because TAG elemgrtitaes rep-
resent minimal semantic units, the only information neassfor semantic
computation should be the information encoded in the deoindree: which

elementary trees have combined and the address at whicbrthgring op-

eration took place. Second, the generated semantics sbomldactly repre-
sent all valid interpretations of the input sentence, irtipalar with respect
to quantifier scope. Third, the formalism should not, if ploles increase the
expressivity of the TAG formalism.

We revive the proposal of using synchronous TAG (STAG) toutiame-
ously generate syntactic and semantic representatiorefaorput sentence
(Shieber and Schabes, 1990). Although STAG meets the tbrperements
above, no serious attempt had previously been made to datemmether
it can model the semantic constructions that have provéctuli for other
approaches. In this paper we begin exploration of this gquebly proposing
STAG analyses of many of the hard cases that have spurregédkarch in
this area. We reframe the TAG semantics problem in the cooféke STAG
formalism and in the process present a simple, intuitivee fasfurther ex-
ploration of TAG semantics.

After reviewing STAG in Section 10.2, we provide analyses$Sactions
10.3.1 through 10.3.4 for sentences that exemplify seveaed cases for
TAG semantics that have been raised by Kallmeyer and otheecent pa-
pers: quantifier scope (as exemplified by sentences (17)2)ddresented
below along with the desired semantic interpretations)gidistance WH-
movement (18), interaction of raising verbs and adverhgudé verbs and
quantifiers (19,20,21), relative clauses (22), and quandifivithin preposi-
tional phrases (23) (Kallmeyer and Romero, 2004, Romerb,&t@04, Joshi
et al., 2003, Kallmeyer, 2003, Kallmeyer and Joshi, 2003).

(17) Everyone likes someone.
every(x, persor{x), soméz, persor{z), like(x, 2)))
soméz, persor{z), everyx, persorfx), like(x, 2)))
(18) Who does Bill think Paul said John likes?
wha(y, think(bill, saypaul, like(john, y))))

1We notate curried two-place relatio®$x)(y) asP(y, x) for readability.

SiMPLER TAG SEMANTICS THROUGH SYNCHRONIZATION / 131

(19) Bill thinks John apparently likes Mary.
think(bill, ap parentlylike(john, mary)))

(20) John sometimes likes everyone.
every(x, persor{x), sometime@ike(john, x)))
sometime(@very(x, persorgx), like(john, x)))

(21) Bill thinks everyone likes someone.
think(bill, every(x, persor{x), soméz, persor{z), likeqx, 2))))
think(bill, soméz, persor{z), everyx, persor{x), likeqx, 2))))

(22) A problem whose solution isftiicult stumped Bill.
a(x, and(problen(x),
the(y, and(solution(y), posgx, y)), isDifficult(y))),
stumpedill, x))

(23) Two politicians spy on someone from every city.
two(x, politician(x),
every(z, city(2),
somégy, persorfy) A from(z y),
spyOr{x,y))))
everyz, city(2),
somdy, persorty) A from(zy),
two(x, politcian(x), spyOr{x, y))))
two(x, politician(x),
somdy, every(z city(2), persorfy) A from(zy))
spyOr{x,y)))
soméy, every(z city(2), persory) A from(z y))
two(x, politician(x), spyOr{x, y)))

10.2 Introduction to Synchronous TAG

A tree-adjoining grammar (TAG) consists of a set of elemstitae struc-
tures and two operations, substitution and adjunctiord tseombine these
structures. The elementary trees can be of arbitrary dEpith internal node
is labeled with a nonterminal symbol. Frontier nodes mayabeled with ei-
ther terminal symbols or nonterminal symbols and one of theriics | or
x. Use of the diacritic, on a frontier node indicates that it issabstitution
node Thesubstitutioroperation occurs when an elementary tree rooted in the
nonterminal symboA is substituted for a substitution node labeled with the
nonterminal symbol. Auxiliary trees are elementary trees in which the root
and a frontier node, called tHeot nodeand distinguished by the diacritic
%, are labeled with the same nonterminal. Hujunctionoperation involves
splicing an auxiliary tree with root and designated foot etabeled with a
nonterminalA at a node in an elementary tree also labeled with nonterminal

132/ ReBEccA NESSON AND STUART SHIEBER

g g

N

NP, VP — NP VP

N4 |
NP~ V NP John V. NP,

John likes likes
S S

VP\\NPl)‘VP\:> N_Pl VP

Adv VP.~-_/ VvV NP, Adv V&
apparently likes apparently V' NP,
likes

FIGURE1 Example TAG substitution and adjuction operations.

(a) <NP e > VP ¢ Sm /t\
John john ATM VP, (t,t) t. NP5 Vs (?Q e|E
N‘p @‘ apparently apparently “/ NPy likes €@
Mary mary, likes

(b) /S\ /t\) likes
NP VP (t, 7 1 !

/\ john | mary
Adv VP apparently (e,t) e =)
) apparently
“/ NP likes (Ii john
John apparently likes Mary mary

FIGURE 2 An English syntajsemantics STAG fragment (a), derived tree pair (b), and
derivation tree (c) for the sentence “John apparently IMesy.”

A. Examples of the substitution and adjunction operatiorsaonple elemen-
tary trees are shown in Figure 1.

Synchronous TAG (STAG) extends TAG by taking the elemensanyc-
tures to be pairs of TAG trees with links between particulades in those
trees. An STAG is a set of triple&, , tr, ~) wheret_ andtg are elementary
TAG trees and~ is a linking relation between nodes tin and nodes irtg
(Shieber, 1994, Shieber and Schabes, 1990). Derivatiaepds as in TAG
except that all operations must be paired. That is, a treeonhnbe substi-

SiMPLER TAG SEMANTICS THROUGH SYNCHRONIZATION / 133

tuted or adjoined at a node if its pair is simultaneously stiied or adjoined
at a linked node. We notate the links by using boxed indicearking linked
nodes.

Figure 2 contains a sample English syrit@mmantics grammar fragment
that can be used to parse the sentence “John apparentlyMi&eg. The
node labels we use in the semantics correspond to the semygres of the
phrases they dominafeVvariables such ag in the semantic tree in Figure 3
are taken to be bound in the obvious way, so that in multipés ug the tree
they can be presumed to be renamed apart.

Figure 2(c) shows the derivation tree for the sentence. tButisns are
notated with a solid line and adjunctions are notated withshdd line. Note
that each link in the derivation tree specifies a link numhehe elementary
tree pair. The links provide the location of the operationghie syntax tree
and in the semantics tree. These operations must occukatlimdes in the
target elementary tree pair. In this case, the noun phiasdezandMary sub-
stitute intolikes at links@ and respectively. The wordpparentlyadjoins
at link @. The resulting semantic representation can be reéhathe derived
tree by treating the leftmost child of a node as a functor &diblings as its
arguments. Our sample sentence thus results in the semepitesentation
apparentlylikeq john, mary)).

10.3 STAG Analyses of the Phenomena
10.3.1 Quantifier Scope and Wh-Words

For sentence (17), we would like to generate a scope-nesgmahntic rep-
resentation that allows both the reading wheoenetakes scope ovesvery
and the reading whereverytakes scope ovesome We propose a solution
in which a derivation tree with multiple adjunction nondetéistically de-
termines multiple derived trees each manifesting exgimitpe (Schabes and
Shieber, 1993); the derivation tréeelf is therefore the scope neutral repre-
sentation.

The multi-component quantifier approach followed by Joslaile(2003)
suggests a natural implementation of quantifiers in SPAGthis approach
the syntactic tree for quantifiers has two parts, one thaesponds to the
scope of the quantifier and attaches at the point where thetifjeatakes
scope, and the other that contains the quantifier itself snebstriction and
attaches where syntactically expected at a noun phragesihwiork, a single-

2This representation is for the sake of readability. Thelklbeuld be replaced using any
well-chosen finite set of nonterminal symbols.

3The multi-component approach to quantifiers in STAG was §ingjgested by Shieber and
Schabes (1990) under the rewriting definition of STAG dé¢iovawhere the order of rewrit-
ing produced the scope ambiguity. Williford (1993) expbbtée use of multiple adjunction to
achieve scope ambiguity.

134/ ReBecca NESSON AND STUART SHIEBER

/T\ 1 i <e7t> (a)
D‘et Nim (e,t)ym x T Det Nig (e,tym ¥ e‘
every x sor‘ne Yy
2 1A likes (b)
/\ /\ G- ~@
NP VB (ef) €E every soime
/}P I o
“/ \@m likes €@ person person
likes
NP /VP\ every% /t/\ some y/t] /,N

i (e,t) y evéry z ¢ i

AN

o~

Det N V NP (e,t) T some Y

(e,t) vy

Det N person (e, t) e‘pcrson (e,t) x (e,t) T
every one likes sor‘ne or‘le person likée\e T per‘son liké\e T
Y Y

FIGURE 3 The elementary tree pairs (a), derivation tree (b), andrddrsyntactic and
semantic trees (c) for the sentence “Everyone likes soniebia¢e that the
derivation tree is a scope neutral representation: depgradi whetheeveryor some

adjoins higher, dferent semantic derived trees and scope orderings are ethtain

node auxiliary tree is used for the scope part of the syntaxder to get the
desired relationship between the quantifier and the queatékpression in
features threaded through the derivation tree and henbte isemantics. Us-
ing STAG, we do not need the single-node auxiliary tree irsgh@ax because
we can pair the usual syntactic representation for quaafifiés with a multi-
component semantic representation that expresses theidaan@-igure 3).
In order to use these quantifiers, we change the links in graahtary trees
for verbs to allow a single link to indicate two positions imetsemantics
where a tree pair can adjoin, as shown in Figufe 3.

Given this representation of quantifiers we get the dedvatiee shown
in Figure 3 for sentence (17)Note that the resulting derivation tree neces-

4We have chosen here to add the three-way links in additiohe@xisting links in the tree
for unquantified noun phrases such as proper nouns (thouglupgress the two-way NP links
in the figures for readability). Another possibility woulé kb remove the two-way links. In this
case, all noun phrases would be “lifted” a la Montague. Thatven unquantified noun phrases
would have a scope part, which could be a single-node anxifiae.

SWe notate multi-component insertions that involve both bssitution and an adjunction
with a combination dashed and dotted line.

SiMPLER TAG SEMANTICS THROUGH SYNCHRONIZATION / 135

S’ e 2 ¢
e
W NPl VP <6, t> (El
V. S. thinks t,
NP@ VPR () em th'l k
in
1 N|P likesyy €)@
likes € likesyn
% g B
L who john say
WH who y t, \
au inks
| paul think
who T l
Yy bill

FIGURE4 Selection of elementary trees and full derivation treeliergentence “Who
does Bill think Paul said John likes?”.

sarily incorporatesnultiple adjunction(Schabes and Shieber, 1993), that is,
multiple auxiliary trees are adjoined at the same node inuadliary tree. In
particular, the scope parts of botlveryand someattach at the root of the
semantic tree olikes Such cases of multiple adjunction induce ambiguity;
the derivation tree represents multiple derived treeshéncise at hand, the
derivation is ambiguous as to which quantifier scopes hitiear the other.
This ambiguity in the derivation tree thus models the setadfdvscopings
for the sentence. In essence, this method uses multiplectdn to model
scope-neutrality.

This same method can be used to obtain the correct scop@mnsldior
sentences with long-distance WH-movement such as sentg8rasing the
multi-component elementary tree pair fshoand the elementary tree pairs
for thinks(the tree pair fosaysis similar) andikesin the WH context given
in Figure 4. Kallmeyer and Romero (2004) highlight this caselificult be-
cause in the usual syntactic analysis there is no link in #wvaltion tree
betweenwho andthinksor betweerthinksandlikes but in the desired se-
manticswhotakes scope over ttibinksproposition and théke s proposition
is an argument tthinks

In our analysis, by contrast, the semantics follows quitanadly from the
standard syntactic analysis of the structure oflikess elementary tree in the
WH context and the elementary tree pair tbmksgiven in Figure 4. The
derivation of this sentence is also given in Figure 4. No#&t iths required by
the structure of the trees thahotake scope ovehinks

136/ ReBEccA NESSON AND STUART SHIEBER

(a) likes (b) likes (©) likes
=S ~ @ @~
T B BN : bl el S
thinks john apparently mary john sometimes every thinks every soine
‘\II
bill person bill person person

FIGURE5 Derivation trees for (a) “Bill thinks John apparently likekry”, (b) “John
sometimes likes everyone”, and (c) “Bill thinks everyorief someone.”

10.3.2 The Interaction Between Attitude Verbs, Raising Vebs,
Adverbs and Quantifiers

The interaction between attitude verbs and raising verbadeerbs as in
sentences (19), (20), and (21) has been problematic for T&@Gastics
(Kallmeyer and Romero, 2004). A successful analysis muekible enough
to produce the correct semantics for sentence (19) eveglttbere is no link
betweerthinksandap parentlyin the derivation tree. It must also be flexible
enough to allow all scope orderings between VP modifiers aiadhiifiers as
in sentence (20). In fact, given the elementary trees we &la@ady presented
and the ones for attitude verbs demonstrated by Figure 4ralysis already
allows for scope interactions among all these elementgddgdbecause the
semantic components of attitude verbs, VP modifiers, andtigas all ad-
join at the same node in the semantic tree of the verb, ouysisalllows all
scope orderings among them. This is clearly too permiskagguse it allows
quantifiers to scope out of the finite clause in which they app&d would
allow a reading of sentence (19) in whialp parentlyscopes ovethinks To
prevent quantifiers from scoping out of the finite clause incivithey appear,
as in sentences (19) and (21), we can add an additional ddjorsite to the
semantic trees for verbs above the current root node. Thakdg/n in Fig-
ure 6 in thelikes, tree pair. The link configuration ensures that attitude serb
(adjoining at linkm) will now scope higher than all VP modifiers (adjoining
atm) and quantifiers (adjoining at linkgsanda). VP modifiers and quantifiers
will still be able to take all scope orderings relative to leather. Using the
modified verb trees, STAG produces the correct semanticefttiences (19),
(20), and (21) with the derivations given in Figure 5.

10.3.3 Relative Clauses

Relative clauses provide another putativelffidult case for TAG seman-
tics because both the main verb and the relative clause reegsato the
variable introduced by the determiner as in sentence (22)rtt€yer, 2003).
We overcome this diiculty and compute the desired semantics by intro-
ducing higher-order functions into the semantic treesgiEmbda-calculus
notation. This modification allows us to maintain tree-ldggaThe syntac-

SiMPLER TAG SEMANTICS THROUGH SYNCHRONIZATION / 137

S
NPE VPm

ﬁ
L @E

/N

V. NP@m (et) ¢

B g

likes likesy €)@

FIGURE6 Modified tree forlikesthat enforces a restriction on quantifiers scoping
outside of the finite clause.

/N\ }’t)\ X o
N*K and (e, t), (e, t) @ N' S/NP se (e, t)m (e, t) =
who Njm se Nim

NP t S/NP (e, t) stumped

| &,
AN 7N q >u

D‘@t Nim d % t A o
a e,hmy ¢ NP V‘P <€7,t> z problem
IAN |
. y‘ ¢ is difficult isDifficult @,
w}‘w
1 7t 1
Nm (e‘ u se
problem/ problem/
solution solution solution isDifficult

FIGURE7 Key elementary trees and derivation for “A problem whosetonh is
difficult stumped Bill.”

tic analysis we use is similar to that of Kallmeyer (2003) fiattit main-
tains theCondition on Elementary Tree MinimalifFrank, 1992) and uses
the relative pronoun to introduce the relative clause. H@ngt treats the
relative pronoun as a noun modifier rather than a noun phraxiifier.
We also posit the existence of “lifted” versions of the eletaey trees for
verbs in which their argument positions have been absttamter. We use a
higher-order conjunctioandthat relates two propertieaPQxP(x) A Q(X),
and a higher-ordese function that relates two properties and makes use
of the higher-order conjunctiomPQxthe(y, and(P, 1z posgx, 2))(y), Q(Y)).
The elementary tree pairs and resulting derivation treeséortence (22)
are given in Figure 7. The derived tree is given in Figure 8.ewhe-
duced, the resulting semanticséag, Ax.(problen(x) A the(y, solution(y) A
posgx, Y),isDifficult(y))), stumpedcbill, 2)).

138/ ReBEccA NESSON AND STUART SHIEBER

t

|
t
N

PN /N

(e, t) Yy (e, 1)

%\/\

T
and (e, t) (e, t) stumped €& Y

T |

problem se (e, t) (e, t) bill
\

solution X Zz i
PN
eh
isDifficult

FIGURES8 Derived tree for “A problem whose solution isf@cult stumped Bill.”

10.3.4 Nested Quantifiers and Inverse Linking

Quantifiers in prepositional phrases such as in sentengep@ another
challenge for TAG semantics (Joshi et al., 2003). Althougtested quanti-
fier may take scope over the quantifier within which it is négs®-called “in-
verse linking”) not all permutations of scope orderingsted tjuantifiers are
available (Joshi et al., 2003). In particular, readings inalv a quantifier in-
tervenes between a nesting quantifier and its nested qeaatié not valid. In
our example sentence (23), this predicts that the readimige> two > every
andevery> two > someshould not be valid. Joshi et al. (2003) introduce a
special device allowing nesting and nested quantifiers tm fan indivisi-
ble quantifier set during the derivation, which prevent&otiuantifiers from
intervening between them. In our solution, because theedestantifier is
introduced through the prepositional phrase, which in tootifies the noun
phrase containing the nesting quantifier, the two quargifiready naturally
form a set that operates as a unit with respect to the res¢ afativatior® The
elementary tree pairs and derivation trees for our anabf§{23) are shown
in Figure 9.

One notable feature of this analysis is that the fotliedént scope read-
ings that result are not the product of a single derivatiee.tiThe alternate
scope orderings for the nested and nesting quantifier ex¢stiuse there are
two available adjunction sites for the scope of quantifiethe prepositional

6We make use of tree-set-local TAG in the semantics whera¢keset foreveryadjoins into
the tree set forfrom. Although tree-set-local TAG is more powerful than TAG stipiarticular
use is benign because it cannot be iterated. More congretelgould conventionally make the
grammar tree-local by including all combinations of praposs with quantifiers as elementary
trees in the grammar.

SiMPLER TAG SEMANTICS THROUGH SYNCHRONIZATION / 139

spyOn
NPom /N\ &0 /p—‘y\\
two some

D’@t Nim two) ¥ t@ t. N*}i'\D }QN m| [\v
tWO/ some/<e t> P P NP and <€’ t>* <6, t> p()liti(;ig,ns person f?"OTIL
some/ coery " e \ o

every
every (e, t)im 7} from from em il

city

FIGUREQ Key elementary trees and derivations for “Two politiciapg &n someone
from every city.”

phrase to attach. This results in two distinct derivatiees: The alternate
scope orderings for this quantifier set and the remainingntifier are ob-
tained by multiple adjunction at the root of the verb treee Het of valid
derivation trees for a sentence thus constitutes the sospteah representa-
tion. This set of trees may be compactly represented, ftamee as a shared
forest!

