
Proceedings of FG 2006:
The 11th conference on

Formal Grammar

Malaga, Spain
July 29-30, 2006

Editor: Shuly Wintner

CENTER FOR THE STUDY
OF LANGUAGE AND INFORMATION

Preface

FG-2006, the 11th conference on Formal Grammar, was held in Malaga,
Spain in July 2006. This year’s conference included 12 contributed papers
covering, as usual, a wide range of topics in formal grammar.In addition to
those papers, this volume includes also the abstracts of twoinvited talks by
Josef van Genabith (Dublin City University) and Laura Kallmeyer (Univer-
sität Tübingen).

The twenty four submissions to the conference were reviewedby members
of the Program Committee; we are grateful to all of them for their help in
making the conference a success: Anne Abeille (Paris 7, FR),Pierre Boullier
(INRIA, FR), Gosse Bouma (Groningen, NL), Chris Brew (Ohio State, US),
Wojciech Buszkowski (Poznan, PL), Miriam Butt (Universitaet Konstanz,
DE), Alexander Clark (Royal Holloway University, UK), Berthold Crysmann
(DFKI, DE), Philippe de Groote (LORIA, FR), Denys Duchier (LORIA, FR),
Tim Fernando (Trinity College, IE), Annie Foret (IRISA - IFSIC, FR), Nis-
sim Francez (Technion, IL), Gerhard Jaeger (University of Bielefeld, DE),
Aravind Joshi (UPenn, US), Makoto Kanazawa (National Institute of Infor-
matics), Stephan Kepser (Tuebingen, DE), Alexandra Kinyon(University of
Pennsylvania, US), Geert-Jan Kruijff (DFKI, DE), Shalom Lappin (King’s
College, UK), Larry Moss (Indiana, US), Stefan Mueller (Universitaet Bre-
men, DE), Mark-Jan Nederhof (Max Planck Institute for Psycholinguistics,
NL), James Rogers (Earlham College, US), Ed Stabler (UCLA, US), Hans
Joerg Tiede (Illinois Wesleyan, US), Jesse Tseng (LORIA, FR), Willemijn
Vermaat (Utrecht, NL), Anssi Yli-Jyrae (Helsinki, FI).

We are indebted to all the authors who submitted papers to themeeting,
and to all participants in the Conference. On behalf of the Organizing Com-
mittee, which consisted of Paola Monachesi, Gerald Penn, Giorgio Satta and
Shuly Wintner, I am happy to present this volume.

Shuly Wintner, February 2007

iii

Contents

1 Constraint-based compositional semantics in lexicalized tree
adjoining grammars 1

L K

2 Parsing and generation with treebank-based probabilistic LFG
resources 5

J  G

3 Treating clitics with minimalist grammars 9
M A

4 Linear grammars with labels 21
H A & A  L

5 P-TIME decidability of NL1 with assumptions 35
M B́

6 Program transformations for optimization of parsing
algorithms and other weighted logic programs 45

J E  J B

7 On theoretical and practical complexity of TAG parsers 87
C G́-Rı́, M A. A, M V

8 Properties of binary transitive closure logics over trees 103
S K

9 Pregroups with modalities 119
A K-M

v

vi / P  FG-2006

10 Simpler TAG semantics through synchronization 129
R N  S S

11 Encoding second order string ACG with deterministic tree
walking transducers 143

S S

12 Sidewards without copying 157
E P. S

13 English prepositional passives in HPSG 171
J T

14 Linearization of affine abstract categorial grammars 185
R Y

15 List of contributors 201

1

Constraint-based compositional
semantics in lexicalized tree adjoining
grammars
L K

Abstract
This talk presents a framework for LTAG semantics that computes semantics based on

the LTAG derivation trees such that semantic computation consists of feature unifications
parallel to those performed in Feature-Based TAG (FTAG). Weshow that this framework
has sufficient expressive power to deal with a large range of seemingly problematic phe-
nomena, namely quantifier scope, raising verbs, bridge verbs and nested quantificational
NPs. Finally, a compositionality proof is sketched for thisframework that relies on the
fact that the derivation tree locally determines both, syntactic and semantic composition.1

Keywords L T A G,  ,
,  , -

1.1 Lexicalized Tree Adjoining Grammar (LTAG)

LTAG is a tree-rewriting formalism. An LTAG consists of a finite set ofele-
mentarytrees associated with lexical items. From these trees, larger trees are
derived by substitution (replacing a leaf with a new tree) and adjunction (re-
placing an internal node with a new tree). LTAG derivations are represented
by derivation trees that record the way the elementary treesare put together.
A derived tree is the result of carrying out the substitutions and adjunctions.
Each edge in the derivation tree stands for an adjunction or asubstitution.

The elementary trees encapsulate all syntactic/semantic arguments of the

1The work presented here can be found in Kallmeyer and Romero (2007) (for the framework
and the scope analyses) and Richter and Kallmeyer (2007) (for the compositionality proof).

1

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

2 / L K

lexical anchor. They are minimal in the sense that only the arguments of the
anchor are encapsulated, all recursion is factored out. Because of this, sub-
stitutions and adjunctions roughly correspond to combinations of a predicate
with one of its arguments. Consequently, they determine semantic composi-
tion and therefore we compute LTAG semantics on the derivation tree.

1.2 LTAG Semantics with Semantic Unification

In our approach, each elementary tree is linked to a pair consisting of a se-
mantic representation and a semantic feature structure description. These fea-
ture structure descriptions are used to compute assignments for variables in
the representations using conjunction and additional equations introduced de-
pending on the derivation tree.

The semantic representations consist of a set of labeled Ty2formulas and
a set of scope constraints of the formx ≥ y wherex andy are propositional
labels or propositional meta-variables.x ≥ y signifies thaty is a component
of the termx. Meta-variables indicate that terms have not been specifiedyet.
The assignment computed based on the feature structure descriptions spec-
ifies values for some of the meta-variables in the semantic representations
while leaving some of them open. This allows for under-specified representa-
tions for scope ambiguities.

1.3 Scope Phenomena

In the talk we present analyses for the scope ambiguities exemplified in (1)–
(5):

(1) Exactly one student admires every professor
∃ > ∀,∀ > ∃

(2) John seems to have visited everybody
seem> ∀,∀ > seem

(3) Three girls are likely to come
three> likely, likely > three

(4) Mary thinks John likes everybody
thinks> everybody, *everybody> thinks

(5) Two policemen spy on someone from every city
∀ > ∃ > 2 (among others), *∀ > 2> ∃

Our analysis models the differences in scope behavior as follows:

1. Quantifiers scope within a kind of scope window delimited by an upper
boundary and a lower boundary, no matter where they attach
inside a finite clause.

R / 3

2. Operators on the verbal spine such as adverbs, raising verbs and bridge
verbs take scope where they attach, i.e., among such operators, the at-
tachment order specifies the scope order.

3. Adverbs and raising verbs are not concerned with the– scope
window. Therefore, quantifiers can scopally interleave with them.

4. Bridge verbs embed a finite clause and in particular, they embed the
 limit of this clause. Therefore they block quantifier scope.

5. The maximal scope of a quantifier embedded in a quantificational NP
is the proposition of the embedding quantifier. Therefore, if it scopes
over the embedding quantifier, then this has to be immediate scope (no
other quantifier can intervene).

1.4 Compositionality
At first sight, feature logic-based computational semantics systems such as
LTAG do not seem compatible with a notion of compositionality. The de-
rived trees clearly do not determine the meaning of a phrase in a composi-
tional way. However, a crucial property of LTAG is that the derivation process
(i.e., the process of syntactic combination) can be described by a context-free
structure, namely the derivation tree. (This is why LTAG is mildly context-
sensitive.) The way our LTAG semantics framework is defined,this context-
free structure also specifies the process of semantic combination. In other
words, we can define semantic denotations for the nodes in thederivation tree
in such a way that the semantic denotation of a node depends only the deno-
tations of the daughters, the semantic representation fromthe lexicon chosen
for this node and the way the daughters combine with the mother. In this
sense, LTAG semantics is compositional.

References
Kallmeyer, Laura and Maribel Romero. 2007. Scope and Situation Binding in LTAG

using Semantic Unification. To appear inResearch on Language and Computation.

Richter, Frank and Laura Kallmeyer. 2007. Feature Logic-based Semantic Composi-
tion: A Comparison between LRS and LTAG. To appear inPostproceedings of the
Workshop on Typed Feature Structure Grammars, the 22nd Scandinavian Confer-
ence of Linguistics.

2

Parsing and generation with
treebank-based probabilistic LFG
resources
J  G

Treebank-based acquisition of “deep” grammar resources ismotivated by the
“knowledge acquisition bottleneck” familiar from other traditional, knowl-
edge intensive, rule-based approaches in AI and NLP, following the “ratio-
nalist” research paradigm. Deep grammatical resources have usually been
hand-crafted Butt et al. (2002), Baldwin et al. (2004). Thisis time consum-
ing, expensive and difficult to scale to unrestricted text. Treebanks (parse-
annotated corpora) have underpinned an alternative “empiricist” approach:
wide-coverage, robust probabilistic grammatical resources are now routinely
extracted (learned) from treebank resources Charniak (1996), Collins (1997),
Charniak (2000). Initially, however, these resources havebeen “shallow”.
More recently, a considerable amount of research has emerged on treebank-
based acquisition of deep grammatical resources in the TAG,HPSG, CCG
and LFG grammar formalisms. This talk provides an overview of research on
rapid treebank-based acquisition of wide-coverage, robust, probabilistic, mul-
tilingual LFG resources. Grammar and lexicon acquisition O’Donovan et al.
(2005) is based on an automatic LFG f-structure annotation algorithm Burke
et al. (2004a), Burke (2006). I show how the acquired LFG resources can
be used in wide-coverage, robust parsing Cahill et al. (2004) and generation
Cahill and van Genabith (2006). I provide an overview of ongoing research
on the induction of Chinese Burke et al. (2004b), Japanese, Arabic, Span-
ish, French and German Cahill et al. (2005) treebank-based LFG resources.