10.4 Comparison to the Kallmeyer and Romero Approach

As mentioned above, research on TAG semantics has been léduna

Kallmeyer, Maribel Romero, and their collaborators thriowagseries of pa-
pers refining a system of TAG semantics computation usinifeainifica-

tion and other formal devices (Kallmeyer and Romero, 20@m&ro et al.,

2004, Kallmeyer, 2003, Kallmeyer and Joshi, 2003, Joshl.e2@03, Gar-

dent and Kallmeyer, 2003). Although their approach haswedbver time,

the underlying principles of using the relationships espeal in the derivation
tree as the basis for the computation and generating uretsfigol semantic
representations have been constant. In its current fotran|ahey perform

semantic computation by attaching semantic feature stresdirectly to the
nodes in the derivation tree. When carefully chosen, theatufes unify to
produce an underspecified representation of the sema#csamtence that,
when further disambiguated, generates the set of validgregations. In one
or another of their recent papers they have provided suitdesslyses of
each of the hard cases that we have addressed here, thougho$daheir

analyses might have to be restated to bring them up to dalethétnewest
formulation of their method.

"This analysis, like that of Joshi et al. (2003), makes sépeeglictions about quantifier scope
that might be disputed. First, some argue that more thansfmpe orderings should be available
for sentences like sentence (23) (VanLehn, 1978, Hobbs hieth&, 1987). This analysis cannot
generate additional scope orderings without breakingseee®cality. Second, the scope readings
in which the nesting quantifier takes scope over the nestaqitiier result in the nested quantifier
having scope over the restriction of the nesting quantifienbt over its scope. Donkey sentence
constructions such as “Every man with two books loves theali"this prediction into question.

140/ ReBEccA NESSON AND STUART SHIEBER

Our work owes much to theirs both for the clear formulationihef prob-
lems and the progress in formulating analyses for some ohénéd cases.
The primary advantage of our approach is its conceptuallgityp The clear
separation of syntax and semantics, the directness ofrtkéniterface, and
the familiarity of the TAG operations used in our approactkeniavery sim-
ple. The semantic-feature-unification-based approachéasme cleaner and
easier to understand as Kallmeyer and others have refine@itloe years.
Nonetheless, it is safe to say that the amount of formal nm&eci#—including
propositional labels, separate individual and propaséi@ariables, semantic
representations consisting of a set of formulas and a seoplesconstraints,
features on the derived tree and the derivation tree, eaclarge feature
structure containing a nested feature structure for eadfead in the elemen-
tary syntax tree, each of these feature structures contgieatures to handle
binding of propositional and individual variables, feawmification, flexible
composition, and quantifier sets—necessary to solve thgerahproblems
that we have addressed here, is qualitatively more compidact, we use
no formal machinery that had not been introduced by 19946T&G litera-
ture.

An additional advantage of our approach is that it does nese the
expressivity of the TAG formalism. One might think that threelusion of
multiple adjunction would lead to an increase in expresgsi{Dras, 1999).
However, because links can only be used once in an STAG dierivanly
a finite number of multiple adjunctions may occur at a singlgiaction
site. This rules out problematic uses of multiple adjunctigallmeyer and
Romero maintain the semantic features on the derivatienratther than in
the feature structures already used in the feature-baséd {RTAG) of their
syntax in part because the set of semantic feature strgdturet finite, po-
tentially increasing the expressivity of the FTAG formaiigKallmeyer and
Romero, 2004). Although moving the features to the delvetiee avoids in-
creasing the expressivity of the formalism used for synthrmtaken alone,
the additional expressivity in the features of the semarntauld be used to
block operations in the syntax thereby filtering the synt@yptoduce non-
tree-adjoining languages. It remains to be seen whetheratiiitional ex-
pressivity will be required for TAG semantics.

Advantages and disadvantages of th@edent methods aside, in this still
nascent area of research it is desirable to have severa difierent ap-
proaches at our disposal as we explore the hard problemsreesby gen-
erating natural language semantics in the TAG framework.approach re-
vives an old idea with the aim of opening a new avenue for rekeiato
semantics in the TAG framework.

REFERENCES / 141

10.5 Conclusion

We have presented the synchronous TAG formalism as a methadput-
ing semantics in the TAG framework, and have shown that ibkrsasimple,
natural analyses for all of the cases that have exercisedtattempts at for-
mulating formal semantics for TAG. It satisfies each of theidierata laid out
at the beginning of this paper. First, it does not requireaaditional informa-
tion other than that available in the derivation tree to gatesthe semantics.
Because the syntax and semantic representations are fpsiytnehronously,
the derivation tree set is a complete specification of theticeiship between
them. Nothing other than the set of elementary tree pairstanslynchronous
TAG operations are required to generate a semantic refetigen Second,
the derivation tree set provides a compact representaticallfvalid seman-
tic interpretations of the given sentence. Using multigptijeined quantifiers
we take advantage of the ambiguity in the interpretatiomefderivation tree
that is introduced by multiple adjunction. We take each iids®rdering of
multiply-adjoined trees to be valid. We leave open the pmlisi of using an
additional method to prefer certain scope orders and dspog eliminate
others. Third, the STAG system, as used, does not increagxphessivity of
the TAG formalism (Shieber, 1994). Finally, our analysia straightforward
expression of a simple idea: we use TAG for both syntax anchséos and
use the derivation tree and the links between trees in eliEmeinee pairs as
the interface between them.

10.6 Acknowledgments

This work was supported in part by grant 11S-0329089 from Kegional
Science Foundation. We wish to thank Rani Nelken and the timenymous
reviewers for valuable comments on earlier drafts.

References

Dras, Mark. 1999. A meta-level grammar: Redefining syncbusnTAG for transla-
tion and paraphrase. Proceedings of the Thirty-Seventh Annual Meeting of the
Association for Computational Linguistigsages 80-87. Maryland, USA.

Frank, Robert. 1992. Syntactic locality and Tree AdjoinBigammar: Grammatical,
acquisition and processing perspectives. Ph.D. Thesisgtsity of Pennsylvania.

Gardent, Claire and Laura Kallmeyer. 2003. Semantic coastn in feature-based
TAG. In Proceedings of the 10th Meeting of the European ChaptereoAdsocia-
tion for Computational LinguisticBudapest, Hungary.

Hobbs, Jerry and Stuart M. Shieber. 1987. An algorithm faregating quantifier
scopings.Computational Linguistic43(1-2):47-63.

142/ ReBEccA NESSON AND STUART SHIEBER

Joshi, Aravind K., Laura Kallmeyer, and Maribel Romero. 20@lexible composi-
tion in LTAG: Quantifier scope and inverse linking. In I. v. 8. Harry Bunt and
R. Morante, eds.Proceedings of the Fifth International Workshop on Computa
tional Semantics IWCS;pages 179-194. Tilburg.

Kallmeyer, Laura. 2002a. Enriching the TAG derivation ti@esemantics. In S. Buse-
mann, ed. KONVENS 2002. 6. Konferenz zur Verarbeitung natirlichaiaghe,
pages 67—74. Saarbrucken.

Kallmeyer, Laura. 2002b. Using an enriched tag derivatiomcture as basis for se-
mantics. InProceedings of the Sixth International Workshop on Treeifidjg
Grammar and Related Frameworks (TA&, pages 127-136. Venice.

Kallmeyer, Laura. 2003. LTAG semantics for relative clauda |. v. d. S. Harry Bunt
and R. Morante, edsProceedings of the Fifth International Workshop on Compu-
tational Semantics IWCS-pages 195-210. Tilburg.

Kallmeyer, Laura and Aravind K. Joshi. 2003. Factoring pratt argument and scope
semantics: Underspecified semantics with LTAR&search on Language and Com-
putation1:3-58.

Kallmeyer, Laura and Maribel Romero. 2004. LTAG semanti@h semantic unifi-
cation. InProceedings of TA&7, pages 155-162. Vancouver.

Romero, Maribel, Laura Kallmeyer, and Olga Babko-Malay204£2 LTAG semantics
for questions. IrProceedings of TA&7, pages 186—193. Vancouver.

Schabes, Yves and Stuart M. Shieber. 1993. An alternativeeqion of tree-
adjoining derivation Computational Linguistic0(1):91-124.

Shieber, Stuart M. 1994. Restricting the weak-generata@acity of synchronous
tree-adjoining grammarComputational Intelligenc&0(4):371-385.

Shieber, Stuart M. and Yves Schabes. 1990. Synchronouadieming grammars.
In Proceedings of the 13th International Conference on Coatpartal Linguistics
vol. 3, pages 253-258. Helsinki.

VanLehn, Kurt. 1978. Determining the scope of English gifi@ns. Tech. Rep. 483,
MIT Artificial Intelligence Laboratory, Cambridge, MA.

Williford, Sean. 1993. Application of synchronous tregeaing grammar to quanti-
fier scoping phenomena in English. Undergraduate ThesisakthCollege.

11

Encoding second order string ACG with
deterministic tree walking transducers

SYLVAIN SALVATI

Abstract
In this paper we study the class of string languages repiesdry second order Ab-
stract Categorial Grammar. We prove that this class is theesas the class of output
languages of determistic tree walking automata. Togethitr the result of de Groote
and Pogodalla (2004) this shows that the higher-order tipaginvolved in the defi-
nition of second order ACGs can always be represented byatpes that are at most
fourth order.

Keywords ABSTRACT CATEGORIAL GRAMMAR, A-CALCULUS, DETERMINISTIC TREE WALK-
ING TRANSDUCERS, MILDLY CONTEXT SENSITIVE LANGUAGES

11.1 Introduction

Abstract Categorial Grammars (ACGs) (de Groote (2001)pased on the
linear logic (Girard (1987)) and on the linearcalculus. They describe the
surface structures by using for syntax the ideas Montag@ig4(ldevoted to
semantics. ACGs describe parse structures with higherdirtear A-terms
and syntax as a higher-order linear homomorphism (lexioorparse struc-
tures. Intuitively, the higher the order of the parse stites is, the richer
should the languages of analysis be and the higher the ofdlee ¢exicons
is, the richer should the class of languages be. On the ond& kdanGroote
and Pogodalla (2004) have shown how to encode of severadxidnee for-
malisms by using second order parse structuressgts of trees). They have
encoded Context Free Grammars using second order lexicoregr Con-
text Free Tree Grammars using third order lexicons and LiG@eatext Free
Rewriting Systems (Weir (1988)) with fourth order lexico@®n the other

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

143

144/ SYLVAIN SALVATI

hand Yoshinaka and Kanazawa (2005) have explored the esiyite®f lex-
icalized ACGs. They have exhibited a non-semilinear sttarguage with
third order parse structures and an NP-complete stringukzgg with fourth
order parse structures. (Salvati (2005) gave an exampla dfRxcomplete
language with third order parse structures and a first oedézadn).

The present work addresses the problem of the expressivACGs in
a particular case. We show that the class of languages définselcond or-
der string ACGs is the same as the class of languages defirmdmss of
Deterministic Tree Walking Transducers (DTWT) (Aho andnaiih (1971)).
Together with the results of de Groote and Pogodalla (200d yeeir (1992),
this result proves that the generative power of second stdag ACGs is ex-
actly the same as the generative power of Linear ContextiReegiting Sys-
tems. This furthermore shows that second order string AGBsatways be
described with fourth order lexicons. We may neverthelesgscture that the
use of lexicons of order greater than four may give more catg@mmars.

The paper is organized as follows: we first briefly define thedr -
calculus and ACGs in section 11.2. In section 11.3, we usedhespon-
dence between proofs of linear logic and linggerms to relate sub-formulae
of a typea with sub-terms of terms of type. Section 11.4 introduces
reduction, the reduction used by the DTWTs which encoderstavder
string ACGs. Section 11.5 presents the encoding of secatet string ACGs
with DTWTSs. Finally we conclude and outline future work ircden 11.6.

11.2 Definitions

Given a finite set of atomic typed, we defineJ 4, the set of linear applica-
tive types built onA with the following grammatr:

Ta:i=A(Ta—oTa)

If a1, ...,a, are elements of 4 anda € A we will write (a1,...,an) — «a
the type 1 — (- - (@n — @) ---)). The order of the type, ord(@), is 1 if &
is atomic {.e.a € A), and ordf — B) = max(orde) + 1, ord(B)).

Higher-order signatures are triplas, (A,) whereC is a finite set of con-
stants,A is a finite set of atomic types ands a function fromC to 74. The
order of a signatured, A, 7) is maxXord(r(a))la € C}. Given a higher-order
signatureZ = (C, A,) we will denoteA by As, C by Cs, T by 7z and7 4 by
Ts; if t2(a) = (g, ..., an) — «, then the arity oh € Cy is n, it will be noted
0% or pa (WhenX is clear from the context).

A higher-order signatur® is said to be atring signatureif Az = {x},
€ Cyx, tz(#) = = and for alla € Cs\{#}, 1=(a) = (x —o *).

We are now going to define the set of lineaterms built on a signature

ENCODING SECOND ORDER STRING ACG / 145

T. We assume that the notions of free variablespture-avoiding substitu-
tions, @-conversiong-reduction-reduction. .. are familiar to the reader. If
necessary, one may consult Barendregt (1984).

Given a higher-order signatukeanda € 75, we assume that we are given
an infinite enumerable set of variables y*, z*..., A{ the set of linean-
terms of typer built onX is the smallest set verifying:

1. ifae Cy andrs(a) = athena e Ag
2. X" €AY

3. ifty €AY t, e A andFV(t) N FV(ty) = 0 then tity) € AL
4. ifte A%, x* e FV(t) thenax®.t € AL™

The setAs denotes J,.s, A§. Linear A-terms arelinear because variables
may occur free at most once in them and that whengxet is a lineara-
term,x* has exactly one free occurrence.iMoreover, whenevere AgmA‘;
thena = B, i.e. every lineari-term has a unique type in a given signatkire

We may, when it is not relevant, strip the typing annotatimmf the vari-
ables. We will writedx; ... X,.t for the termaAx,. ... Ax,.t andtot; . ..t, for
(...(tot1) .. .t,). Given a list of indicesS = [iy, ..., in], we will write AX3.t
the termax;, ... X, .t, tote the termtot;, . ..t;, andcst the termei (... c; (1)...)
when for allj € [1,n], ¢, has typex — «. In particular,4%.1, totr andcat
may be used whe8 =[1,...,n].

Given a string signaturk, strings will be represented by the closed terms
of typex. For example, the termy(. .. (c#)...) represents the string . . . ¢y;
givenw, a string built onCs, /w/ will denote the term ofAS which is in
normal form and represenis

To define the sub-terms ¢fe Ay, we follow Huet (1997) and consider
them as pairs@[],t") (whereCJ] is a context,i.e. a term with a hole) such
thatt = C[t’']. The set of sub-terms dfis denoted byS;. In particular, we
defineSy to be{(C[],v) € Silv € AS}. If xis free int, we noteCy[] the
context such that; x[X] = t andx is not free inCx[]. Remark that sincéis
linearC; 4[] is always defined.

We say that a terrhis in long from if for all (C[].t") € S¢™” eithert’ =
Axt” or C[] = C’[[]t”]. Every term can be put in long form bjexpansion,
therefore ift is the long form of’, thent —*>,, t’. When a term is in long form,
all its possible arguments are abstracted Ryadbstraction. For example, the
term x*=*, which is not in long form, can be applied to an argument oétyp
x; in long form, this term becomey/*.x*~*y*, the possibility of applying it
to a term of typex is syntactically represented by theabstraction. A term is
in long normal form (Inf for short) if it is both iB-normal form and in long
form. The set Ir§ (resp.cInfg) represents the set of termsAf in Inf (resp.

1Given al-termt, we will write FV(t) to denote the set of its free variables.

146/ SYLVAIN SALVATI

the closed terms oAg in Inf). In the sequel of the paper we only deal with
terms in long form; thus each time we will writgg.t, xt—é or at—s), we will
implicitly make the assumption thitxis or ats has an atomic type.

We define homomorphisms between the higher-order sigreiumndx,
to be pairs {, g) such thatf is a mapping fron¥s, to 7s,, andg is a mapping
from Az, to As,, and verifying:

1. if @ € Ay, thenf(a) € Ty,, otherwisef(a — B) = f(a) — f(B)

2. foralla e Cy, such thatrs,(a) = @, 9(a) € clnff(“)

3. g(x*) = xf@

- g(tatz) = g(t)a(t2)

5. g(Ax.t) = ax'@ g(t)

One can easily check that whenever A , g(t) € Af(") In general, given a
homomorphisn¥ = (f, g), we will write |nd|st|nctly.£(a) for f(a) and £L(t)
for g(t). Theorderof £ is maXord(L(e))le € As, }.

An ACG (de Groote (2001)) is a 4-tuplE4, =,, L, S) such that:

1. X, is a higher-order signaturthe abstract vocabulary

2. X, is a higher-order signaturthe object vocabulary

3. Lis a homomorphism fror; to X,, the lexicon

4. SeAs,

An abstract constanfresp. object constajis an element of’s, (resp.Cs,),
anabstract typgresp. object typeis an element of’y, (resp.7s,). Given an
abstract constarat, £(a) is called therealizationof a.

An ACG G = (21,22, L, S) defines two languages:

1. the abstract languaged(G) = clnf§1

2. the object languaged(G) = {v € clnfy, |3t € A(G).v =4, L(1)}

An ACG G = (21,22, L, S) is said to be &tring ACGIf %, is a string signa-
ture andZ(S) = . Theorder of an ACGs the order of its abstract signature.

N

11.3 Path in types, active subs-terms and active variables

We assume that we are given a signatiend that all the types and all the
terms used in this section are built on that signature.

A linear A-termt € Infg represents, via the Curry-Howard isomorphism,
a cut-free proof ofr in the Intuitionistic Implicative and Exponential Linear
Logic. This correspondence leads to a natural relation betwesfosmulae
of a and sub-terms df This section presents this relation which will play a
central role in our encoding.

The sub-formulae of a type will be designated by means ofgpdtipath
m=i1-ip---in-1-in IS @ possibly empty sequence of strictly positive integers;

ENCODING SECOND ORDER STRING ACG / 147

n is the length ofr and whem = 0, = will be denoted bye. Given a set of
pathsP, i - P denotes the séi - njx € P}. The set of paths in the type P, is
defined as follows:

.....

n
Plar,..an)—ao = 10} U Ui - P, (recall thatag is atomic)
i=1
The setP, is split within two parts: the positive paths, denotedfjyand the
negative paths denoted 8. Positive (esp.negative) paths are the path of
P, which have an evendsp.odd) length.
eif r=e
(p+K)-nifr=k-n'

Givent e Infg, we define two particular subsets$f the set ofictive sub-
terms AT ¢, and the set odictive variablesAYV;. The setsAT and AV, are
defined as the smallest sets satisfying:

1. ([I.t) € AT
2. if (C[], A%a.t’) € AT then for alli € [1,n],

(CLA%.Cr x[11. %) € AW
3. if (C[[]t1...ts], X) € AV, then for alli € [1,n],
(CIxty...ti-a[] ... ta],) € AT+

If a termt can be applied tm arguments, then, giveR, ..., t, terms in
Inf, during thes-reduction oftt; . . . t, the active variables dfwill eventually
substituted by a term duringrreduction and the residuals of the active sub-
terms oft will eventually become the argument of a redex. On the othadh
the variables of which are not active will never be substituted and the sub-
terms oft which are not active will never be the argument of a redex.

We can now define two mutually recursive functidXis andAV respec-
tively from AT onto®; and fromAV; ontoP;:

1. AT([],.t)=e
2. if AT((C[], A%.t') = then for alli € [1, n],
AV (C[A%.Co (1, %) = 7 -1
3. if AV{(C[[]t1...tn], X) = m then for alli € [1, n],
AT(Cxty.. . ti_al] ... ta], i) = 7 -
One can easily check thaT ((C[], v) = 7 (resp.AV(C[], X) =) implies that

the type ofv (resp. } is the type designated (in the obvious way)din .
The functionsAT; andAV; are bijections whose converseHs

1. Pi(e) = (1. 1)

| (C[A%.Cvx [, %) if Py(n) = (C[], A%a.t')
2. Pi(or-1) ‘{ (C[xtl...tti)il[] ...tn,t:) if Py(7) = (C[[It1...t]. X)

Given a pathr, we definep + ras:p+x =

148/ SyLVAIN SALVATI

For all C[],t") € AT (resp.(C[l,x) € AYVy) it is straightforward that
P:(AT(C[],t)) = (C[].t") (resp.P(AV{(C[], X)) = (C[], X)); and that for all
e Pt (resp.r € Py), ATi(Pi(n)) = 7 (resp.AV(Pi(n)) = n).

11.4 h-reduction

The DTWTs which encode second order string ACGs perform trenal-
ization of the realization of abstract terms. They use ai@adér reduction
strategy,h-reduction which is related tchead linear reductior{Danos and
Regnier (2004)).

This reduction strategy is only defined for a particular slagA-terms.
Firstly, thesel-terms have to be built on a string signati;esecondly, they
have a particular form. To describe this form, we need firindeVy c AS
(NE = U(yE’TE Ng) as:

NE = Infe | (NEONE)

Then, the set of terms we are interested in areHfeterms defined by the
following grammar:

HT == Ng | CHT | (X Xy HT)N .. Ng"
wherec € Cs. EveryHT-term is inA5 and is of the form:

%
(A% (- .- (1%s,.Cro (i Q))Vs; - .) Vs,

so thatS; N S # 0 implies thati = j, v (with kK € Uiz Si) andtq (with
g € Q) are elements ofs.
Given aHT-term,

%
t= (A%} (. .. (A%, Cr (X tQ))Vs, - .))Vs;
we say that h-contracts td” (notedt —y, t') if
’ rd
t = (%] Cri(. .. (A%, En (ViTQ))Vs] - -)V,

whereS; = Si\{j}. It is a routine to check that =5 t’, thatt’ is also a
HT-term and that the normal form oftan be obtained in a finite number of
h-contractions. The reflexive and transitive closure-gf, h-reduction will

be written—r,.

GivengG = (21,22, S, £) a second order string ACG, ande clnfS, we
are going to see hol-contraction normalize£(u). The determinism of>,
allows one to predict statically.¢é. without performing the reduction) which
sub-term of£(u) will be substituted to a given bound variablefifu) during
h-reduction. This prediction is based on the notiongeplaceable variables
andunsafe termsntroduced by Bohm and Dezani-Ciancaglini (1975). Re-
placeable variables and unsafe terms belong toS £, and will be respec-
tively denoted byRV, andUT .

ENCODING SECOND ORDER STRING ACG / 149

If(C[],a) € Suand C'[], X) € AV g, then L(C)[C'[]], X) € RV; UT
is the smallest set verifying:
1. if (C[],av,,) € Sy andC[] # [] then (L(C)[], L(aV,))) € UT,
2. if (C[], &) € Sy and C'[],v) € AT @ then L(C)[C']],V) € UT
The prediction will be given by,, a bijection betwee®RV, and U7 .
The definition ofg, relies on few more technical definitions.
Given (C4[], &) € Sy such thaCy] = C[[Jvi...V,,], then
(C[avl .. .Vi_1|:| .. -Vpa]»Vi)
is thei™ argumentof (Ca[], a). Given Ca[], a), (Co[],b) € Sy, we say that
(C4ll, @) is thehead of the'l argumenif (Cy[], b) if
Coll = Cl[[IVa...Viia(@W,.) ... V,,] andCq[] = Clbwi ... Vi_1(IW,)) . .. V,,]
Given C[],x) € RV, we now definep,(C[], x). As (C[],x) € RV,
we have Cj[],a) € Sy andCy[] such that Cy[],X) € AV andC[] =
L(CIIC[]]. Let m = AV 1@ (Cxll, X), sincer € P e @) is of odd length,
andr = i.n’. Then we have three cases:
1. ifi < paandn’ = e, theng,(C[], X) = (L(C')[], L(t)) where C'[],t) is
thei®™ argument of C,[], @)
2. ifi < pgandn’ # e, thengy(C[], X) = (L(Cp)[C'[]],t) where Cp[], b)
is the head of thé" argument of C4[], @) and C’[],t) = P rw)(ob + 7’)
3. ifi > pa thengy(C[l, X) = (L(Cu)[C'[]],t) where Ca[],) is the head
of thek" argument of Cy[], b) and C'[],t) = Py (K- (i — pa) -).
Computing¢y(C[], X) only requires to know about the immediate sur-

rounding ofa. This is the reason why the normalization£fu) can be per-
formed by a DTWT. To prove the correctness of the predictiof,ave need

the notion ofstrict residual givent andt’ such thatt Sn t, C[l,v) € &
and C'[],v) € Sy, we say thatC'[], v) is the strict residuabf (C[], v) when-

everC[xyi ... ¥nl S C'[xy1...Yn] With FV(V) = {y1,...,¥n} andxis a fresh
variable.

Givent such that£(u) S t, we say that is predicted byg, if the two
following properties hold:

1. for all (C[], (AXaAYq.V)Va) € St andi € [1,], the fact that
(CHAXAYq-Cux D VAL, %)
is the strict residual ofGy[], X)) € RV r) implies that
(C[(/l?n/l%.V)Vl .. .Vi_1|:| .. .Vn], Vi)

is the strict residual ap,(Cx[], Xi).
2. for all C[[IVe],x) € St (C[0Vql,X) is the strict residual of some
(C'[0]. x) € RV

150/ SyLVAIN SALVATI

We are now going to show thitreduction preserves the predictionggf
This will be achieved by using the following technical lemma

Lemma 25 Given (C[[]Va],x) € RV, if we haveq)u(C[[]Vq)],x) = (C'[l.t)
then t = (AXpyq.W)Wp and we have
Gu(C'[(A%pYa-Cwy) Wpl, Vi) = (C[xva Vicea[] - - - Vgl Vi)

Proof.
This proof only consists in unfolding the definitions. Sir((‘Z{[]Vq)], X) €
RV, we must have@,[], a) € Sy andC,[] such that:

1. ClVg] = L(CAICAN Vo]

2. CIV). ¥ € AV 1

3. AV 1@ (CxI[1Ve], X) = i - « for somei andx
There are three fierent cases depending bandr.

Case 1:i < p, andn = e: this case is very similar to the following one and is
thus left to the reader. It is the only case whpmaay be diferent from 0.

Case 2:i < pa andrm # e: by definition if (Cp[],b) is the head of the
i™" argument of Ca[], @), and if Pzey(ob + 71) = (C”[], AYq.W) thenC'[] =
L(Cp)[C”[l] and t’ = Ayg.w. Let's now suppose that= m- 7/, then we have
that AV £y (AYg-Cuyll-) = (ob + 1) - kK = (op + M) - 7’ - k. Therefore, as
b+ M > pp and as Cy[], b) is the head of thé" argument of C,[], a), we
have thatpu((4Yg.Cwy[l) . Yi) = (L(Ca)[Cil], ux) where

(Cll, u) = P (i - (op + M= pp) - 7" - K) = Pria)(i - - K)
But we have thaAVL(a)(Cx[[]Va], X) = i - which implies that

(Cl, w) = PL(a)(i s7-K) = (Cu[xve . Vil - - - Ve]s W)-
Finally asC[] = L(CJ)[C«[]] we get the result.
Case 3:i > p,: this case is similar to the previous one. O

Proposition 26 If £(u) Snt, thentis predicted by,.
Proof. This proof is done by induction on the numbertefontraction steps
of the reduction. The case where this is zero is a simple egjpn of the
definitions. Now let's suppose tha(u) —n t —p t/, then, by induction
hypothesist is predicted byp,; furthermoret is aHT-term, thus

t= (1%, .En(. .. (1%, Cr, (X Q)Vs, - .))Vs,
and

t = (I%s..Cri(. .. (%5, C, (ViTQ)Vs, - .)Vs,
with S’ = Sj\{j}.

ENCODING SECOND ORDER STRING ACG / 151

Within the two conditions required to obtain thais predicted byp,, only
the first one requires more than a straightforward apptocatf the induction
hypothesis. There is actually only one subternt’ofvhich is problematic:
v,—t_Q). From the induction hypothesis we know that the subtermesponding
to x; in t is the strict residual ofC([[]t_Q)], Xj) € RV, and that the subterm
corresponding ta;j in t is the strict residual o&&u(C[[]Eg’],xj). Finally the
previous lemma allows us to conclude thpt_b) fullfills the first condition.d

11.5 Encoding second order string ACGs with DTWT

We are now going to show how to encode second order string AGGBSs
DTWT. We do not follow the standard definition of DTWT as givienrAho
and Ullman (1971). Indeed, instead of walking on the paesestof a context
free grammar, the transducers we use walk on lingarms built on a second
order signature. But, as these setd-@érms are isomorphic to regular sets of
trees, the string languages output by our transducers esathe as those of
usual DTWT. By abuse, we call our transducers DTWT.

A DTWT is defined as a 6-tuple

A = (27 D» Q7T967 qO» qf)

whereX is a second order signaturig;e As; Q is a finite set of state§; is

a finite set of terminalsy , the transition function, is a partial function from
Cex(Q\{g}) to ({up; staypu(downxN*))xQx T* whereN* denotes the set of
strictly positive natural numbers affid denotes the monoid freely generated
by T; qo € Qs the initial state; and; € Q is the final state. Aonfiguration
of A is given by C[],a,q, s) whereC[a] € cInf2,a€ Cz,q € Qandse T
initial configurationsare of the form (ng, a, qo, €) (e being the empty string)
Wherea\z € cIanD. The automator defines a move relatioma (-, is the
reflexive transitive closure afa), between configurationsC(],a,q, S) ra
(C'[].b, g, sw if 6(a,) = (9, m, w) and one of the following holds:

1. m=upand C[], a) is the head of one of the arguments Gf[{, b)

2. m= stayand C’'[],b) = (C[],a)

3. m=(downi) and C’[], b) is the head of thé" argument of C[], a)
Givenav,, € cInf2, av,’ generates with A if

(02,2 do. €) Fa (CI0.b.qr. 9).

The language oA, La, is {33 € cInf2.v generates).

Given a second order string AC& = (X1, 2, £, S) we are going to build
an automatohg = (,D,Q, T, 6, do,) such thald(G) = {/w/w € La,}.
Letkg = maxXpala € Cy,}, we then defin& as:

1. As = As, x [1,kg]

152/ SyLVAIN SALVATI

2. Cy =Cy, x[1,kg]
3. ifry, (@) = (a1,...,an) — athen

(@ K)) = ((@1, 1), .. ., (an, N) — (a, K).

Remark that ifv € cInf™", then for all C[], (&, j)) € Sv, C[l # [V, implies
that C[], (a, j)) is the head of thg" argument of C'[], (b, 1)) € S,. Further-

more, giverv = (a,k)V,, € cinf! we noteV the term of cInf, such that
—)
V=av,.

ThenD = (S» 1)1 Q= ([07 kg] X P) U{qgr} whereP = Uaeczl PL((X)! Jo =
(O, o); building § requires some more definitions.

Given @@ k) and {, n), theselection pattof (a, k) and {, x) is:

, [i-mifi>0
g ‘{ pa+mifi=0
If the selection path ofg, k) and {,) is in PZ(Tzl(a)) then we say thata(k)
and {, 7) arecoherent ¢ will be only defined on coherent pairs o, k) and
(i, 7). A configurationK = (C[], (a, k), (i,), w) is said to becoherenif (&, k)
and (,) are coherent.

If (a,k) and {,n) are coherent and if’ is their selection path, then
we define thefocused termof (a, k) and {,) asP @ (7). Furthermore, if
(C[l,t) is the focused term ofa(k) and {,7) and ift = AXp.Cn(XVq), then
(ClA%pCr([IV)], X)) is called thefocused variablef (a, k) and , 7).

If (a, k) and {, r) are coherent thes((a, k), (i, 7)) = (g, movew) depends
on the focused term o&(k) and {,), (hoted C[], t)):

1. if t = Ch# thenq = g, move= stayandw = ¢; ... Cy

2. if t = A%,C(WVg), AV £ (CIAR C(0VR)], ¥) = | -7 andl > p, then
g=(k (I-pa)-7"), move=upandw=c;y...Cp
3. if t = 1. C(Ng), AV £ (C[A%Cr([IV)], X) = | - 7”7 andl < p, then

g = (0,7”"), move= (downl) andw =c; .. .c,

We now relate the walk okg onv e clnfés'l) with the h-reduction of£(V).
To establish this relation we need to show that the transdraraputespy.
Given a coherent configuratidf = (C[], (a,K), (i, 7), w), the activated term
of K'is (L(C’)D,L(a\f;)) if (i, 7) = (0, ¢) andC[] = C'[[] \i], otherwise it is
(LO)[C[]]. 1) if (C'[].t) is the focused term of(k) and {,); the activated
variable of K is (£(C)[C'[]], x) if the focused variable ofa(k) and {,) is
(C'1l, x). We will show that giverK; andK; such thakK; +a, Kz, if (C[], X)
is the activated variable d¢f; thengw(C[], X) is the activated term df,. This
property shows thafg performs theh-reduction of L(v) and that if £(V)
normalizes to/w/ then, walking onv, Ag ends in the final state and outputs
W.

ENCODING SECOND ORDER STRING ACG / 153

Lemma 27 Given v= (a, 1)@: € clnf(zs’l) and two coherent configurations
K; and K such that(ﬂ\z, (8,1),(0,0),¢) I—Zg K1 kag Ko, if (C[], X) is the
activated variable of Kthengy(C[], X) is the activated term of K

Proof. As for the proof of lemma 25, this proof is mainly based onuthéld-
ing of the definitions. We simply compugg(C[], X) and the activated term of
K, and then show that they are the same.

We assume thel, = (C/[], (a, k), (ir, 7r), W) with r € [1,2], thatz; is
the selection path oK. If Py,)(r}) = (Cill, %p.Ca(XVy)), then letry =
AV £(a)(Ci A% Ta(([IVg), X); @S} € P, (o) We know thatr) =i - 7. We
then have three cases: '

Case L:if i < pa andn” = e, then ¢y(C[],X) = (L(C)[],L()) if
(C'[].t) is thei" argument of C1[], a;). But in that case, we have that
8((as, ky), (i1, 1)) = ((0, o), (down i), c; . .. Cy); thus @y, k) is the head
of the i argument of &, ki) and as ib, 7o) = (0,), we obtain, by
definition, that the activated term &% is indeed £(C')[], £(t)).

Case 2:if i < pa, andn” # e, thengy(C[], X) = (L(Cp)[C'[I],1) if (Cb[], b)
is thei! argument of C4[], a;) and if (C'[],t) = Prwm(op + 7). In that
case, we havé((as, ky), (i1, 1)) = ((0,7”), (downi),c; ... c,); there-
fore, (@, ko) is the head off" argument of &, k1) which implies that
(Call,a2) = (Cp[], b); finally by definition we have that the activated
term of Kz is (L(Cp)[C[]] . 1) = ¢w(CI], X).

Case 3:if i > pa, thengy(C[], X) = (L(Cp)[C'[1],1) if (C4,[], &) is the head
of thek,"™ argument of Cp[], b) and C'[],t) = Prpy(Ke - (i — pa,) - 7).

In that case, we havi#(ay, ki), (i, 7)) = ((Ki, (i—pa,)-7”), UP, C1 . . . Cn),
and the definition leads to the fact that the activated ternKofs
(L(Co)IC. 1) = ¢u(CI]. 9.

O

Proposition 28 Given ue clnfgl, there is a unique = (a, 1)\@ € cInféS'l)
such tha/ = u, and([¥,.. (&, 1), (0, »),) 5 (CIl, b, air, W) iff L(u) =3, /w/.

Proof. The existence and the uniqueness afe obvious from the definition
of X. To prove the proposition it sfices to study the walk oAg onv and
the h-reduction of £(u) in parallel: assume tha¢; = ([1V,., (& 1), (0,), €),

k
ty = L(u), Ky I—ig Kk andt; —p ty (wherek'/’;g corresponds td steps of
k . .
Ag and— to k steps oth-reduction). The use of the previous lemma and an
induction onk prove thaty is of the form
t = (A%, ... (A%, T (X Q) -) s,

if and only if Ky = (Ck[]. (@,), (ix. 7)., Wi) SO thatwy = Cr,...Cr.,, if

154/ SyLVAIN SALVATI

(C/[I, A%s,.Cry(xit0)) € Sy (with the obviousC][]) is the strict residual of

(€11, %s,.Er(xta)) € Sy, then €]'[1, A%s,.Cr,(x;t0)) is the activated term of

Kk and C/'[1%s,.cr,(IT)]. X;) is the activated variable dfx. This allows us

to conclude that the walk ends in the configuratiGfi (b, gr, w) iff L(u) =g,

W/ O
This finally shows thaD(G) is indeed equal to/w/|w € La,}.

11.6 Conclusions and future work

In this paper, we have proved that the languages defined lmndearder
string ACGs were the same as the output languages of DTWT Ere re-
sults of Weir (1992) and de Groote and Pogodalla (2004), weinlas a
corollary that the languages defined by second order strid@#are exactly
the languages defined by LCFRS. Furthermore as, accordide@oote and
Pogodalla (2004), LCFRS can be encoded by second ordey st@iGs with
a fourth order lexicons, we obtain that every second ordiergsACG can be
encoded by another one whose lexicon has at most fourth.order

In our next work, we would like to exhibit a direct translatiof a second
order string ACG into another one with a fourth order lexic@his would
help understanding how relevant the order of the lexicos.conjecture
that using lexicons of order greater than four may lead toesompact gram-
mars. The problem is to know how compact those grammars candf the
compaction is important whether it can be used do desige lgrgmmars for
natural languages.