5

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

6 / J  G

I briefly compare our LFG work with similar research on the treebank-based
acquisition of HPSG Miyao et al. (2003) and CCG Hockenmaier and Steed-
man (2002) resources.

References
Baldwin, Timothy, Emily Bender, Dan Flickinger, Ara Kim, and Stephan Oepen.

2004. Road-testing the English Resource Grammar over the British National Cor-
pus. InProceedings of the Fourth International Conference on Language Resources
and Evaluation (LREC 2004), pages 2047–2050. Lisbon, Portugal.

Burke, Michael. 2006.Automatic Treebank Annotation for the Acquisition of LFG
Resources. Ph.D. thesis, School of Computing, Dublin City University, Dublin 9,
Ireland.

Burke, Michael, Aoife Cahill, Ruth O’Donovan, Josef van Genabith, and Andy Way.
2004a. Evaluation of an Automatic Annotation Algorithm against the PARC 700
Dependency Bank. InProceedings of the Ninth International Conference on LFG,
pages 101–121. Christchurch, New Zealand.

Burke, Michael, Olivia Lam, Rowena Chan, Aoife Cahill, RuthO’Donovan, Adams
Bodomo, Josef van Genabith, and Andy Way. 2004b. Treebank-Based Acquisition
of a Chinese Lexical-Functional Grammar. InProceedings of the 18th Pacific Asia
Conference on Language, Information and Computation, pages 161–172. Tokyo,
Japan.

Butt, Miriam, Helge Dyvik, Tracy Holloway King, Hiroshi Masuichi, and Christian
Rohrer. 2002. The Parallel Grammar Project. InProceedings of COLING 2002,
Workshop on Grammar Engineering and Evaluation, pages 1–7. Taipei, Taiwan.

Cahill, Aoife, Michael Burke, Martin Forst, Ruth O’Donovan, Christian Rohrer, Josef
van Genabith, and Andy Way. 2005. Treebank-Based Acquisition of Multilingual
Unification Grammar Resources.Research on Language and Computation3(2-
3):247–279.

Cahill, Aoife, Michael Burke, Ruth O’Donovan, Josef van Genabith, and Andy Way.
2004. Long-Distance Dependency Resolution in Automatically Acquired Wide-
Coverage PCFG-Based LFG Approximations. InProceedings of the 42nd An-
nual Meeting of the Association for Computational Linguistics, pages 320–327.
Barcelona, Spain.

Cahill, Aoife and Josef van Genabith. 2006. Robust PCFG-Based Generation using
Automatically Acquired Treebank-Based LFG Approximations. In ACL/COLING
2006. Sydney, Australia.

Charniak, Eugene. 1996. Tree-Bank Grammars. InProceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 1031–1036. Menlo Park, CA.

R / 7

Charniak, Eugene. 2000. A maximum entropy inspired parser.In Proceedings of
the First Annual Meeting of the North American Chapter of theAssociation for
Computational Linguistics (NAACL 2000), pages 132–139. Seattle, WA.

Collins, Michael. 1997. Three Generative, Lexicalized Models for Statistical Parsing.
In Proceedings of the 35th Annual Meeting of the Association for Computational
Linguistics, pages 16–23. Madrid, Spain.

Hockenmaier, Julia and Mark Steedman. 2002. Acquiring Compact Lexicalized
Grammars from a Cleaner Treebank. InProceedings of the 3rd International Con-
ference Language Resources and Evaluation. Las Palmas, Grand Canaria, Spain.

Miyao, Yusuke, Takashi Ninomiya, and Jun’ichi Tsujii. 2003. Probabilistic modeling
of argument structures including non-local dependencies.In Proceedings of the
Conference on Recent Advances in Natural Language Processing (RANLP), pages
285–291. Borovets, Bulgaria.

O’Donovan, Ruth, Michael Burke, Aoife Cahill, Josef van Genabith, and Andy Way.
2005. Large-Scale Induction and Evaluation of Lexical Resources from the Penn-II
and Penn-III Treebanks.Computational Linguistics31(3):329–365.