As the tools we used are general, we think it is possible tweptbat
any second order ACG can be represented as a second order AG&: w
lexicon is at most fourth order. Indeed, the notion of pathd the relations
they establish with active sub-terms and active variabtesat depend on
the problem. The only definition which is dependent of the fee deal with
strings is the definition offi-reduction. We nevertheless think that, provided
we define a generalized notion of DTWT which would outputdingterms
instead of strings, we can show that second order ACGs candmeled with
these generalized DTWTSs. It would remain to encode those DIWith
second order ACGs with a fourth order lexicon to generalizeresult. But
this last part does not seem todtatiult.

The first part seems also feasible since it should be podsilgeneralize
h-reduction. Indeed, instead of having a unique variable bitlvwe could
make the substitution, the fact that the constants in thm etroduce some
branching may lead to have several such variables. Thisdvoairespond
on the generalized DTWTSs to the fact that when it would ougpbitanching
constant the transducer should duplicate its head in ood®ate one head to
generate each argument of that constant.

REFERENCES / 155

Finally this work may lead to the definition of an abstract hiae for sec-
ond order ACGs. Such a machine would be valuable to studyrthtegm of
parsing second order ACGs and give insights on the stratéiuse can be im-
plemented for those grammars. Furthermore, as such a neaghind have a
language made of linedrterms, it would be a first step towards the definition
of an abstract machine whose language is a sgitefms. In Montague style
semantics, the problem of generation mainly consists isipgrianguages
of A-terms. We would then obtain a valuable tool to study the lembof
generation in that setting.

References

Aho, A. V. and J. D. Ullman. 1971. Translations on a conteséfgrammarlinforma-
tion and Control19(5):439-475.

Barendregt, Henk P. 198Zhe Lambda Calculus: Its Syntax and Semantios 103.
Studies in Logic and the Foundations of Mathematics, Nbtoliand Amsterdam.
revised edition.

Bohm, Corrado and Mariangiola Dezani-Ciancaglini. 197&mbda-terms as total or
partial functions on normal forms. In C. Bohm, edagmbda-Calculus and Com-
puter Science Theoryol. 37 ofLecture Notes in Computer Scienpages 96-121.
Springer. ISBN 3-540-07416-3.

Danos, Vincent and Laurent Regnier. 2004. How abstract meshimplement head
linear reduction. Preprint of the Institut de Mathémagsae Luminy.

de Groote, Philippe. 2001. Towards abstract categoriahgrars. In A. for Compu-
tational Linguistic, ed.Proceedings 39th Annual Meeting and 10th Conference of
the European Chaptepages 148-155. Morgan Kaufmann Publishers.

de Groote, Philippe and Sylvain Pogodalla. 2004. On theesgive power of abstract
categorial grammars: Representing context-free fornmalidournal of Logic, Lan-
guage and Informatiod3(4):421-438.

Girard, Jean-Yves. 1987. Linear logitheoretical Computer Sciené&@:1-102.
Huet, Gérard. 1997. The zippelournal of Functional Programming(5):549-554.

Montague, Richard. 19740ormal Philosophy: Selected Papers of Richard Montague
Yale University Press, New Haven, CT.

Salvati, Sylvain. 2005Problemes de filtrage et problemes d’analyse pour les gram
maires catégorielles abstraitesPh.D. thesis, Institut National Polytechnique de
Lorraine.

Weir, David Jeremy. 1988.Characterizing mildly context-sensitive grammar for-
malisms Ph.D. thesis, University of Pennsylvania, Philadephf, Bupervisor-
Aravind K. Joshi.

156/ SYLVAIN SALVATI

Weir, David J. 1992. Linear context-free rewriting systeamsl deterministic tree-
walking transducers. IACL, pages 136-143.

Yoshinaka, Ryo and Makoto Kanazawa. 2005. The complexitygmmerative capac-
ity of lexicalized abstract categorial grammars LIWCL, pages 330—-346.

12

Sidewards without copying

Epwarp P. SIABLER

Abstract

A traditional movement step relates a single source positi@ single c-commanding
target position, and never moves an argument to anothemamguposition. But head
movement involves non-c-command relations, and contiatee two argument posi-
tions that are not always in a c-command relation. Specighar@sms could be invoked
for these things, but a filerent strategy slightly generalizes movement and enfaees
tain fundamental symmetries observed by all movementsocktbver-generation. This
paper defines a class of ‘sideward movement grammauisigs) with such symmetries,
with example applications to adjunct control and head m@m@nThese grammars allow
copying, but the question of whether to copy is completetlependent of the question
of whether to allow sideward movement. Furthermore, sihesé grammars distinguish
complement attachments from others, a simple CED-liketcain$ can block extractions
from specifiers and adjuncts except in the exceptional gistance of adjunct control.
smmG definable languages are alicre definable, and hence ar#ieiently recognizable.

Keywords PARSING, GRAMMAR, SYNTAX

12.1 Introduction

One of the most basic properties of human language is itslsjmgrursive,
layered character in which similar structure is iteratenstimes with spe-
cial variations at the top, matrix level and at the deepest$e

Does Alice know thatBob thinks that Carol says you like her?
3 2 1 0

Certain kinds of recursive symmetry in languages allow fheriping lem-
mas’ which have been valuable diagnostics of the avaitgluificertain kinds
of grammars. A regular grammar for a language is only possiliien the

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

157

158/ EpwarD P. StABLER

language has a simple symmetry of this kind; context freengrars have a
weaker requirement, and so on through the hierarchy of pteitiontext free
languages (Seki et al., 1991), etc.

Many descriptions of human languages involve rearrangamgstituents.
In grammars with movements, how is the structure of eacteffagffected?
This fundamental question is a topic of active study. Inyemansformational
grammars, a set of base structures is generated and thesfotraed into
surface structures, as in the following example (veé#indt unpronounced):

[I'[know [e[l [e[saw [who]]]llIl — [I [know [who [I [t [saw []]]]]]-

The sequences of positions related by movement in thesesaiscare not
random. Among other things, landing sites of movement dalissupt layer
structure too much (‘structure preservation’, ‘shape eovetion’), and when
an element moves through several clauses, it never movesdrbigh po-
sition in a lower clause to a lower position in a higher cla(fethe ‘ban
on improper movement’ ‘chain uniformity’, ‘level embeddii. So in dfect,
the hierarchy of each layer of phrase structure is respeéctedquences of
movements too, another reflection of the basic invariantstimeed at the
outset.

Some recent grammars compose generation and transformségjos, so
transformations are, infiect, executed as soon as requisite structure is built,
reducing the need for revising completed structure:

1. [saw}-[who] =5 [saw [who]]
2. [saw [wholk[l] =5 [I [saw [whol]]
3. [[saw [whol]] =5 [who [I [saw [whe]]]

4. [know}+[who [I [saw [whe]]] =5 [know [who [I [saw [whd]]]

5. [know [who [I [saw [whd]]] +[I] =3 [l [know [who [I [saw [whe]]]]]

But step 3 showsvho being copied and deleted, revising the structure built
by step 2. One response is to say that the syntax simply ctipéesarlier
structure (perhaps only adding a link, a pointer to the erdbdd/ho), and
then a post-syntax “spellout” process determines whiclesaje pronounce.
This pushes the changes to completed structure out of thaxsyoy invoking
a “spellout” process that is sensitive to much of the samestre that syn-
tactic operations are sensitive to. When two processes seém sensitive
to the same structure it is a natural hunch that they areyréadlsamepro-
cess. Adopting this perspective instead, we could thentsatytiie depiction
of the derivation 1-5 is slightly misleading: whemois introduced in step 1,
it satisfies a requirement of the verb but is not actually gdbio complement
position. Rather, it is held out to be placed at the left edgth® embedded

1Tree transducer composition, ‘deforestation’, is a comistep for reducing program com-
plexity (Kihnemann, 1999, Reuther, 2003, Maneth, 2004).

SIDEWARDS WITHOUT COPYING / 159

clause. This strategy for (not postponing but) eliminatirignd of structural
revision is formalized invGs (Stabler and Keenan, 2003, Frey and Gartner,
2002, Michaelis, 2001, Harkema, 2001, Lecomte and Rel®@9), butvas
do not ban improper movements.

Now consider the co-indexed elements in sentences likethes

He tries [g to succeed]
He laughs [beforey eating]

These ‘obligatory control’ (OC) relations have enough immoaon with
movement to suggest a uniform treatment (Hornstein, 2006121999,
Polinsky and Potsdam, 2002, Bowers, 1973). If we generataditional
movement so that a subject can move to another subject g@ogtien out
of an adjunct as in the latter example, the rest of the phrasastruction
can remain completely standard. But such movements betwssnnected
structures must be restricted to avoid unwanted movemkkesthese for
example:

*John likest;

*The cook theylike tried [t to make them]
*John persuaded Marytto make them]
*John’s friends prefer{j to behave himself]

One critique of movement analyses of control wonders, iéwiys move-
ment is allowed, what rules out sideward movement from cempits gener-
ally (Landau, 2003, p.477). In the present account, thesthd restrictions
on sideward movement will be clear: sideward movement frommlements
is impossible.

Another kind of problem is posed by head movements like this:

[-an]+[ustedes [habl- [espafiol]}p [[habl-an] [ustedesfhablespariol]]]]

If we sayx c-commandg in a tree {f a sister ok dominatey, thenhabl-does
not c-command its original position. Adapting a proposaihirNunes (2001)
and Hornstein (2001), in analogy to phrasal movement, wecoarpute this
result without surgery by keeping the hdaabl-out of its projection so that is
available for attachment to the appropridi®aBut the indicated assembly of
the head andffix with the rest of the projection is more complicated than any
of the other (merge,move) rules, looking suspiciowslyhoc An alternative
is to, in dfect, allow the head to move before it projects its structiifés
yields essentially the same result, but by allowing the heaimply move to
another projection, allows the construction of the phraskthe selection of
that phrase to be completely standard. But obviously tleis seeds to bring
some analog of the traditional head movement constraint@QHm

*be -s he have-been making tortillas

160/ EpwarD P. SIABLER

Conventional movements relate source constituents witets that c-
command them. Imcs, the samefeect is achieved by keeping the sources
separate from the target while they wait for their final lised positions. In
this setting, the needed generalization simply allows ndiaconnected’ el-
ements to bénsertedinto an expression. With this generalization of expres-
sions, we need only one feature-checking operatizarge We define ‘side-
ward movement grammarsiMmacs) in this way. To avoid overgeneralization,
we impose a specifier island constraint (SplC) and also iepageneralized
ban on improper movements. Since all phrases other than aftréxrolause
are either complements or specifiers, SplC allows extrgutedses to enter
a derivation only through complements, though as explai&taw this con-
straint is weaker than usual because a complement can ban¢muoved to
a specifier without freezing any of its moving elements.

Formal antecedents include tree adjoining grammar (JoghiSthabes,
1997) and especially the variants proposed for scrambRambow et al.,
2001, Rambow, 1994, Kallmeyer, 1999), certain elaboratiohpregroup
grammars (Stabler, 2004a, Casadio and Lambek, 2002, Buskk@001),
and the minimalist grammarsi¢s) already mentioned. The derivations in
these formalisms all extend and simplify complexes of gmgsiscontinu-
ous constituents. But none of them enforces the ban on inepropvements,
and none of them defines the same class of languagesavas. smvc lan-
guages are not alicr definable, but they are allicrg-definable (Seki et al.,
1991) and hence are polynomially parsable. We conjectateathemcre lan-
guages aremmc definable too.

12.2 Sideward movement grammars

LetX be afinite vocabulary, associated with phonetic and sempraperties.
The empty sequence ésHead movement will be triggered by a morpholog-
ical property that we indicate with hyphens: a precedingheyp-s indicates
that a lexical head is a fiix; a following hyphen s- indicates a prefix; and the
affix s can be empty.

A set of syntactic featurelis partitioned into 2 basic kinds: propertiés -
and requirementsF. PropertiesF are either persistent -f or ndt Require-
ments+F: some simply require agreemexdt others trigger overt movement
+f, and others trigger overt movement and also leave a ebpis in mas,
we use the type¥ = {::,:} to indicate lexical and derived expressions, re-
spectively. TheprojectionsP = ¥* x T x F*. Theexpression& = P x p(P).
Consider, e.g., the expression

(loves:-v{Mary:-focus, who:ease -wh).

To reduce clutter, we often omit some braces and parentheses

SIDEWARDS WITHOUT COPYING / 161

loves:-v, Mary:focus, who:€ase -wh.

With this simpler notation, remember that the head of anesgion comes
first, and the order of remaining elements (if any) is irralev

A lexiconis a finite subset oE* x {::} x (+F* x -F*) x {0} with a des-
ignated ‘start’ category f. A lexical item hastegoryf iff its first property
is -f or -f. f comp-selecty iff there as a lexical item with category f whose
first requirement is-g or +g or +g. A cycleis a sequenceyf. .f, such that

fo is the start category;_f, comp-selects;f(all 0 < i < n), and no feature
appears twice. ¢ycle-selectg iff f precedes g in a cycle. A lexicon|soper
iff whenever -f precedes -g in any lexical item, some lexicahit®ntaining
-f has category ¢ and some lexical item containing -g hagoayed, where d
cycle-selects c. With this constraint on lexicons, (Prppee can remain neu-
tral about whether human languages have a universal, fieedal structure.
A grammar is given by a proper lexicon, generating the stinestin the clo-
sure of lexicon with respect to the fixed structure buildinkgs. A completed
structure is one containing only one syntactic featurestag category f. The

string language is the set of yields of those completed sires.

There are two structure building relations, ins and merdpe partial bi-
nary functionins applies to pairs of expression(S), (g, T)) only if (i) ei-
ther @, T) is lexical orS = 0, and (ii) matchp, q) is defined. Its value is given
by ins((p, S), (g, T)) = (p, S U {q} U T). Condition (i) is our version of SpIC,
mentioned above.

The relation merge- E x E applies to p,S) only if there is a unique
g € S such that matchy, q) is defined. Then it takes as value meg& U
{q) = (r,(S—q)uT) for each matchg, q) = (r, T). The uniqueness condition
on application of this function is our version of the shortesve constraint
(SMC).

The relation matclke P x P x E is given as follows, wherg t € * are not
marked with an initial or final hyphen to trigger head moveters, y € F*,
6 e Fr,and- € T,

162/ EpwarDp P. SIABLER

Overt movement:

P q | matchp,q)
siwfa | t-F | sta,0 saturated complement 0]
s#fa | t-f | ts0 saturated specifier (ii)
s+fa | t-f6 | sa,{t:6} moving,unsaturated projection (i)
siHfa | t-f | ste,0 final use of -f (iv)
s+fa | t-f | tsio,0 final use of -f (v)
s+fa | t-f6 | sa,{t:6} moving,unsaturated projection (Vi)
s+fa | t-f8 | sa,{t-fB} moving with -f (vii)
covert movement: _
s+fa | t-f6 | si,{t:6} check non-persistent - (viii)
s+fa | t-f6 | sa,ft:6) final use of -f (ix)
s+fa | t-f3 | sa,{t-fB) moving with -f (x)
copy movement:
siHfa | t-f | sta,0 saturated complement (xi)
s+a | t-F | tsa,0 saturated specifier (xii)
siwfa | t-6 | sta,{t:6) moving (xiii)
sufa | t-f6 | tsa,(t:5) moving (xiv)
sitfa | t-f sti,0 final move to complement (xv)
sHfa | t-f tsi,0 final move to specifier (xvi)
sita | t-f sta,{t:-f3} moving with -f (xvii)
s+fa | t-f tsi,{t:-f3} moving with -f (xviii)

We present some examples to illustrate these mechanismseatite stage
for introducing sideward movement.

Example 1: Basics.In the derivation tree on the left, the leaves are lexical
items; The binary branches represent applications of inaed the unary
branches, applications of merge.

he laughs:-C CP
e:+T -C,he Taughs:-T é
e:+T-C helaughs:-T C/\TP
laughsi+k -T,he:k | DPﬁ\T’
e:+v +k -T,lau ‘hs:-v,heE D‘ TAVP
€14V +_-l(iaug%v,hei Ig | DP/\V
laughs+D -v‘,he::-D k h‘e t(é) v/\\/P
laughs:D v he:-D k laughs \‘/
laughs:+V +‘D -v,e:-V Vv

laughs:3V +D-v €:-V

SIDEWARDS WITHOUT COPYING / 163

Note that since insert applies to introduce a projection tha be merged,
and the derivation greedily checks features at the eapiessible moment,
there is a merge immediately above each insert step. Théi@udiunary
branches represent ‘external merge’ steps: these aredpse #iat are tra-
ditionally called ‘movements’. The tree on the right shols torrespond-
ing conventional X-bar structure. It is notfidcult to translate the derivations
shown here into more traditional depictions like this.

Example 2: Obligatory control into a complement.One idea about oblig-
atory control is that there is a special unpronounced prorf@RO which,

unlike other pronouns, either does not need case or elses 1seate special
kind of case that infinitival tense can assign. But Hornsggues that the
PRO positions can be the empty positions left by movemeri, as

he tries to succeed:-C

e:+T -C,he tries to succeed:-T

e:+T -C he tries to succeed:-T

tries to succeedk -T,he:k

e +V +Kk -Ttries to sdcceed:-v,h&-
€:+V+K-T tries to succeed:-v,hé-
tries to succeedb -v,he:-D k
tries:#V +D -v,to succeed:-V,he:-Dk-
tries:#V+D-v to succeed:-V,he:-Dk-
e:+T -V to succe‘ed:-T,he:-D?—
e:+T-V tosucceed:-T,he:-Ck-
to:+v -T,succeed:-v,he:-Ck-
to:+v -T succeed:-v,he:-Dk-
succeed:D -‘v,he::-D k
succeedD -v he:D k
e:+V +D -v,s‘ucceed::-v
e:+V +D-v succeed::-V
This derivation is checking the categorial D feature of [tveice (and then
checking its case feature in a higher clausal position, imfamnity with
Proper). Hornstein suggests that really ibigeatures getting checked twice
in constructions like this. (And there have been suggesttbat categorial

2This translation can be done automatically. See the impiatiens at
http://www.linguistics.ucla.edu/people/stabler/epssw.htm.

164/ EpwarDp P. SIABLER

features generally should be replaced by appropriate camaplof more ba-
sic featuresd-features etc.) For present purposes, the simple analysigea
provides a suitable starting point.

Example 3: Obligatory control into an adjunct. There are many interest-
ing questions about adjunction, but for present purpossdiites to adopt
a treatment that allows it to be category-preserving, litleraoptional, and
opaque to extraction. These properties can be obtainedtlydircing an
empty category to host the adjunct; for clausal adjuncts mfnnphrases
we usee:+N+C+N-N, and for prepositional modifiers of v we can use:
€:+V+P+v-v, as in:

he laughs before he eats:-C
e:+T -C,he laughs before he eats:-T
+T-C he laughs before he eats:-T
laughs before he eatsk -T,he:k
e::+V +k -T,laughs before he eats:-v,he:-
e:+vik-T laughs before | e eats:-v,He:-

before he eatsv -v,Iaughs:-v,heR

|-
€:+P+v -v,laughs:-v,hek,before he eats:-P

e+P+Vv -v,laughs:-v,hek before hie eats:-P
€4V +P +v -v,Ia‘ughs:-v,heR before:+C -Ig,he eats:-C
e+v+P+v-v laughsi-v,hek beforemats:-c
laughs3D -‘v,he::-D k €:+T -C,h‘e eats:-T
laughs3D -v he: =D & e:+T-C heeats:-T
laughs:+V +D -v,e::-V eats+k -‘T,he:R
laughs:#V +D -v €=V e:+v +k -T,eats:-v,hek

e+v+k-T eatsi-v,hek
eatsyD -v,he::-D k
eatsiD-v he: "D k
eats:+V +D -v,e::-V
eatsi3V+D-v e:-V
The fact that [before he eats] is a specifier is indicated bynthin-lexical sta-
tus of the selectoref+P +v -v,laughs:-v,hek,before he eats:-P]. Since SpIC
blocks any extraction from specifiers, we do not need to seplgrstipulate
that adjuncts are islands. So if we introduce right and le&idjuncts of Y
with lexical items of the forne::+X+Y+X-X, or e::+X+Y-X, respectively (or

with any processes that yields similar structure), we getissired properties

SIDEWARDS WITHOUT COPYING / 165

for adjuncts: optionality, iterability, and opacity to exttion. This sets the
stage for the special treatment of adjunct control.

Since the proposed treatment of adjuncts makes them opagugaction,
while the proposed treatment of control makes it an exwaatélation, we
should not get control into adjuncts, but we do:

he laughs before, eating

Hornstein notices that a slight tweak on our mechanismsetahis kind of
case through without allowing other kinds of adjunct exicats. Roughly, if
we derive the modifier [before eating{he}] which wants to attach to a v,
and then we derive a v that is looking for a D, we can allow [feejniove
sideways’ onto the v before inserting it into the derivati®his step can be
presented in logicians’ style, as the inference from theesgions above the
line to the one below:

before eating : -Rhe : -Dk} € +V+P+v-v, 0 laughs +D-v, 0
laughs before eating : ;the : -Dk}

We express this step more generally as follows. In a gramhadrcontains
left X-adjuncts of Y, that is, it has some

r=e+X+Y+X-X

we extend the (ins) relation so that it also applies @ {@}), (g, S)) in the
exceptional case whene and q can be chained together by usinga as
follows:

match@, a) = (b, T),

match¢, b) = (c, U),

match¢, p) = (e, V), and
matchg, f) = (g, W) for f € U.

Notice that the adjoining elementis introduced in the second step to have
its 3 initial features checked in sequence. In this specis¢clet

ins((p,S), (g, T))=(g,SUTUU —{f))UVUW,).

Control into right X-adjuncts of Y can be defined similarlging the lexical
item ¢ = e::+X+Y-X, checking its 2 initial features in sequence. With this
extension, we obtain:

166/ EpwarD P. StABLER

he laughs before eating:-C

e:+T -C,he Iaugh‘s before eating:-T

e:+T -C he laughs before eating:-T

laughs before e‘atingk -T,he:k

e:+v +k -T,laughs be‘fore eating:-v,h:-

e:+v +k-T laughs before eating:-v,he:-R -

laughsyD -v before eatlnf:-P,he:-D_(-
laughs:+V +D -v,e:-V before:v -P,eating:-v,he:-Dk
laughs:#V +D -v €=V beforezsv -P eating:-v,he:-Dk

eatingsD -\‘/,he::-D k

eatingsD -v he:"D k
eating:+V +D -v,e::-V
eating:#V +D -v e:-V

Example 4: Head movementis similar to adjunct control in relating con-
stituents that do not c-command each other, but, unlikerobrte want just
the phonetic parts of the heads to move while their projestare developed
in their original positions. Nevertheless, there is an igagibn of the side-
ward movement idea that avoids splitting all phrases kepttiiples so that
the head can be separate when the phrase is complete, asveds &iabler
(2001).

We extend match so that, when the category ofr-&:comp-selected by
t:;8 and t-s is morphologically well-formed,

p | g | matchp,q)

g8
t:B

-Sia
S-la

e a,{t-s:B8} sufix left adjoins lower head
e a,{s-t:B8} prefix right adjoins lower head

And then, when matcly(p) is defined by one of (i-xviii) we bring the adjunc-
tion up:

p | g | matchp,q)
p ‘ q | aip higher head promoted

With these extensions, we get derivations like the follayvin

SIDEWARDS WITHOUT COPYING / 167

habl- € -an <€ ustedes espanol::-C
habl- € -an €::+T -C,ustedes espanol::-T
ustedes espanol::-T,habk-an €::+T -C
espanol:k -T,ustedes:k,habl- € -an <:+T -C
e+v +k -T,espanol::-v,ustedésﬁ;habl- <-an €:+7 -C
-e+T -C habl- € -an:#v +k -T,espanol::-v,ustedesk:-

\ _
espanol::-v,habl-e-an:+v +k -T,ustedes:k

espanol#D -v,habl- € -an:‘:+v +k -T,ustedes::-Dk
espanol#D -v,habl- € -an:+v +k -T ustedes::-Dk
e::+V +D -v,habl- € -an:#v +k -T,espanol:-V

-an:+Vv+k -T habl- €:+V +D -v,espanol:-V

espanol:-V,habl-e:+V +D -v
€+k -V,espanol::R,tLabl- €:+V +D -v
e:+D +k -V,espanol::-D k,habl- €:+V +D -v
e:+D +k -V,habl-<:+V +D-v espanol::-Dk
-e::+¥@/-vm9 +k -V

No revisions of completed structure are needed, and there ieed to treat
every phrase as a triple of strings.

12.3 Expressive power and recognition complexity

Previous studies have shown that head movement, thoughyise®n like
a small thing in informal presentations, allows the defamitof non-context
free patterns even when there is no phrasal movement in éinengar. But the
translation frommas to mcras defined by Michaelis (2001) is easily adapted
to show thatmma grammars without copying all definecrg definable lan-
guages. There are various theory-internal arguments foyicg in grammar,
and various ways to implement them (Stabler, 2004b). Seex@mple Nunes
(2001) and Kobele (2006) for some empirical arguments ipscpf rather
powerful copy operations. The addition of copy features @saik easy to
define non-semilinear languages li&#, but a straightforward extension of
Michaelis’s translation to these cases shows that theysare-definable, and
hence polynomially recognizable.

12.4 Conclusions

This paper does not attempt to resolve the controversy ofiether move-
ment analyses of obligatory control are empirically welhtivated (Landau,
2003, Boeckx and Hornstein, 2004), but provides a formttinaof some
parts of these ideas that can be rigorously studied.

168/ EpwarD P. SIABLER

Althoughsmmas can be regarded as extendings, notice that they dier
in a number of significant respects: (ymas extend the domain of move-
ment just slightly to &er tightly constrained treatments of obligatory control
and head movement. Future work may find ways to make thesérars
more general and natural. And there are regularities in ¢ffi@ition of match
that should allow a more elegant statementM@ are bound by SMC, while
sMMGS also are required to respect SplC and Proper, and fututemay pro-
vide further additions. (3) To handle head movemans require either extra
rules for head movement (Michaelis, 2001) or else one of graaches
mentioned in the introductionmmcs allow head movement with a simple
mechanism analogous to the sideward mechanisms used foolcda) mcs
have no copy operation, and while none of the analyses abepend on
it, smmas allow copying. That is, we have presented a treatment efigicd
movement that does not rely in any way on the copy theory ofenmmant for
its appeal. In the present setting, sideward movement iguaalaption not
because we already have operations on copies, but becalsecady have
operations on moving phrases (the original phonetic metgmot copies).
sMMGS are naturally extended to allow copying though, settirggsfage for
studying proposals about overt copying (Boeckx et al., 20@5example) —
unfortunately beyond the scope of this short report. Allrechanisms pro-
posed here are obtained in the well-understood and feasilalee ofmcrc-
definable languages.

References

Boeckx, Cedric and Norbert Hornstein. 2004. Movement umdatrol. Linguistic
Inquiry 35(3):431-452.

Boeckx, Cedric, Norbert Hornstein, and Jairo Nunes. 200&rCxopies in reflexive
and control structures: A movement analysisWarkshop on New Horizons in the
Grammar of Raising and Control, Harvard University

Bowers, John S. 1973.Grammatical Relations Ph.D. thesis, Cambridge, Mas-
sachusetts, Massachusetts Institute of Technology.

Buszkowski, Wojciech. 2001. Lambek grammars based on uegt In P. de Groote,
G. Morrill, and C. Retoré, edd.pgical Aspects of Computational Linguistit®c-
ture Notes in Artificial Intelligence, No. 2099. NY: Springe

Casadio, Claudia and Joachim Lambek. 2002. A tale of foungrars.Studia Logica
71(3):315-329.

Frey, Werner and Hans-Martin Gartner. 2002. On the treatroBscrambling and
adjunction in minimalist grammars. Proceedings, Formal Grammar'0Zrento.

Harkema, Henk. 2001 Parsing Minimalist LanguagesPh.D. thesis, University of
California, Los Angeles.

RErFERENCES / 169

Hornstein, Norbert. 1999. Movement and contildhguistic Inquiry30:69-96.

Hornstein, Norbert. 2001Move! A Minimalist Theory of ConstruaOxford: Black-
well.

Hornstein, Norbert. 2006. On control. In R. Hendriks, &bntemporary Grammati-
cal Theory Oxford: Blackwell. Forthcoming.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-adjoiniagngnars. In G. Rozen-
berg and A. Salomaa, ed$dandbook of Formal Languages, Volume 3: Beyond
Words pages 69-124. NY: Springer.

Kallmeyer, Laura. 1999Tree Description Grammars and Underspecified Represen-
tations Ph.D. thesis, Universitat Tubingen.

Kobele, Gregory M. 2006. Deconstructing copying: Yorubaedor
icate clefts and universal grammar. Presented at the LSA.
httpy//www.linguistics.ucla.edipeoplégradgkobelgpapers.htm.

Kuhnemann, Armin. 1999. Comparison of deforestation negples for functional
programs and for tree transducers Fiiji International Symposium on Functional
and Logic Programmingpages 114-130.

Landau, Ido. 2003. Movement out of contrainguistic Inquiry34(3):471-498.

Lecomte, Alain and Christian Retoré. 1999. Towards a mailegic for minimalist
grammars. IrProceedings, Formal Grammar'9®trecht.

Maneth, Sebastian. 200Models of Tree TranslationPh.D. thesis, Universiteit Lei-
den.

Michaelis, Jens. 20010n Formal Properties of Minimalist Grammar®h.D. thesis,
Universitat PotsdamLinguistics in Potsdam 13Jniversitatshibliothek, Potsdam,
Germany.

Nunes, Jairo. 2001. Sideward movemdrihguistic Inquiry32:303-344.

Polinsky, Maria and Eric Potsdam. 2002. Backward contrainguistic Inquiry
33:245-282.

Rambow, Owen. 1994Formal and computational aspects of natural language syn-
tax. Ph.D. thesis, University of Pennsylvania. Computer arfidrination Science
Technical report MS-CIS-94-52 (LINC LAB 278).

Rambow, Owen, K. Vijay-Shanker, and David Weir. 2001. Detsebstitution gram-
mars.Computational Linguistic7(1):87-121.

Reuther, Stefan. 2003. Implementing tree transducer csitiqo for the Glasgow
Haskell compiler. Diplomarbeit, Technische Universiéesden.

170/ EpwarD P. SIABLER

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadémsami. 1991. On
multiple context-free grammar3heoretical Computer Scien&8:191-229.

Stabler, Edward P. 2001. Recognizing head movement. In Brdete, G. Morrill,
and C. Retoré, eds.ogical Aspects of Computational Linguistidscture Notes
in Artificial Intelligence, No. 2099, pages 254—-260. NY: Bger.

Stabler, Edward P. 2004a. Tupled pregroup grammars. UCLvil#ble at
httpy/www.linguistics.ucla.edipeopléstablefepspub.htm.

Stabler, Edward P. 2004b. Varieties of crossing dependsn8itructure dependence
and mild context sensitivityCognitive Scienc83(5):699-720.

Stabler, Edward P. and Edward L. Keenan. 2003. Structunglasity. Theoretical
Computer Scienc293:345-363.

13

English prepositional passives in HPSG

JESSE TSENG

Abstract

This paper provides a detailed syntactic description ofliEngrepositional passives
(also known as “pseudopassives”) and discusses their fdre@ment in HPSG. The
empirical overview includes a discussion of the familiant(bnformalizable) notion of
semantic cohesiveness, as well as new observations al®po#sibility of elements
intervening between V and P. Two formal approaches to théastio aspects of the
problem are then outlined and compared—one relying ondéxides, the other taking
advantage of HPSG’s capacity to express constraints orroctiens.

Keywords PSEUDOPASSIVES, PREPOSITIONS, ADJUNCTS, HPSG,LEXICAL RULES, CON-

STRUCTIONS

13.1 Empirical observations
English has an exceptionally rich variety of prepositioasting phenomena,
perhaps the most striking of which is the prepositional passthe possibil-
ity of passivizing the object of a preposition instead of direct object of a
verb.
(24) a. You can rely [on David] to do get the job done.

b. David can be relied oy to get the job done.
Here the NPDavid, initially the complement obn, is realized as the subject
of the passive verlelied, leaving the preposition behirid.

It is often suggested that the underlined verb and prepasiti this con-
struction form a kind of “compound”, an intuitive notion tis open to many

11 will occasionally use the symbot™to mark the “deep” position of the passive subject, in
cases where there might be ambiguity. This is deliberagatyimiscent of NP-trace in transforma-
tional analyses, but here it should be understood only apasé@rry device with no theoretical
strings attached.

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

171

172/ Jesse TSENG

formal interpretations. | will begin by presenting somesatpts to character-
ize the phenomenon in semantic terms, before turning toytfiastic aspects
of the structure, which will be the main focus of the rest & gaper.

13.1.1 Semantic cohesion

One semantic approach that dates back at least to the ofesgidptions of
Poutsma and Jespersen is the idea that the prepositiosale@spossible if
there is a high degree of “cohesion” between V and P. Varigiitss position
can be found in modern grammars (e.g., Quirk et al., 1985)imatiteoreti-
cal work on preposition stranding phenomena (see HornatainWeinberg
(1981), who propose that V and P must form a “natural prediaata “pos-
sible semantic word”). The most accessible indicator ofasi cohesion is
the possibility of replacing the ¥P sequence by a single-word synonym:

(25) David can be relied on- trustedto get the job done.

But this criterion can easily be shown to be unreliable iatic of passiviz-
ability. In particular, many perfectly natural-soundingpositional passives
have no appropriate corresponding one-word synonym (2&)veérsely, re-
placing an ordinary passivized transitive verb by a synamysiv+P combi-
nation often produces a degraded result (27), althoughsasisied below, |
do not consider such prepositional passives to be synadigti-formed.

(26) That bridge is too low to be sailed ungendersailefrunderpassed
*undergone

(27) a. | was approachddy a complete stranger).
b. ??1 was movedoméwalked towardgby a stranger).

It has also been observed that R sequences with abstract, transferred, or
metaphorical meaning are more cohesive (i.e., they are fiketg to allow
the prepositional passive) than concrete, literal usele$ame sequence:

(28) a. An acceptable compromise was finally arrived at.
b. ??A picturesque mountain village was finally arrived at.

The diference in acceptability between these two examples must®éod
non-syntactic factors, since under normal assumptionsréeeive identical
syntactic analyses. Similarly, semantically non-comjpmsal and idiomatic
V+P combinations should be expected to be more cohesive aadigé/to
good prepositional passives, and this is generally the Gaseusefulness of
these observations for the current study is limited, howdaecause preposi-
tional passives formed from fully compositional, concéteP sequences are
generally grammatical, too. They may have relatively ddgdeacceptability
as isolated examples, like (28b), or they can be completefrablematic,
like (26).

ENGLISH PREPOSITIONAL PASSIVES IN HPSG/ 173

Other authors have attempted to approach the prepositpassive by
looking at the semantic properties of the targeted obligeeBblinger (1977,
1978) proposes that this NP can become the passive subjectfiérs to a
strongly “dfected” patient. As Riddle and Sheintuch (1983) note, nafseti
tory definition is provided for this “dangerously wide” noti, and it is easy
to find examples of grammatical prepositional passives /H&ectedness is
not involved. Their own functional account (relying on thetion of “role
prominence”) is equally vaglre.

Cohesion andféectedness are of course gradient properties, and they can
no doubt be decomposed into more primitive, interactingpfiac For exam-
ple, modality, tense, and negation have all been found toéntie the accept-
ability of the prepositional passive. Furthermore, exashat are dubious
in isolation can always be improved with an enlarged context

In this paper | make the simplifying assumption that anyPP combina-
tion can give rise to ayntacticallywell-formed prepositional passive. The ac-
ceptability of the resulting structure, however, is coiudied by non-syntactic
restrictions that are not well enough understood to be pm@ted into a for-
mal analysis. Existing semantic accounts may be intuitiegipealing but
they lack a precise, empirical basis, especially if we take account the pre-
dominant role of context. It is also clear that more or legssighcratic lexical
properties associated with specifie W combinations are a major determin-
ing factor in the acceptability of the prepositional passhwill abstract away
from such considerations in the following, primarily syctia discussion.

13.1.2 Adjacency

A directly observable sign that V and P form a kind of “compdtim prepo-
sitional passive constructions is the fact that the ingedif adverbs and other
material between V and P is generally disallowed, wheredsuskinds of
intervening elements are possible between V and PP in thesmonding
active structure:

(29) We rely increasingljon David]~ *David is relied increasinglyn.

This evidence suggests a constraint on syntactic struatufer surface word
order? This restriction could be formalized by introducing a worder con-
straint requiring V and P to be adjacent in the passive cagefpb various
reasons this approach would be inadequate.

2They themselves note that it is “impossible ften an algorithm for determining what causes
some entity or concept to be viewed as role prominent.”

3Note that preposition stranding by extraction is much fie¢his respect (although there are
restrictions, probably of a prosodic nature):

(i) We rely increasinglyjon David]~» Who do we rely increasinglpn?

174/ JesSE TSENG

The specifieright, for instance, is possible with some spatial and temporal
Ps4

(30) Mr. Cellophane may be looked rightrough, walked righby and never
acknowledged by those who have the audacity to supposehéeat t
cannot be looked righthrough.