3

Treating clitics with minimalist
grammars
M A

Abstract
We propose an extension of Stabler’s version of clitics treatment for a wider coverage

of the French language. For this, we present the lexical entries needed in the lexicon.
Then, we show the recognition of complex syntactic phenomena as (left and right) dislo-
cation, clitic climbing over modal and extraction from determiner phrase. The aim of this
presentation is the syntax-semantic interface for cliticsanalyses in which we will stress
on clitic climbing over verb and raising verb.

Keywords M G, - , λ-, -
.

Minimalist Grammars (MG) is a formalism which was introduced in Sta-
bler (1997), based on the Minimalist Program, Chomsky (1995). The main
idea which is kept from the Minimalist Program is the introduction of con-
stituent move in the formal calculus. Such a “move” operation introduces
flexibility in a system which seems to be like Categorial Grammars (CG). We
try to recover the correspondence in CG, between syntactic structures and
logical forms (interpretative level of the sentence).

This formalization introduces constraints on the use of move rules, and by
this way makes the syntactic calculus decidable. These grammars are lexical-
ized and all steps of the analysis are triggered by the information extracted
from the lexicon: from a sentence, it selects a subset of words. To each word
corresponds a sequence of features, and it is the first element of the sequence
in the derivation which triggers the next rules.

An advantage of this system is that the structure of the calculus is con-
stant. The coverage of the grammar is extended by adding new elements to

9

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

10 /M A

the lexicon, never by adding new structural rules. The structural system of
these grammars contains only two kinds of rules: move and merge (but ex-
tensions exist for both). We refer the reader to Stabler’s articles and others for
presentation of the use of MG, Stabler (1997), Vermaat (1999).

Clitics are the normal form for pronoun in romance language.The syn-
tactic and semantic behavior of clitics in these languages are complex. For
French, clitics often climb over auxiliary verb. Ed Stablerproposes in Stabler
(2001) a partial lexicon for French clitics recognition andanalysis.

We propose here to extend this lexicon to several well-knownlinguis-
tic problems. These problems interfere at different levels of analysis. Sub-
ject raising is typically a semantic question whereas the clitic climbing over
modals is a syntactic question. We propose a new lexicon for its syntactic
analysis and then we will show how our semantic interface solves semantic
questions.

We use the description of clitics proposed by Perlmutter in Perlmutter
(1971). He proposes a filter to recognize the right order of clitics for romance
languages, from where we extract the sub-filter:

[{ je/tu/ · · · }|ne|{me/te/se/ · · · }|{le/la/les/ · · · }|{lui/leur}|y|en].
[nominative| negative| reflexive| accusative| dative| locative| genitive].

In the first part, we propose an extension of Stabler’s version of clitics
treatment for a wider coverage of the French language. For this, we will
present the lexical entries needed in the lexicon. Then, we will show the
recognition of complex syntactic phenomena as (left and right) dislocation,
clitic climbing and extraction from determiner phrase. Theaim of this pre-
sentation is the last part: the syntax-semantic interface for clitics analyses in
which we will stress on clitic climbing over verb and raisingverb.

3.1 Lexicon for French clitics
3.1.1 Stabler analysis

Stabler’s works on clitics are inspired by Sportiche Sportiche (1992), who
proposes the following treatment:

Clitics are not elements moved from position XP∗, but are co-referent with
this position. The clitics appearing in the structure bear all the features their
co-referring XP∗ would bear. Furthermore, clitics do not form an autonomous
syntactic object, but they are built into a unit with some host.

In this work, two parts in the cliticization are distinguished. The first one
is an empty element which takes an argumental position from the verb. The
second is the phonological treatment of the unit — the cliticin the surface
structure.

We introduce lexical entries which are phonologically empty but carry spe-
cial features which need to be unified with features of the phonological part

T   MG / 11

of the clitic. The two different parts are connected by a move operation. If just
one of these items occurs in the sentence, derivation fails.

We sum up this treatment in the derivation as follows. The annotation re-
calls the main feature of the word and the annotation on theǫ recall the word
which ǫisthetrace:

(6) donneǫ−F

Jean−k la+F donneǫ−F ⇒ Jean−k la donneǫla
tǫ Jean−k la donneǫla
Jean tǫ tJean la donneǫla.
John tǫ tJean it givesǫit .
John give it.

In more details, the derivation is the following:

Derivation 1 Derivation of the simple French sentence :Jean la donne.
Lexicon:

Jean D -k ǫ =T C ǫ D -k -G
donne V ǫ =>V =D +k=D v
ǫ =Acc3+k T la =v +G Acc3

Derivation step by step:

1. selection of lexical entry : [donne :: V]
2. selection of lexical entry : [ǫ :: =>V =D +k =D v] (which adds the

syntactic component to the verb).
3. head movement. This is a merge between the two previous element

where the phonological part of the argument moves to the phonolog-
ical part of the head.

4. selection of lexical entry : [ǫ :: D -k -G]. This is the empty argumental
verb position.

5. merge.
6. There is a licensee “k” in first position, a move operation is triggered.

After this step, the derivation tree is :

>

ǫ :: -G <

ǫ :: = D v
/ donne/

7. selection of lexical entry : [Jean :: D -k].
8. merge.
9. selection of lexical entry : [la ::=v +G Acc3], the clitic takes part in

the derivation.

12 /M A

10. merge.

11. move : the feature in the empty argument of the verb and thefeature in
the clitic are canceled.

12. selection of lexical entry : [ǫ :: =Acc3+K T] — to the end of the deriva-
tion.

13. merge.

14. move : resolution of nominative case :

>

Jean ::
/Jean/

<

ǫ:: T

<

la ::
/la/

>

>

ǫ ::
/ donne/

<

ǫ ::

ǫ

15. selection of lexical entry : [ǫ:: =T C] — empty “complement” position.

16. merge ; end of the derivation with feature ’c’ : acceptance.

In his presentation, Stabler proposes a lexicon for accusative, dative and
reflexive clitics recognition. He ensures the right order with several verbal
types. The analysis is driven by the head and the next cliticsto introduce will
have to be assigned verbal type as they occur in the Perlmutter filter’s order.
Stabler uses the SMC — shortest move condition — to exclude the use of a
reflexive and an accusative clitics in the same sentence.

3.1.2 Extension: genitive, oblique and nominative clitics

We can extend this first approach of French clitics treatmentto other cases,
in particular genitive, oblique and nominative. This section will present the
lexical entries and the process of acceptance of derivations.

We call “state of a verb” the basic type of the head currently handled. For
example, if a verb has a accusative clitic its type will be “Acc”.

For genitive and oblique clitics, we just add in the lexicon two new empty
argumental positions and a list of possible types for each clitic.

In a first time, we introduce a new verbal type for beginning the cliticiza-
tion and another where the cliticization is finished. We callthem “clitic” and
“endclitic”.

T   MG / 13

Following the Perlmutter filter Perlmutter (1971), the firstclitic we have
to treat for keeping the right order is the genitive one. We add a genitive state
which is connected to the “clitic” state. The verbal state passes to the genitive
state by means of a lexical entry the phonological form of which is “en” and
carries a licensee feature“en”:

[en] :: [clitic <=,+EN, geniti f].

From this state we pass to all the other states of the cliticization, for exam-
ple :

[le] :: [geniti f <=,+G, acc].

and if there is only a genitive clitic, we use phonologicallyempty entry to
pass to the end of the cliticization.

[] :: [geniti f <=, endclitic].

The “oblique” clitics are treated in the same way, except that from “obli-
que” it is impossible to go back to “genitive”. All lexical entries of this type
have a “y” phonological form.

[y] :: [clitic <=,+Y, oblique].

[y] :: [genitive<=,+Y, oblique].

In the same way, from oblique we can pass to other possible clitic states,
as for example :

[le] :: [oblique<=,+G, acc].

[leur] :: [oblique<=,+F, dat].

[] :: [oblique<=, endclitic].

The nominative case is treated the same way. But the use of this procedure
to add new clitic treatment is quadratic in the number of lexical entries. For
the nominative pronoun, a discussion could be opened aroundits clitic state.
We consider here that they are clitics.

Another discussion about negative form could rise around the status of the
negation marker whose position is after the pronoun.

For the moment, we do not treat the negative form in a right wayso we
will not include it in this presentation, but we assume that the treatment of
nominative clitics is outside the clitic cluster. All the phonological pronoun
entries take a verbal form in “endclitic” state and give a newverbal form in
“Nom”(inative) state.

We add an empty verb argument which must be included in the derivation
before the clitic treatment:

[] :: [d,−S ub j,−case].

The sketch of the analysis is:

. la donneǫ−Nom ǫ

14 /M A

. Je+S ub j la donneǫ−Nom ǫ. JetJe la donneǫ
I tI it give ǫ
I give it

We add in the lexicon a basic feature “Nom” and the lexical entries of the
nominative pronouns, for example:

[je] :: [= endclitic,+S ub j,Nom].

[nous] :: [= endclitic,+S ub j,Nom].

The derivation continues with a phonologically empty entryat the end of
the derivation.

[] :: [= nom,+case, t].

3.2 Recognition of complex phenomena

This treatment of French clitics is simple and can be integrated easily into a
larger analysis.

climbing over modal
We treat the clitic climbing over the whole verbal cluster inparticular over
modal.

The modal is combine with the verb in the inflection step. The inflection
is treated with head movement and all clitics take their own place after this
treatment.

If there are words which must be inserted between the verb andthe
modal — for sentences with adverbs — we first build the verbal constituent
after which we treat the clitics. In this situation, the clitics could climb over
the verb constituent or stand after.