Similar examples can be found with other PP specifigraight, clear, etc.),
so this is not a lexical idiosyncrasy of the waiight. And in fact, in cases
like these, where the preposition has clear relational ingaa wider variety
of modifiers can (quite marginally) appear between V and Rérpassive:

(31) The bridge must be ??walked halfwagross, ??sailed completelp-
der, or ??driven quicklpver (for the point to be awarded).

Unlike PP specifiers, which must appear immediately theolef®, the place-
ment of the modifiers in this example is clearly “non-optifnaince they
could also appear after P instead, leaving V and P adjaceeteTare obvi-
ously semantic factors at work here that need to be explentlder. From a
syntactic point of view, adjacency of V and P is not a strigfuieement; |
will assume in this paper, in particular, that P can combiitk @ specifier or
a modifier to its left.

Nominal elements can also separate V and P in the prepaipassive.
Itis well known that passives can be formed from some fixedesgions and
light verb constructions containing a bare N or full NP:

(32) a. We were opened firen, made foolof, paid attentionto, taken
unfair advantagef.

b. ?That product can’t be made a préfam.

The commonly accepted assumption is that ordinary NP abjeantnot ap-
pear between V and P, and the prepositional passive is ingig¢iézl bad in
most examples of this type:

(33) Samuel explained a complicated theoteravid.~» ??David was ex-
plained a complicated theoretim

Aricher context can significantly improve such examplesyéxer, and some
examples of the same structure [V NP P] are unexpectedly geed with
minimal context:

4This example is from a letter to the editor of tBeadford Telegraphé- Argus(5 June 2003),
referring to lyrics from a song: “Mr. Cellophane shoulda meey name, 'cause you can look
right though me, walk right by me, and never know I'm there.”

5Again, the contrast with extraction constructions is gk

(i) Samuel explained acomplicated theoretm David. ~ Who did Samuel explain

a complicated theoreno?

ENGLISH PREPOSITIONAL PASSIVES IN HPSG/ 175

(34) ?[To be whispered such dirty innuendoes about] woulérmmigh to
drive anyone crazy.

According to Bolinger (1977, 1978), the underlined direlojeat in this sen-
tence functions as part of the predicate, and the passijectuleft unex-
pressed here) is strongly ffacted” by being whispered-dirty-innuendoes-
about. Another proposal by Ziv and Sheintuch (1981) regusech inter-
vening direct objects to be “non-referential”. This is as@@able characteri-
zation of the idiomatic examples in (32), but in order to anowdate cases
like (34), the authors are forced to broaden the commonlersidod notion
of non-referentiality considerably, and to admit that itriet a discrete prop-
erty”. In the end, the acceptability of this kind of prepasital passive (and
of all prepositional passives, for that matter) dependsarily on context,
and on usage and frequendyeets associated with specific lexical items (or
combinations of lexical items).

What is clear is that there can be no strict structural camgtagainst the
presence of a direct object in the prepositional passivstcaction (e.g., an
adjacency condition). We can also demonstrate that theanmgaticality of
the prepositional passive in cases like (33) is not due tditiegar position
of the direct object (between V and P). Even if the object &ized in a
different position, making V and P adjacent, the prepositioaatpe does
not become more acceptable. On the contrary, the passivepsss below,
with V adjacent to P, are worse than example (33) above, wmirvening
NP:

(35) a. Samuel explained to David [a fantastically compédatheorem
about the price of cheese]. (heavy NP shift)

b. *David; was explained td; [a fantastically complicated theorem
about the price of cheese].

(36) a. the theorem that Samuel explained to Dgwdhich theorem did
Samuel explain to David? (extraction)

b. *the theorem that Davijdvas explained t¢ / *Which theorem was
David explained ta;?

Furthermore, in cases like (32), where an intervening timbect is un-
problematic, there appears to be a sort of “anti-adjacecaytlition on V and
P. Although the direct object can be realized in varioustpmss in the active
voice, in the prepositional passivenitustappear between V and P:

(37) a. the unfair advantage that [they took of uklow much advantage
did they take of us? (extraction)

b. *the unfair advantage that [we were taken/ofHow much advan-
tage were we taken of?

176/ Jesse TSENG

(38) a. We could make from this product [the kinds of profitsttho one
has ever dreamed of] (heavy NP shift)

b. *This product could be made fromy [the kinds of profits that no
one has ever dreamed of].

Based on these observations, | make the following assungfir the re-
mainder of this paper:

= The prepositional passive is syntactically compatiblénlite presence of
a direct object.

= The direct object must be realized in its canonical positietween V and
P.

= The acceptability of the prepositional passive is ultirhatietermined by
non-syntactic factors that (for now) resist formalization

To my knowledge, only one other kind of element can intervestaveen
V and P in the prepositional passive: When a phrasal verbvishiad, its
particle must appear in this position:

(39) a. This situation will simply have to be put wth t.
b. The loss in speed can be madefaipt by an increase in volume.

This is unsurprising, given the strong restrictions on ipkrtplacement in
English. In the active voice, the particle must be realiZedest to the verb
(in the absence of a direct object); this constraint comtsnio apply in the
passive’

13.1.3 Further observations

Most of the examples given so far involve passive subjeagsr@ting in com-
plement PPs, but itis clear that prepositional passivealsarbe formed from
[V + adjunct PP] structures:

(40) a. This bed has not been slept in.

b. David always takes that seat in the corner because he lheites
sat next to.

The most common sources are temporal and locative modifietsye also
find other PPs, like instrumentalith-phrases. Again, | will not attempt to
identify or formalize the relevant semantic and lexical stoaints. For the

6Examples of verbs selecting a particle, a direct object, afP at the same time show
that the relative order of the particle and the object residire same in the active and in the
prepositional passive:
(i) a. They kept an eysutfor David.~» David was kept an eyeut for.
b. *They kept outan eyefor David.~» *David was kept ouan eyefor.

ENGLISH PREPOSITIONAL PASSIVES IN HPSG/ 177

moment, | simply note that the possibility of passivizing otiadjuncts con-
stitutes a crucial dierence between the prepositional passive and the ordinary
passive’

We might also wonder if there is anyftiirence between the two passives
in terms of their morphologicalfects, given that they targetftirent (but
overlapping) sets of verbs. In particular, the preposdlgrassive applies to
intransitive verbs likesleepor go, and to prepositional verbs likely, which
never undergo ordinary passivization. For verbs that dtigigate in both
types of passivization, we might ask if two distinct morpsgital operations
can be identified. In fact, there is no evidence for this. lergcase, the same
participial form is used in both constructions:

(41) a. The pilot flew the airplane under the bridge.The airplane was
flown t under the bridge. (ordinary passive)

b. The pilot flew under the bridge~» The bridge was flowmndert.
(prepositional passive)

It is not the case that (say) a strong particifi@@vnis used for the ordinary
passive, while a weak formfffed is used in the prepositional passive. Both
passives require a form of the verb identical to the pastqiale.®

Finally, | briefly discuss the formation of deverbal adjeet from passive
V+P sequences:

(42) a. our fective, relied-upomarketing strategy
b. afirst novel from an as yet unheardanfthor

This is sometimes taken as an additional argument for “dohébetween
V and P in the prepositional passive. For example, HorngtedhWeinberg
(1981) use it to motivate the semantic notion of “possibledtdt is unclear,
however, what these adjectives can tell us about the passivetures they
derive from, since they are evidently subject to additiammalstraints. Not all
prepositional passives can be used to derive prenominadtads:

(43) a. ??asailed-under bridge, *a sat-beside grouch

NP adjuncts, for any number of reasons, cannot passivieallilect objects:
(i) The children slept three hours» *Three hours were slept (by the children).

80ne apparent counterexample is the following pair:

(i) a. They laid the sleeping child on the rug: The child was laid on the rug.
b. The child lay on the rug-» ?The rug was lajfaid ont by the child.
Here is looks as if a single verb can have a special particfptan lain in the prepositional
passive. But in fact two distinct verbs are involved in thegamples: transitivéay (with past
participlelaid) vs intransitivelie (past participle fain/aid). This pair causes confusion and hesi-
tation for most speakers in the past and perfect. It is saayphowever, that no speaker merges
the two into a single verb while maintaining distinct pasdiorms as in (41).

178/ Jesse TSENG

b. *a taken unfair advantage of partner, *an opened fire up@msy
camp

c. ??a put-up-with situation, ??a made-up-for loss

Some of these examples could be improved with more contakthiey all
clearly have a degraded status with respect to their fulbeptable verbal
counterparts. This is particularly true for the examplethvain NP or parti-
cle intervening between V and P. The data suggest stronglyattijectival
derivation is not a truly productive process, but is moresssllexicalized on
a case by case basis. This could perhaps be accounted fa usthge-based
model, but | will not pursue this idea any further here.

13.2 Implications for an HPSG analysis
13.2.1 Modularity

The normal passive construction (with the direct object lRofmoted” to
subject) is standardly handled as a lexical phenomenon 8GHRither using
a lexical rule deriving the passive participle from an aetdase verb (Pollard
and Sag, 1987), or by assuming an underspecified verbal eekeah can be
resolved to either an active or a passive form with the appatplinking
constraints (Davis and Koenig, 2000).

A number of other approaches can be imagined and technicafiie-
mented within the framework, although they have never beeiossly ex-
plored. For example, passive verbs could have the samecsignialence as
active verbs, if new syntactic combination schemas wereddiat realized
their comps element (direct object) in subject position and theity element
as a coindexeby-phrase. This analysis assumes féiedlent division of labor
between lexical information and syntactic operations,tdibes not seem to
present any advantages in return for the additional contglgxntroduces.

A more radical solution would be to approximate the old tfarmeational
analysis within HPSG. A recent trend in the framework (madiyfdevel-
oped in Ginzburg and Sag (2001)) is the use of constructicoradtraints, a
departure from the original emphasis (perhaps over-enghaslexical de-
scriptions as the driving force behind syntactic derivatione characteristic
of the constructional approach is a reliance on nonbragctiread-only”)
syntactic rules. Such rules can potentially be used to emeobitrarily ab-
stract syntactic operations, from a simple change of bail {evg., X to XP),
to a coercion of one syntactic category into another (e.tp,'$P), or in our
case, even the transformation of an active clause into apadause.

This last proposal would be soundly rejected by linguistgkivay in
HPSG, for violating various well-motivated locality and chdarity princi-
ples. In particular, a syntactic rule should not be able terr® or arbitrarily
modify the phonological, morphological, or internal syetta structure of the

ENGLISH PREPOSITIONAL PASSIVES IN HPSG/ 179

constituents it manipulates. The proposed non-branctésgipe transforma-
tion rule would have to do all of the above. The problem is thase locality
and modularity principles cannot be formally enforced inGdP they have
the status of conceptual guidelines that responsibleificars of the theory
agree to follow by convention. Of course, this is a fundarakissue that
is relevant for all grammatical frameworks, and rarely agded. But the
“all-in-one” sign-based architecture that constitutes phincipal strength of
HPSG, also makes it particularly easy to fall afoul of theasi® principles.
In the case of the passive, a constraint requiring non-tiagaules to leave
thepHoNoLOGY andmorpHOLOGY Values unchanged would be enough to inval-
idate the undesirable transformational analysis. Butithi®thing more than
an artificial stipulation, covering only a small subset cd&s, and the more
general theoretical question remains.

13.2.2 Adjunct analyses

For the ordinary passive construction, a strictly lexiaahlgsis is available,
because it only needs to refer to the subject and direct pltjeth of which
are present in the lexically defined “argument structurat@eled in thera-
st list). The fact that PP adjuncts can be involved in preposéi passives
(recall the examples in (40)), however, makes a lexical @ggh to the phe-
nomenon more problematic. This is because information tath@uidentity
of eventual adjuncts is not normally available at the leiieeel, at least not
according to the original assumptions of HPSG. A techniaakwaround to
this problem is possible, in the form of tierenpents list of Bouma et al.
(2001). This list, whose value is defined as the lexigal-st extended by
zero or more (underspecified) adjuncts, was introducedderaio allow a
uniformly head-driven analysis of extraction from compé&rhand adjunct
positions.

This result is made possible basically by treating somerad§uas com-
plements, from a syntactic point of view. This reverses tiection of se-
lection in adjunct structures: The head now selects thegmeid, in com-
plete contrast to the treatment of adjuncts in Pollard argl (8894). This
move potentially introduces significant problems for seticacomposition.
Levine (2003) discusses a problem involving adjuncts sappiver coordi-
nated structures, and argues for a return to the earlier Higfp®ach, with
adjuncts introduced at the appropriate places in the sijot@erivation (per-
haps as empty elements, if they are extracted). Sag (20&5$ @ response,
requiring modifications to the proposal by Bouma et al. buintaéning the
treatment of certain adjuncts as elements selected l&ximathe head (and
a traceless analysis of extraction).

180/ Jesse TSENG

HEAD [VFORM basq

pees (NP, [@ (Prtv NP[canor]), PP) 2]

Lard

[HEAD [VFORM passiv%:

DEPS <ij, @, F[COMPS <NP;>]>@ o(PR[by])
FIGURE1 Prepositional Passive LR

13.2.3 Prepositional passive: lexical approach

In light of this active controversy, any phenomenon invadyadjuncts can be
approached in two very flerent ways in HPSG. At first sight, the adjuncts-
as-complements approach seems more appropriate for thegitienal pas-
sive, precisely because it targets complement and adjuPtifPthe same
way. The lexical rule in Figure 1 takes as input a base forriM@eoice) verb
with a PP on itoeps list and outputs a passive participle withbers speci-
fication custom-built to generate the prepositional pa&ssihe first element
on peps is the subject, followed optionally by a particle or a direbject?
The direct object, if present, is constrained to be candnioaaccount for
the data in (37—38) above. (An extracted or extrap@tefied phrases would
correspond instead to a non-canonical subtypgyabemn) The crucial oper-
ation in this lexical rule is the replacement of a saturatBd(€mplement
or adjunct) in the input by aomps-unsaturated P in the output description.
The unrealized complement of the preposition is coindexitt tive passive
subject NP, and the original subject is optionally realiredby-phrase, as in
the ordinary passive construction.

The complexity and ad hoc nature of this rule is perhapsvatge, given
the highly exceptional status of the phenomenon it modeigh® other hand,
the proposal fails to capture what is common to the premositipassive and
the ordinary passive. In fact, most aspects of the prepositipassive could
be handled by the existing rule for the ordinary passivecivialready pro-
vides a mechanism for: promoting a non-subject NP to sulpjesition, de-
moting the subject NP to an optiorta}-phrase, and ensuring the appropriate
morphological &ects (identical for both kinds of passive, as confirmed in
§13.1.3). For this to work, the NP complement of P must be mad#adle
directly on theoeps list of the base verb (by applying argument raising, famil-
iar from HPSG analyses of French and German non-finite aoct&ing®) so

9This simplified formulation does not accommodate strustamntaining both a particle and
an object (recall fn. 6).
10E g., Hinrichs and Nakazawa (1994) and Abeillé et al. (1998

ENGLISH PREPOSITIONAL PASSIVES IN HPSG/ 181

it can be input to the general passive rule. But this meamgdaoting a sys-
tematic ambiguity between the subli$BP and(P, NP in the peps value of
the active form of the verb, giving rise to two structures:

(44) a. VP b. VP
/\ /\
Vv PP v P NP
| | | I
rely on David rely on David
[pEPs (NP, PB] [pEPS (NP, P, NP]

The unwanted analysis (44b) should be blocked, although eeel this
version of the verbely in order to generate the prepositional passias
relied on One straightforward way to achieve this would be to add feeis
ficationnon-canonicato the second NP element on the ventss list. This
would make it impossible for it to be realized as a complemasin (44b),
but we would still have spurious ambiguity in extraction swuactions (where
the NP is in fact non-canonical). A more adequate solutionld/be to en-
rich the hierarchy ofynsensubtypes to encode the syntactic function of the
corresponding phrase. This would then allow us to state peogriate con-
straint (e.g., ““"comps-synsein !

This analysis of the prepositional passive is still incoat@] because the
insertion of intervening modifiers between V and P must beiotsd; recall
the discussion of example (29). The lexical operations psed so far ma-
nipulate theoeps list, a rather abstract level of representation that cabeot
used to express constraints on surface word order. Thereshjconstraints
therefore have to be formulated separately.

13.2.4 Prepositional passive: syntactic approach

A more radical treatment can be developed for the prepaositipassive by
combining the earlier HPSG approach to adjuncts (as urtseledements
introduced in the syntax) and the more recent trend of coctmal analysis.
Figure 2 sketches a special head-adjunct rule that can lbe@senstruct
the adjunct-based examples in (40). As in an ordinary hehat phrase,
semantic composition is handled @b selection. But this rule is extraor-
dinary in that it requires the adjunct to beves-unsaturated, and it specifies
the coindexation of the unrealized complement of P and theegsinrealized
subject of the resulting VP. The rule also imposes speciastraints on the
head daughter. The sign typere-vpis defined to be compatible with a bare
V, or a combination of V with a particle ajmt a direct object. In other words,
as soon as a verb combines with a non-nominal complementyokiad of

11This can be thought of as a very weak kind of inside-out cairgti(as used in LFG, and
reinterpreted for HPSG by Koenig (1999)).

182/ Jesse TSENG

{HEAD | VFORM paSSiVT

SUBJ <NPj>
HEAD-DTR ADJUNCT-DTR
core-vp prep
. HEAD
comps list(= Prt A = NP) MOD
SLASH {} COMPS <NP,->

FIGURE 2 Constructional rule for adjunct prepositional passives

modifier, the resulting phrase is no longec@e-vp This constraint (which
constitutes a minor violation of locality principles) deténes what can and
cannot intervene between V and P in the prepositional pasa#&/discussed
in §13.1.2 The negative constraint on the head daughteriss list and the
emptystasu specification ensure that the particle and object (if ang)aar-
tually realized within thecore-vp'? There is no particular constraint on the
internal structure of the adjunct daughter: It can be eiéhleare preposition,
or a phrasal projection including a specifier or a modifier.

A number of additional details need to be worked out; in patér, some
aspects of passivization (e.g., morphologidéets) must still be dealt with
at the lexical level. It should also be noted that a similacéal version of
the head-complement rule is needed for prepositional yesaivolving PP
complements, although it is possible to factor out the shaspects of the
two constructional rules; this is precisely the advantaghe hierarchical
approach to constructions in HPSG. These preliminary @bsens suggest
that the constructional treatment provides a more sat@faaccount of the
phenomenon than the lexical approach. Additional questionfurther work
include a comparison with the prepositional passive in 8tevian, and a
search for similar phenomena anywhere outside of the Gecfemnily.