For example, in French we can analyze a sentence as:

(7) Je l’ai vu.
I him have seen.
I have seen him.

by building the constituentai vu. We can extend to sentences with inserted

word: “Je l’ai souvent vu”/ “I have often seen him” with a derivation as :

(8) ai souvent vuǫ−Nom ǫ−F

l’ +F ai souvent vuǫ−Nom ǫ−F → l’ ai souvent vuǫ−Nom ǫ

Je+Nom l’ ai souvent vuǫ−Nom ǫ−F → Je l’ai souvent vuǫ ǫ

I it often seen
I often saw him.

T   MG / 15

dislocation
Clitic can be a direct recovery of a not-“empty verbal argument”, for example
in case of nominal dislocation.

There is a non empty verbal argument which must be extracted from the
main sentence and become an indirect argument of the verb.

We build a verb with an “argument which must be extracted” — a deter-
miner phrase (DP) — must be outside the main sentence. This state is intro-
duced by a pause or comma. It modifies the determiner phrase intwo different
ways which depend on the side of the extraction:

. it adds a licensee for the left dislocation and cliticization.. it adds a licensee for cliticization (and nothing for right dislocation).

The main problem is to include in the sentence the right part which will be
replaced by the clitic.

Left dislocation: the DP is extracted from the sentence, placed in first po-
sition and recovered by a clitic.

(9) Marie lei voit tropce typei,→ Ce typei , Marie lei voit trop.

That guy, Marie him sees too much.

Lexical entry of modifier of DP.

[,] :: [=> d, d,−H,−disloc].

Remark that we use coma to caring this treatment, but it can bethrough
an empty lexical entry. The analysis would be the same. The comma will be
placed after the DP by a head movement. The first licensee willbe canceled
with the licensor of the clitic and the second with another entry that we must
add in the classical “comp” entry (this last entry is used to finish the deriva-
tion).

[] :: [= t, c,+DIS LOC].

Right dislocation : In this case the determiner phrase is placed at the end
of the sentence. For the homogeneity of the mechanism, we adda licensee of
recovered by a clitic, and another for the extraction at the end of the sentence.

[,] :: [d <=, d,−H,−disloc].

The “comp” phase uses a weak move which lets the phonologicalform of
the constituent in its place — here, at the end of the sentence.

(10) Marie lei voit trop , ce typei .→ Marie lei voit trop, ce typei.

Marie him sees too much, that guy.

This extraction seems to be very similar to questions: in questions, an ar-
gument of the verb is extracted to take another position in the surface level of

16 /M A

the sentence.

Extraction from DP
With the same kind of mechanism, we can extract an argument ofany con-
stituent. The determiner phrase can be complex and we extract an argument
of the DP. For example:

(11) Pierre en voit la fin — (Pierre voit la fin du film).
Peter of-it sees the end — Peter sees the end of the movie.

We build “la fin ǫ−en” and the cliticization allowed the extraction of the
genitive. “Pierre en voit la fin.”

Raising verb
Raising verbs are verbs where one of the arguments is a verb and one of the
other arguments is shared by both verbs, like in the sentence:

(12) Il semble le lui donner.
He seems it him give.
He seems give it to him.

where the pronoun “Il” is subject of the two verbs “semble” and “donner”.
The second verb must be in infinitive form.

In this case, the sentence has the following structures:
[subject raisingverb clitic infinitive verb].
A raising verb takes as an argument a verb in infinitive form, with a special

inflection “infinitive”, and without subject. The infinitiveinflection has the
lexical entry:

[-inf]::[=>v, verbe].

“verbe” is the feature needed before starting the clitic treatment. A verbal
form gets a “verbe” type after the verb receives its inflection.

The raising verb selects such a “verb”, then a DP subject and then becomes
a VP of type “raisingv” which means a VP which has not yet received the in-
flection feature and will be able to receive new clitics (in particular pronoun).

For example:

[semble]::[=verbe,=d, raisingv].

This verb should receive its inflection and its subject. It follows this mech-
anism until the end of the derivation:

.semblela répare-inf

.semble -ǫ la répare-inf

.Je semble -ǫ la répare-inf

I seem -ǫ it repare-inf

T   MG / 17

I seem repare it

3.3 Semantic interface
3.3.1 How to use the syntax/semantic interface

From a sentence, we build a formula of higher order logic which represents
its propositional structure. We associate to each lexical entry aλ-term and to
each syntactic rule an equivalent semantic rule. We assume that the syntactic
analysis drives the semantic calculus.
λ-terms application occurs only when an element has no features. We as-

sume the following functions:

feat(x) =

{
1 if the number of feature of x= 0
0 else

sem(x, y) =

{
1 if feat(x)= 1 or feat(y)= 1
0 else

Syntactic and semantic synchronization: after any operation in the syn-
tactic calculus, the semantic counter part computes thesemfunction and if
sem(x, y) = 1, we perform the functional application of the twoλ-terms. To
known which application to perform, we look at the type of thesemantic
terms.

A semantic tree represents the semantic counter part of the sentence. It is a
tree where the leaves are the semantic part of the lexical entries and the inner
nodes contain theλ-term built and the direction of the head (of the syntactic
part). We use the following notation:. breaker between direction head andλ-term :⊢.. application: @

Applications are carried out when syntax allows it, therefore when the
function sem= 1 for one of the two terms. The following applications are
possible:

if sem (λ-term 1,λ-term 2)= 1 else
>⊢ λ-term 1@λ-term 2

λ-term 1 λ-term 2

>⊢ λ-term 1,λ-term 2

λ-term 1 λ-term 2

If a move operation canceled the last feature, we represent it by a unary
branch in the tree.

Remark. There are two different possibilities for the semantic calculus: ei-
ther waiting for elements completely discharged either immediately perform
the application. But both fail in different cases: immediate application fails
in case of “late adjunction” and the other possibility failsin questions treat-
ment. The right solution seems to be intermediate: it consists in determining

18 /M A

a subset of features which must be consumed before applications will be per-
formed. For the moment, we choose the first possibility. Later on, we shall do
differently but this only involve changes in thefeat function.

3.3.2 Example of semantic treatment

Clitic semantics
We present a syntactic treatment of clitics in two different parts. One is phono-
logically empty and is the non empty argument of the verb, theother is syntac-
tically empty but it is a phonological recovery of the first one. The semantical
part of the clitic is in the argumental position and this is a free variable which
must be bound in the context. The phonological recovery is anidentity.

lexical entries syntactic form semantic form
la dat<= +G acc Id
t(la) p − case−G x∗

* Free variable, bound in the context — we could use the Bonatoalgorithm
to determine how this variables are bounded Bonato (2006).

We briefly present a semantic tree for a clitic treatment:

(13) Jean la répare.
John it repairs.
John repairs it.

In the semantic tree of the part of the cliticization above, we do not repre-
sent the identity operator (except for the clitic one).

<⊢ t(la) @ Infl @ donne, je

<⊢ Infl @ donne, je, t(la)

la :: Id <⊢ Infl @ donne, je, t(la)

Infl <⊢ donne, je, t(la)

<⊢ donne, t(la)

donne t(la)

je

The last part of the tree is built by a move which creates a linkbetween the
phonological part of the clitic and the argumental part.

Over raising verbs
For the semantic calculus, raising verbs are predicates which take a subject
and an action as argument. They apply a variable at this action.

We present the analysis of the sentence:

T   MG / 19

(14) Je semble la réparer.
I seem it repair.
I seem repair it.

Theλ-terms, semantic counter-part of lexical entries are:

sembler λSλv.(seem v, S(v))
Je I
ǫla Y∗

réparer λ x λ y . repair (y, x)
∗ this variable is bound in the context

The semantic counter part of the pronoun is a constant referring to the
speaker “I”. The clitic subject climbs over the raising verb. It can be the sub-
ject of both verbs in the sentence due to the semantic structure of the raising
verb. If the main verb of the sentence has a subject, the application will not
introduce a new variable in the formula, else the main verb needs a variable
which stands at the subject place. The raising verb involvesthis variable by
duplication of its subject.

The syntactic analysis builds the following structure:

(I@(in f lexion@(seem@(la(in f initive@repare)))))

which allows the computation of the formula: “la reparer”

λx.repair(x,Y)

and this term is applied to the raising verb:λSλv.(seem v, S(v))

λv.seem(v, repair(v,Y))

At the end of the calculus, we construct the formula:

pres(seem(I , repair(I ,Y)))

where Y is bound in the context.
This is the formula we want to construct for representing thepropositional

semantics of the sentence. The subject clitic syntactically climbs over the
main verb, and semantically climbs over the two verbs.

3.4 Conclusion and future work

In this paper, we presented an extension of Ed Stabler’s propositions on
French clitics in minimalist grammars. The new lexicon makes it possible to
treat several other syntactic phenomena, the same way as clitic climbing, e.g.
extraction from NP or right and left dislocation.

Then, we proposed a syntax-semantic interface for Minimalist Grammars.
The aim of this calculus is to build a formula of higher order logic. The se-
mantic calculus,λ-calculus, is driven by the syntactic one. We emphasize on

20 /M A

the way to recognize clitics and semantic implication of climbing with raising
verbs.

For future work, we want to integrate the negation into the grammar. We
consider that the neg-marker “ne” is a clitic and must be incorporated in the
treatment of French clitics. There is another complex phenomenon to consider
concerning with clitics in the imperative mode (and negation).

Other cases of raising verbs exist which are more complex, allowing sev-
eral syntactic clitic climbings as in:

(15) Je la laisse le lui donner.
I her let it (to) him give.
I let her give it to him.

where clitics take place in different orders.
Moreover, we want to continue to model the semantic effect of clitics in

sentences, in particular for interaction between quantifier scope and clitics,
which can introduce ambiguities in sentences like:

(16) Je la laisse tous les lui donner.
I her let all them him give.
I let her gives all to him.