References

Abeille, Anne, Daniele Godard, and Ivan A. Sag. 1998. Twulk of composition
in French complex predicates. In E. Hinrichs, A. Kathol, andNakazawa, eds.,
Complex Predicates in Nonderivational Syntegl. 30 of Syntax and Semantics
pages 1-41. New York: Academic Press.

Baltin, Mark and Paul M. Postal. 1996. More on reanalysisatlypses.Linguistic
Inquiry 27:127-145.

12This presupposes a return to syntasiisss amalgamation, as in the original HPSG Non-
local Feature Principle.

RereRENCES / 183

Bolinger, Dwight. 1977. Transitivity and spatiality: Thagsive of prepositional verbs.
In A. Makkai, V. B. Makkai, and L. Heilmann, edd.inguistics at the Crossroagds
pages 57-78. Lake Bffj IL: Jupiter Press.

Bolinger, Dwight. 1978. Passive and transitivity agdtorum Linguisticun8:25-28.

Bouma, Gosse, Rob Malouf, and Ivan A. Sag. 2001. Satisfyamgtraints on extrac-
tion and adjunctionNatural Language and Linguistic Theotp:1-65.

Davis, Anthony and Jean-Pierre Koenig. 2000. Linking astraimts on word classes
in a hierarchical lexiconLanguage76:56-91.

Ginzburg, Jonathan and Ivan A. Sag. 200daterrogative Investigations: The Form,
Meaning and Use of English InterrogativeStanford, CA: CSLI Publications.

Hinrichs, Erhard and Tsuneko Nakazawa. 1994. Linearizidg#in German verbal
complexes. In J. Nerbonne, K. Netter, and C. Pollard, &krman in Head-Driven
Phrase Structure Grammavol. 46 of CSLI Lecture Notegpages 11-37. Stanford,
CA: CSLI Publications.

Hornstein, Norbert and Amy Weinberg. 1981. Case theory aepgsition stranding.
Linguistic Inquiry12:55-91.

Koenig, Jean-Pierre. 1999. Inside-out constraints andriggi®n languages for
HPSG. In G. Webelhuth, J.-P. Koenig, and A. Kathol, etiexical and Con-
structional Aspects of Linguistic Explanatigmages 265-279. Stanford, CA: CSLI
Publications.

Levine, Robert D. 2003. Adjunct valents: cumulative scgpadverbial constructions
and impossible descriptions. In J.-B. Kim and S. Wechsts,,roceedings of the
9th International HPSG Conferencpages 209-232. Stanford, CA: CSLI Publica-
tions.

Pollard, Carl and Ivan A. Sag. 198Taformation-Based Syntax and Semantics, Vol-
ume 1: FundamentalsStanford, CA: CSLI Publications.

Pollard, Carl and Ivan A. Sag. 1994lead-Driven Phrase Structure GramméBtan-
ford, CA: CSLI Publications. Distributed by University ohi¢ago Press.

Quirk, Randolph, Sidney Greenbaum, @eey Leech, and Jan Svartik. 1985 Com-
prehensive Grammar of the English Languagendon: Longman.

Riddle, Elizabeth and Gloria Sheintuch. 1983. A functionaklysis of pseudo-
passivesLinguistics and Philosoph§:527-563.

Sag, lvan A. 2005. Adverb extraction and coordination: &r&plLevine. In S. Muller,
ed., Proceedings of the 12th International Conference on HPSges 322-342.
Stanford, CA: CSLI Publications.

Ziv, Yael and Gloria Sheintuch. 1981. Passives of obliques direct objectsLingua
54:1-17.

14

Linearization of affine abstract categorial
grammars

Ryo Y osHINAKA

Abstract
The abstract categorial grammar (ACG) is a grammar formalsmsed on linear
lambda calculus. It is natural to ask how the expressive pofvACGs increases when
we relax the linearity constraint on the formalism. This graptroduces the notion of
affine ACGs by extending the definition of original ACGs, and prgs a procedure for
converting a given fine ACG into a linear ACG whose language is exactly the set of
linear A-terms generated by the origindfiae ACG.
Keywords ABSTRACT CATEGORIAL GRAMMARS, GENERATIVE CAPACITY, LAMBDA CALCU-
LUS, CONTEXT-FREE TREE GRAMMARS, LINEAR CONTEXT-FREE REWRITING SYSTEMS, MUL-
TIPLE CONTEXT-FREE GRAMMARS

14.1 Introduction

De Groote (2001) has introducedbstract categorial grammars (ACGsh
which bothlexical entriesof the grammar as well agrammatical combi-
nationsof them are represented by simply typed lingaterms. While the
linearity constraint on grammatical combinations is thioitg be reasonable,
admitting non-linean-terms as lexical entries may allow ACGs to describe
linguistic phenomenain a more natural and concise fashion.

On the other hand, de Groote and Pogodalla (2003, 2004) havenghat
a variety of context-free formalisms, namely, contexefggammars, linear
context-free tree grammars (linear CFT&apd linear context-free rewrit-

1This paper lets the term “linearity” mean non-duplicationdanon-deletion. Thus “lin-
ear CFTGs” means non-duplicating non-deleting CFTGs hboeigh usually “linear CFTGs”
means non-duplicating CFTGs.

2See also Kanazawa and Yoshinaka (2005) for complete pro@hoddability of linear

Proceedings of FG-2006
Editor: Shuly Wintner.
Copyright© 2007, CSLI Publications.

185

186/ Ryo Y oSHINAKA

ing systems (LCFRSSs), is encoded by ACGs in straightforwaags. In this
sense, ACGs can be thought of as a generalization of thosenuga for-
malisms. The linearity constraint in those formalisms rhagcthat of the
ACG formalism.

Concerning those grammar formalisms, it is known that theressive
power does not change when the linearity constraint is eelds just non-
duplication, allowing deleting operations. Seki et al.41Phave shown the
equivalence between LCFRSs and multiple context-free grars (MCFGS),
which correspond to the relaxed version of LCFRSs that mag laleting
operations. Fujiyoshi (2005) has established the equicaldoetween lin-
ear monadic CFTGs and non-duplicating monadic CFTGs. Fsshesult
(Fisher, 1968a,b) is rather general. He has shown thatring $D-languages
generated by general CFTGs coincide with the string 10 Uaiggs generated
by non-deleting CFTGs.

Along this line, extending the definition of usual linear A§&his paper
introducesffine ACGswhich have BCK--terms as their lexical entries, and
compares the generative power of linear ACGs afid@aACGs. We present
a procedure for converting a giveffiae ACG into a linear ACG whose lan-
guage is exactly the set of the linekterms generated by the original ACG.
Therefore, ine ACGs are not essentially more expressive than linear ACGs
since strings and trees are usually represented with lingaims.

As linear ACGs encode linear CFTGs and LCFRSBna ACGs encode
non-duplicating CFTGs and MCFGs in straightforward ways.stich #ine
ACGs, our linearization method constructs linear ACGs Wliiave the form
corresponding to linear CFTGs or LCFRSs. Thus, our resaltgsneraliza-
tion of the results we have mentioned above with the excepmtfd-isher’s,
which covers CFTGs involving duplication.

14.2 Preliminaries
14.2.1 Lambda-Terms

Let o7 be a finite non-empty set atomic typesThe set/ (<) of typesbuilt
on </ is defined as the smallest supersetotuch that

v if @,fe T (&), then @ — B) € T().

Theorder of a type is given by the function ordr («7) — N,
= ord(p) = 1forallpe «,

= ord((@ — B)) = maxord(@) + 1, ord(B)}.

A higher-order signatureZ is a triple (<7, ¢, 7y where.o/ is a finite non-
empty set of atomic types is a finite set of constants, andis a func-

CFTGs by ACGs.

L INEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 187

tion from ¥ to 7 (<7). Theorder of the higher-order signature is defined as
ord®) = maxX ord(r(a)) |a€ ¢ }.

Let 2 be a countably infinite set ofariables The setA(Z) of A-terms
(termsfor short) built uponz and the typer(M) of a termM € A(X) are
defined inductively as follows:

* Foreverya e ¥, a e A(X) andr(a) = 7(a).

* Foreveryxe 2 anda € 7 (), x* € A(X) and7r(X?) = a.

= ForM,N € A(), if (M) = (e — B), ©(N) = «, then MN) € A(Z) and
7((MN)) = 8.

* Forxe 2, a € 7(&/) andM € A(Z), (Ax*.M) € A(Z) and7{(Ax*.M)) =
(@ = 7(M)).

For convenience, we simply writeinstead ofr"and often omit the superscript
on avariable if its type is clear from the context. The nogiohfree variables,
closed terms3-normal form Bn-normal form, are defined as usual (see Hind-
ley (1997) for instance). A terrl is acombinatoiiff M is closed andv con-
tains no constants. A teriv is said to begffineif any variable occurs free at
most once in every sub-term M. An affine term is said to bénear if every
A-abstraction binds exactly one occurrence of a variable. §¢is of &ine
and linear terms are respectively denoted\3y(X) andA'" (2). As usual, let
-3, =5, =p,, = denotgs-reduction g-equality,Sy-equality, andv-equivalence
respectively M|z and [M|g, respectively represent thg&normal form and
Bn-normal form. We use upper case italic lettdisN, P, ... for terms, late
lower case italic letters,y, z . .. for variables, middle lower case italic letters
o, p,... foratomic types, Greek lettess 3, . . . for types, sanserd, A, ... for
constants. We writee — 8 — y — d for (@ = (8 — (y = 9))), o® — ¢ for
a— a—a— 3§ MNPQfor ((MN)P)Q), AxyzM for (Ax.(1y.(4zM))), and
SO on.

14.2.2 Abstract Categorial Grammars

Definition 12 For two sets of atomic types; and.«#;, atype substitutiomr
is a mapping fronez to 7 (#1), which can be extended homomorphically as

o(@ = p) = o(a) = o(B).

For two higher-order signatur&s andx;, aterm substitutiom is a mapping
from %5 to A(Z1) such that)(a) is closed for alla € 4. For two higher-order
signaturesy andX;, we say that a type substitutien: < — 7 (<) and
a term substitutiod : 6o — A(Z1) arecompatibleiff o(ro(a)) = 71(6(a))
holds for alla € %p. A lexiconfrom Xy to X1 is a compatible pair of a type
substitution and a term substitution. A lexicofi = (o, 0) is affine (linear)
iff 6(a) is afine (linear) for alla € %o. For a lexicon? = (o, 6), we define
6 as the homomorphic extension@$uch thab(x®) = x”@. Indeed (M) is

188/ Ryo Y osSHINAKA

always a well-typedi-term if so isM; if M has type, thend(M) has type
o(a).

Hereafter we identify a lexicoZ = (o, 6) with the functionso andé. A
lexicon.Z is n-th orderif ord(.¥) = maxX ord(c(p)) | p€ o} < n.

Definition 13 An abstract categorial grammar (ACG$ a quadruple/ =
(%0, 21, %, 5), where

= Yy is a higher-order signature, called thlestract vocabulary
= Y, is a higher-order signature, called thigject vocabulary
= Zisalinear lexicon frontg to X4,

» se @ is called thedistinguished type

We sometimes call the tripka, 7o(a), £ (a)) for a € % alexical entry and
specify an ACG by giving the set of lexical entries and théidgglished type.

Definition 14 An ACG ¥ = (X, X1, %, S) generates two languages, thie-
stract languageA(%¢) and theobject languag€(¥), defined as

A(@) = {M | M e A"(%,) is a closegBy-normal term of types},
o) = {1ZM)lgy | M € A(Y) }.

The abstract language can be thought of as a set of abstaoihatical
structures, and the object language is regarded as the senhoffete forms
obtained from these abstract structures and the lexicoms, e simply say
the language generated by an ACG for its object languageterheabstract
categorial languages (ACLsheans the object languages of ACGs.

Though de Groote’s original definition of an ACG requires texicon
to be linear, this paper allows the lexicon to be non-liné.call an ACG
whose lexicon is fine affine ACG and denote the class offime ACGs by
G, We then distinguishfine ACGs whose lexicons are linear, i.e., original
ACGs, by calling thenlinear ACGsand letG'™ denote the class of linear
ACGs. Note that the abstract language always consisitsaatr terms, though
an ACG is not necessarily linear. For ea@he {G'", G2}, G*(m, n) denotes
the subclass of ACGs belonging @&* such that the order of the abstract
vocabulary is at mosh and the order of the lexicon is at mastAn ACG is
m-th orderif it belongs toG*(m, n) for somen.

Example 1 Letsr = 0 —» ocandM + N be an abbreviation of>. M(N2) if the
types ofM andN aredr. Let us consider thefine ACGY = (Xo,X1,.Z, S

L INEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 189

with the following lexical entries:

Xe %0 To(X) X(X)
C n Av.v/cat//cats/
M n Av.v/mouse//mice/
J np Ay.y/John/P
R np—s AXX(Auv.u + v/runs//run/)
E N’ — s | Ax1X2.X2(AUV.U + v/eats//eat/) + Xy (Auv.u)
A n— np Azyy(/a/ + zP)Py
L n— np Azyy(/all/ + zP,)P,

where eachyxxx/ is a constant of typar, P; denotesiui'uy.u;, .£(n) =

(I > o) - o, Z2(Np) = (F - (F? > o) - &) - o, Z(9 = .
The object languag@(¥) consists of terms representing some English sen-
tences such a¥®hn runsall mice run all cats eat a mousend so on.

14.3 Linearization of Affine ACGs

While linear ACGs can generate languages consisting oétiterms only,
affine ACGs can generate languages containing non-linear t@mesefore,
affine ACGs define a strictly richer class of languages thantliA€4s. How-
ever, since terms representing strings or trees are firafiéme terms in the
object languages are not very interesting. This paper shiloatsfor every
¢ e G¥(m, n), we can construc¥’ € G'(m, max2, n}) such that

O@)={PeO(¥)|Pislinear} (14.8)

Moreover, in case ah = 2, we can find/’ € G'"(2, n) satisfying the equation
(14.8). Therefore extending the definition of an ACG to allewical entries
affine does not enrich the expressive power of ACGs in an esbesatjaBe-
fore proceeding with our construction, we mention a paytistronger result
on the special case of this problem on string-generatingreatorder ACGs,
obtained from Salvati’'s work (Salvati, 2006). He presemtsfgorithm that
converts a linear AC& e G'"(2,n) generating a string language into an
equivalent LCFRS (via a deterministic tree-walking tramset). Even if an
input is an #ine ACG¥ e G&(2,n), his algorithm still outputs an equiv-
alent LCFRS. Since every LCFRS is encodable by a linear AQGnigang
to G'"(2, 4) (de Groote and Pogodalla, 2003, 2004), therefore thaslerhe
following corollary.

3A stringas . ..an on an alphabe¥ is represented byz°.a1(...(an2)...) € A'M(Zy) where
v = ({0}, V,rv) with 7y (a) = or for all a € V as in Example 1. Trees are constructed on some
ranked alphabet. A ranked alphaliEtp), whereF is an alphabet andis a rank assignment on
F, can be identified with a higher-order signatdlg,,) = ({0}, F, 7,) such thatr,(a) = ok - oif
p(a) = kforalla € F, and a tree is identified with a variable-free (thus lineant of the atomic
typeoin the obvious way.

190/ Ryo Y OSHINAKA

Corollary 29 For every string-generatingfine ACGY € Ga(2,n), there is
alinear ACG¥’ € G'"(2,4) such thatD(¥4’) = O(¥9).

14.3.1 Basic ldea

We explain our basic idea for the linearization method feiina ACGs
through a small example. Let us consider tligne ACG ¥ consisting of
the following lexical entries:

X € %0 To(X) X(X)
A p— S| AW °wa’he
B p AXCYP. X

where.Z(s) = o0 and.Z(p) = 0> — o. Corresponding té&\B € A(Y), we
havea € O(¥¢) by

ZL(AB) = (AW~ Wa’h%)(AX°Y°.X) —p (AX°Y°.X)a’h°»5 a°. (14.9)
The occurrences of vacuousabstractionly® causes the deletion df in
(14.9). Such deleting operation is what we want to eliminaterder to lin-

earize the fiine ACGY. Let us retypely® with 1y° and replacé® with 56 to
indicate that they should be eliminated. Then (14.9) is da&ed by bars as

(AWP~30. Wb) (XYP.X) =5 (1°YP.X)a%h” - @°, (14.10)

where we retyp&°—°~° with we=°-°, so that the whole term is well-typed.
In our setting, when a term has a barred type, it means thégtheshould be
erased during-reduction steps, and vice versa. By eliminating thosedgoharr
terms and types from (14.10), we get

(AWC.Wa®)(Ax°.X) —p (AX°.X)a° —p a°, (14.11)

which solely consists of linear terms. Hence, the linear AZGwith the
following lexical entries generates the same languagesasrtginal ACGY.

X € 6 7o(%) Z'(x)
A [p,o—>0— 0] = [s0] | AW °wa°
B’ [p,o—>0— Q] AX0.X

where p,0 —» 0 — 0] and [s, 0] are new atomic types that are mapped
to o — o0 ando, respectively, andq o] is the distinguished type. We have
Z(AB) = Z'(A'B’). The termawP~2~°.wa°h , which is led to.Z’(A"), is
just one possible bar-decoration f&#(A). For instanceaw®~°~°.wa’h° and
AWC~°~° walh® are also possible. Bars appearinglis®°°.wa’b° predict
that the sub-terra will be erased, andw®~°~°.wa®h° predicts that no sub-
term of it will disappear. Our linearization method also gwioes lexical en-
tries corresponding to those bar-decorations.

L INEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 191

14.3.2 Formal Definition

We first give a formal definition of the set of possible baratations on a
type and a term. Hereafter, we fix a givefire ACGY = (X0,%1,.Z, S).
Definex; = (&, 61, 71) by

h={(Plpea}, G1=(Clcet), Ti={C n(0) | ce %},
wherea — =@ — . LetY) = (o, €}, 7}) = (94 U 94,61 U 61,11 UTD).
Here, we have the simple lexiconfrom X7 to X; defined as
P=p=pforpe o, andc=C=cforce .

The set‘?(;zfl) of possible bar-decorations on types is defined by

‘7’(42%1)={ae7’(4z%l’)|ifﬁl—>---—>ﬁn—>ﬁisasubtypeoix
for somep € A, thenp, ..., B € T(Z1))

Actually, terms inA®T(Z;) that we are concerned with have typeﬁﬂg%l).
The reason why we ignore typesin(.«7,') — ‘7’(42%1) is that if a term is bound
to be erased,Athen so is every sub-term of it. For instaneeydfriablex has
typeo — G ¢ 7 ({0}), then the termx°=%° has typed, which, in our setting,
means that it should disappear. Buk?°y° disappears, so dog8, which,
therefore, should have ty@eto be consistent with our definition.

The setA¥(Z;) of possible bar-decorations on terms is the subset of
A (2)) such tha € A¥ (%) iff
= every variable appearing @ has a type ir'?(;z%l), and
» if Ax*.Q’ is a sub-term ofQ and x* does not occur free i, thena €

T ().
We are not concerned with termsAf™ (2) - NS ().

The following properties are easily seen:
« If Qe A¥'(xy), thent(Q) € T (),
« If 74(Q) € T () for Q € A¥(%,), every sub-term oQ is in A¥ (%),
» If Qe A¥(Z;) andQ 5 Q', thenQ € A (Zy).

For eache € 7 (<) andP € A% (%), ® gives the set of possible bar-
decorations on them:

O(a) = (B €T () |p = a),
®(P) = {Qe A¥(Z1) | Q= P},

In other words® and™ are inverse of each other, if we disregard types in
T (o)) - T (<4) and terms im@(27) — A¥(%,).

192/ Ryo Y OSHINAKA

Secondly, we eliminate barred subtypes frane {?:(szl) - 7 (%) and
barred sub-terms fro® € A (2,) — A (Z1). Let us defined)” and Q) as
follows:

(p)'=p forpe.an,

R
()" = X,
(c)'=c force %,
(x.Q)f = {ﬂx@?*.(o)f g ()
Q' i e T ()
"(Q)f if 7
cor - {5 LHR5E

The following properties are easily seen ¢ :7:(&71) — T () andQ,Q’ €
AM(Z1) - AT(Zy)):

* (@) e T (@) and Q) € A"(Zy),
= 1((Q)) = (r(Q)",

» If Qisp-normal, then so isQ)",

« Q=4 Q implies @' = Q).
Lemma 30 For every closed term @ A%'(54), 74(Q) € 7 () iff (Q)F =5
Q=4 Q.

Lemma 31 For every closed term R A (Z,), |P|s is linear jff there is Qe
®(P) whose type is iff ().

Second-Order Case

We say that an abstract atomic type .« is uselessf there is noM € A(¥)
that has a sub-term whose type contgn#\n abstract constard € % is
uselesdf there is noM e A(¥) containinga. If an ACG is second-order,
it is easy to check whether the abstract vocabulary contesetess atomic
types or constants, and if so, we can eliminate uselessaabstiomic types
and constants. This can be done in a way similar to the elitioimaf useless
nonterminal symbols and production rules from a contes¢-fyrammar.

Definition 15 Let¥ = (Xo,21,.Z, S) be a second-order ACG that has no use-
less abstract atomic types or constants. We défine (X;, ~1, £, [s, Z(9)])

L INEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 193
as follows: define = (<, 63, 7,) by
gy ={[p.Bl| pe ., BedL(p)-T ()},
%5 =1{[a.Ql | a€ %, Qe ®(L(a)) - A™(Z1)),
75 = {[a, Q] ~ ([70(a), 71(QD*),
where (p. 81)* = [p.],

o @B -) B T ()
(le=rf=ob ‘{([7,61)* f e T(A),
and.Z’ by

Z'(pA) =@, 2 (aQ)=Q"
¢’ is linear, but it may contain useless abstract atomic typesistants. The
linearized ACG¥' for ¢ is the result of eliminating all the useless abstract
atomic types and constants fragi.

Lemma 32 Let¥ and¥’ be as in Definition 15.

For every variable-free Me A'M(Zo) of an atomic type and every @
O(Z(M)) — A¥(Zy), there is Ne An(z0) such thatry(N) = [1o(M), 74(Q)]
and.Z’(N) = (Q)'.

Conversely, for every variable-free N A'"(() of an atomic type,
there are Me AM(Zp) and Q € O(Z(M)) — A% (Z;) such thatr{(N) =
[ro(M), 74(Q)] and.2”(N) = (Q)".

Theorem 33 For every gine ACGY e G&(2,n), there is a linear ACG
4" € G'"(2,n) such thaiO(¢') = {P € O(¥) | P is linear).
Proof. Use Lemmas 31, 32, and 30. O

De Groote and Pogodalla (2003, 2004) have presented emrodithods
for linear CFTGs and LCFRSs by linear ACGs. Their methodsalaa be
applied to non-duplicating CFTGs and MCFGs.

Example 2 Let a non-duplicating CFT& consist of the following produc-
tions#

S — P(a,b), P(x1,x2) = P(c(x1), c(S)) | d(x1, X2),
where the ranks db, P, a, b,c,dare 0, 2,0, 0, 1, 2, respectively. De Groote
and Pogodalla’s method transfor@snto the following dfine ACG¥:

X € 6o 70(X) Z(x)
A p— s Y% ~°.ypa°h®
B[s> p—p | 33 xyp(c®0x:)(c°%e)
C p Ax‘{xg.doz”oxlxz

4The notation adopted here follows de Groote and Pogodalla.

194/ Ryo Y OSHINAKA

When we apply the linearization method given in Definitiontd%’, we get
the following linear ACG4' whose distinguished type is,[o]:

X € 6, |
) <
—0—0

[A, 13 ° °ypa] -

[p,o— 0— 0] —[s0]

[A, 2y57°~C.ypab] o

(.05 050 - [s0] e ee

[B. 45~ yp(cxa)(cys)l 0

[5,0] N [p,_0p—>_0 _)101 _p) [p’lo 50— O] /ly(sjy?) Xflj'yP(CX1)(Cys)
s s HOHOXO . S, —0

D oad 2 [pb g ar| Y (x)

|[C, /lXng.de_Xz]l

[p,o— 0— 0]

/lXng.dX]_Xg

The linearized ACG¢' is actually the encoding of the linear CFT& con-
sisting of the following productions:
S— P(ab)|P'(a), P'(x)— Plc(x),c(S)) | P'(c(xa)),
P(X1, X2) — d(X1, X2),
where the ranks of nonterminals P, P’ are 0, 2, 1, respectivel®, ¢, ¢',
andG’ generate the same tree language.

The following corollary generalizes the result by Fujiyp§h005), which
covers thenonadiccase only.

Corollary 34 For every non-duplicating CFTG G, thereis alinear CFTG G
such that G and Ggenerate the same tree language.

Let¥ be the #fine ACG that encodes an MCR& The linearized AC®'
is indeed in the form that is the encoding of an LCPR&It%” is not). There-
fore, our result covers the following theorem shown by Sekile(1991).

Corollary 35 For every MCFG G, there is an LCFRS Guch that the lan-
guages generated by G and &incide.

Third or Higher-Order Case

Definition 15 itself does not depend on the order of the giviéme ACG
except that in the general case, we do not know how to find andneite
useless abstract atomic types and constants. For the §easeahowever, the
linearized ACG given in Definition 15 may generate a stritdhger language

5The LCFRS obtained from an MCFG through our linearizatiorthmé may have nonter-
minals of rank 0. The reason why usual definitions of an LCFRShet allow nonterminals
to have rank 0 is just to avoid redundancy. Mathematicallgakmg, allowing or disallowing
nonterminals of rank 0 does not matter at all.

L INEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 195

than the original iine ACG. In the remainder of this paper, we present a

linearization method for generaffane ACGs.

Example 3 Suppose that anfiizne ACG¥ e G#(3,1) consists of the fol-

lowing lexical entries:

X e %0 To(X) g(X)
A q #
B p—>g—q AY°Z°. b0z
C g—s Az
D (p— 9 — s | AX°7°.2°7°(xe”)
n- tlmes n- tlmes
We see0(¥) = ((a(b(.(b#)...))...) | n > 0}. The linear ACG¥’

by Definition 15 consists of the following lexical entries:

X € 64 75(X) Z'(x)
[A#] [9. 0] i
[B, 1y°Z.bZ] [g.0] — [q,0] AZ2.bz
[C, 2.7 [g,0] = [s 0] 1.z
[D, Ax°~°.a(xe)] [s,0] = [s 0] Ax°.ax
[D, ax*~°.a(xe)] | ([p.o] — [s,0]) — [s,0] | AX°~°.a(xe)

The last lexical entry is useless. We have
m—tlmes n- tlmes

0(@") = (a(...(@(b(...(b#)...))...) Imn > 0} 2 O(#).

Though any term of type that is the first argument of an occurrencedas
bound to be erased in the original AG% we cannotignore the occurrence of
the typep, because that occurrencembalances the numbers of occurrences
of B andD in a term inA(%Y).

Our new linearization method gives the linear A@G consisting of the
following lexical entries (useless lexical entries areegsed):

X €6y 75 (X) 2" (x)
[A.#] [0, 0] 7
[B.y°Z.bz] | [p,0] — [q,0] — [q,0] AY°~°2.y(bz)
[C, A7 [g,0] = [s 0] APz
[D,xX°.a(@)] | ([p,0] — [s0]) — [s 0] | AX°~)~0.a(x(12°.2))

where [p, 0] is mapped t@® — 0. We haved(¥¢) = O(¢").

Now, we give the formal definition of our new linearization timed for
general &ine ACGs. For simplicity, we assume that = {0} here, but it is
possible to lift this assumption. The new linearized A@G has the form

196/ Ryo Y OSHINAKA

G = (X, 21, 2", [s Z(9]), whereX = (o, 6y, 1) is defined by
Ay ={[p.Bl I pe 0, Be@(ZL(p)},
%y =1[a.Ql lae %, Qe ®(L(a))},
70 = {[2, Q] ~ [7o(a). 73 (Q)] }
where r —» v, — 6] = [e, f] — [7.4].

Here we have two simple lexicot®, : X — X and.#7 : X — X7;
Z(p.p) =p, “([a.Ql) =a ZA(p.p) =8 -“A(aQ])=Q
We haveZ(N) = Zo.%(N) for N e A™ (). ForanyM e A™™(5) andQ e
®(Z(M)), one can find a term(M, Q) € A™(Zy) such thatZ(x(M, Q)) =

M and. % (y(M, Q) = Q.
Lemma 36 For every Qe Kaﬁ(zl) anda € 7 (<), the following statements
are equivalent:
1. There is Me A'"(Z) of typea such thatZ (M) = Q.
2. There is Ne A'"(2y) of type[e, 7;(Q)] such that#;(N) = Q.
Lemmas 31 and 36 imply
{MeAY) | |.Z(M)|g is linear} = { Zp(N) | N € A(¥")).

Since (Z(N))" =5 Z(N) = £ 0. %(N) for everyN € A(%") by Lemma 30,
it is enough to define a new lexicayf” so that
ZL"(N) =g, (Z2(N))" (14.12)

for everyN € A(Y").
We define the type substitutian: «7;" — 7 ({o}) of £ = (0, 0) as

f if 8¢ 7({0)),

oppy={P AT
o—o0 IifgeT({0}).

Here we identifyo- with its homomorphic extension. As a preparation for
defining the term substitutiohof .2, we give three kinds of linear combi-
nators. For ., 5] € 7 («7’) such thag € 7({0}), leto([a.B]) =y1 — - —
Ym — 0 —» oandy; = yi1 — --- = ik — 0 — 0. Z2°0¢A) s a linear
combinator of typer([«, 8]) defined as

270 = a2ty Ri(Re(. .. (Rmd) ..)

whereR = y"'Zs . Z%k,

For each,] € 7(<7") such thap € 7 ({0}) — 7 ({o}), we define two linear
combinators<? of typeo([a.B]) — (B)" andY? of type ()" — o([a.]) by
mutual induction. Letd, 8] = [@1,B1] — -+ = [am,Bm] — [p,Bo] With
[p.Bo] € 75" and the setl, ..., m} be partitioned into two subsetsandJ so

L INEARIZATION OF AFFINE ABSTRACT CATEGORIAL GRAMMARS / 197

thatg, ¢ 7((0)) iffi € I. Letl = {is,....ik} (ij < ;1) andd = {jo..... ji)-
Let

) f)
X6 = ay eyl B yeledpy py

Yﬁi X'(:Bi)f if i el
where Pj=4{_ "1 ’
! {Z(J’([(Ii»ﬁi]) ifie J,

and
Y8 = @ yglenpid) - yelemBrdz vy vy, AL, L, D))
whereZis short forzZ ...z for (30)" =y1 — --- = yn > 0,and
Li = XGy7 e sd foriel,
M; = ZD’([di,ﬁi])—)OHOyiU([aisﬁi]) forie J.
Note that if . 8] = [, 8ol € <7, thenXp® =g, Y&° =4, 12%9 .z
Now, we give a new linearization method as follows.
Definition 16 For a given &ine ACG¥, we define a new linear ACG as
G =(Zy,21, 2", [8 Z(9]), whereZ” = (o, 0) for o as above and
T/l(Q) T H ’ =
ot op = | Mo@ Q'ls if 7(Q) € 73D,
zot QD) if 74 (Q) € T({T}).
If 4 € G¥(m, n), then¥” e G'"(m, max2, n}).
Lemma 37 Given N € A(Zj) of type[a,p] such thatg ¢ 7({o}) and
Z£(N) € A¥(2,), we have
(L))" = X0-2" (N)n
wheregy is the substitution on the free variables&f’(N) such that
el g YEx®' i x has the typée, 8] in N andg ¢ 7 ({o}),
zoA) otherwise.
Theorem 38 For every dfine ACGY € G (m, n), there is a linear ACG
4" € G'"(m max2, n}) such thaD(¥¢”) = {P € O(¥) | P is lineary).
Proof. Lemma 37 entails the equation (14.12). O

14.4 Concluding Remarks

We have shown that the generative capacity of linear ACGsligh as that of
affine ACGs, that s, the non-deletion constraint on linear AGGsiperficial.
Our linearization method, however, increases the sizeefithen grammar
exponentially due to the definition df, so there may still exist an advan-
tage of allowing deleting operations in the ACG formalisrar Fastance, the

198/ Ryo Y OSHINAKA

atomic typenp of the abstract vocabulary of the ACG in Example 1 will be
divided up into three new atomic types which correspond tonnghrases as
third person singular subjects, plural subjects, and ¢&jeespectively.

One attractive feature of ACGs is that they can be thoughsaf gener-
alization of several well-established grammar formaligde Groote, 2002,
de Groote and Pogodalla, 2003, 2004). This paper demossttet the ACG
formalism also generalizes some “operation” on those grarapmamely,
conversion from non-duplicating grammars into non-dwgilitg and non-
deleting ones.

Recall that Fisher (1968a,b) showed that every CFTG hasrasmrnding
non-deleting CFTG whose string 10-language is equivalésta general-
ization of his result, the author conjectures that one camimhte vacuous
A-abstraction fromsemi-gfine ACGspreserving the orders of the abstract
vocabularies and the lexicons, where a termsami-gfine if for every free
variablex of any sub-term, eithex occurs at most once, or has at most
second-order type. Actually, every CFTG has a correspgndami-dfine
ACG such that the tree I0-language of the CFTG coincides thighob-
ject language of the ACG, and the senfiiide ACG encoding a hon-deleting
CFTG has no vacuoukabstraction. If the conjecture is correct, this implies
that every CFTG has a corresponding non-deleting CFTG witregstring
IO-language is equivalent.

Acknowledgment

The author is grateful to Makoto Kanazawa for initiatingstnésearch and
giving advice throughout this work. The author would likeftank to Sylvain
Salvati for his invaluable comments on the draft of this pajreparticular,
he inspired the author to get the conjecture stated in thedasion.

References

de Groote, Philippe. 2001. Towards abstract categoriahgrars. InAssociation
for Computational Linguistics, 39th Annual Meeting andhL@onference of the
European Chapter, Proceedings of the Conferepeges 148—155.

de Groote, Philippe. 2002. Tree-adjoining grammars asatistategorial grammars.
In TAG+6, Proceedings of the 6th International Workshop on Tre®ifi)g Gram-
mars and Related Frameworksages 145-150. Universita di Venezia.

de Groote, Philippe and Sylvain Pogodalla. 2088inear context-free rewriting sys-
tems as abstract categorial grammars. In R. T. Oehrle anoh&rR edsProceed-
ings of Mathematics of Language - MOL-8, Bloomington, IndiaU. S, pages
71-80.

RerFERENCES / 199

de Groote, Philippe and Sylvain Pogodalla. 2004. On thessgire power of abstract
categorial grammars: Representing context-free forrmalidournal of Logic, Lan-
guage and Informatiod3(4):421-438.

Fisher, Michael J. 1968aGrammars with Macro-Like ProductionsPh.D. thesis,
Harvard University.

Fisher, Michael J. 1968b. Grammars with macro-like produnst InProceedings of
the 9th IEEE Conference on Switching and Automata Themges 131-142.

Fujiyoshi, Akio. 2005. Linearity and nondeletion on moradontext-free tree gram-
mars.Information Processing Lette@3(3):103-107.

Hindley, J. Roger. 1997Basic Simple Type ThearZambridge University Press.

Kanazawa, Makoto and Ryo Yoshinaka. 2005. Lexicalizatiosegond-order ACGs.
Tech. Rep. NII-2005-012E, National Institute of Inforneati

Salvati, Sylvain. 2006. Encoding second order string AC@h weterministic tree
walking transducers. IRroceedings of the 11th conference on Formal Grammar

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and Tadémsami. 1991. On
multiple context-free grammar3heoretical Computer Scien88(2):191-229.

15

List of contributors

Miguel A. Alonso
Departamento de Computacion, Facultad de Informética
Universidade da Corufia, Spain

Maxime Amblard
LaBRI, Université Bordeaux 1
Bordeaux, France

Houda Anoun
LaBRI, Université Bordeaux 1
Bordeaux, France

John Blatz
Department of Computer Science, Johns Hopkins University
Baltimore, MD, USA

Maria Buli hska

Faculty of Mathematics and Computer Science, Uniwersytatnvifisko-
Mazurski

Olsztyn, Poland

Jason Eisner
Department of Computer Science, Johns Hopkins University
Baltimore, MD, USA

Josef van Genabith

National Centre for Language Technology, School of Conmgy®ublin City
University

Dublin, Ireland

Carlos Gobmez-Rodiiguez

Departamento de Computacion, Facultad de Informatica
Universidade da Corufia, Spain

Laura Kallmeyer

Eberhard-Karls Universitat Tubingen

201

202/ Proceepings oF FG-2006

Tubingen, Germany

Stephan Kepser

Eberhard-Karls Universitat Tubingen
Tubingen, Germany

Aleksandra Kislak-Malinowska
Uniwersytet Warmihsko-Mazurski
Olsztyn, Poland

Alain Lecomte
Université Pierre Mendes-France (Grenoble II)
Grenoble, France

Rebecca Nesson

Division of Engineering and Applied Sciences, Harvard @nity
Cambridge, MA, USA

Sylvain Salvati

National Institute of Informatics

Tokyo, Japan

Stuart Shieber

Division of Engineering and Applied Sciences, Harvard &nsity
Cambridge, MA, USA

Edward P. Stabler

Linguistics Department, UCLA

Los Angeles, CA, USA

Jesse Tseng

CNRSLoria

Vandoeuvre-les-Nancy, France

Manuel Vilares

Departamento de Computacion, Facultad de Informatica
Universidade da Corufia, Spain

Ryo Yoshinaka

National Institute of Informatics, University of Tokyo
Tokyo, Japan