Acknowledgment
The writer like to thank Christian Retoré and Alain Lecomtefor crucial sup-
ports and one of the anonymous TALN 2006 referees for important comments
and examples reuse in this paper.

References
Bonato, R. 2006.An Integrated Computational Approach to Binding Theory. Ph.D.

thesis, University of Verona.

Chomsky, N. 1995.The Minimalist Program. MIT Press, Cambridge.

Perlmutter, David. 1971.Deep and Surface Structure constraints in Syntax. New
York: Holt, Rinehart and Winston.

Sportiche, D. 1992. Clitic constructions. In L. Zaring and J. Rooryck, eds.,Phrase
Structure and the Lexicon. Bloomington, Indiana: IULC).

Stabler, Ed. 1997. Derivational minimalism.Logical Aspect of Computational Lin-
guistic .

Stabler, Ed. 2001. Recognizing head movement.Logical Aspects of Computational
LinguisticsSpringer-Verlag(2099).

Vermaat, W. 1999.Controlling movement: Minimalism in a deductive perspective.
Master’s thesis, Universiteit Utrecht.

4

Linear grammars with labels
H A & A  L

Abstract
The purpose of this paper is to show that we can work in the spirit of Minimalist Gram-

mars by means of an undirected deductive system calledLGL, enhanced with constraints
on the use of assumptions. Lexical entries can be linked to sequences of controlled hy-
potheses which represent intermediary sites. These assumptions must be introduced in
the derivation and then discharged in tandem by their properentry which will there-
fore manage to find its final position: this allows to logically simulatemoveoperation.
Relevance of this formalism will be stressed by showing its ability to analyze difficult
linguistic phenomena in a neat fashion.

Keywords L , M P, / -
, - 

4.1 Introduction
Type Logical Grammars (Lambek (1958), Moortgat (1997)) andMinimalist
Grammars (Chomsky (1995), Stabler (1997)) are two thrivingtheories dedi-
cated to natural language analysis. Each one has its intrinsic assets. In fact, the
first framework is computationally attractive as it works compositionally and
gives the semantics for free. While the second one is based upon a reduced
number of rules guaranteeing processing efficiency (Harkema (2000)).

Despite their apparent differences, these theories share the same philoso-
phy: they are both lexicalized and present universal sets ofrules that allow to
explain various linguistic phenomena in multitude of natural languages.

Our goal is to bridge the gap between Categorial and Minimalist Gram-
mars by proposing a new logical formalismLGL (i.e. Linear Grammars with
Labels) which captures Minimalist operations (i.e.mergeandmove) in a de-
ductive setting. This match between logical framework and Minimalist Pro-
gram proves to be fruitful as it gives a better understandingof the different

21

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

22 / H A & A  L

mechanisms involved in Minimalist derivations.
Lecomte, A. and Retoré, C. have already proposed a logical system that

simulates Minimalist Grammars: Lecomte and Retore (2001).This latter sys-
tem is built upon elimination rules for both the slashes and the tensor. The
absence of any form of introduction rules leads to an efficient system. How-
ever, this restriction is not beneficial insofar as it violates the correspondence
between syntactic types and semantic representations. In our new proposal,
we want to keep a transparent interface between syntax and semantics by
reintroducing abstraction rules which are applied in a controlled fashion.

Like Abstract Grammars and Lambda-Grammars (de Groote (2001) and
Muskens (2003)),LGL grammars are based upon an undirected logical sys-
tem which has two interfaces (syntactic-phonetic, syntactic-semantics) owing
to Curry-Howardcorrespondence. A syntactic derivation is then a deductive
proof of a given sequent built using appropriate inference rules. Both phonetic
form and semantic representation result fromλ-terms combination which is
carried out in parallel with the syntactic derivation, since each deductive rule
encapsulates a computational step within the simply typedλ-calculus.

The originality ofLGL stems from the refinement introduced in hypothet-
ical reasoning. Our model aims at preserving the advantagesof this technique
(e.g. dealing with unbounded dependencies) while constraining its use in or-
der to reduce the size of the search space. Thus, instead of considering freely
accessible logical axioms, our system is equipped with finite sequences of
consumable controlled hypotheses which are attached to certain lexical en-
tries that are expected to move. Such linked hypotheses represent original
sites occupied by their associated entry in the D-structure(i.e. before the dis-
placement operation). They should be introduced during thederivation and
then abstracted at the same time by their proper entry which will consequently
reach its target. In the case of overt constituent movement,intermediary posi-
tions occupied by non-pronounced variables will be systematically replaced
by phonetically-empty traces.

In this paper, we will prove thatmoveis a metaphoric notion which can
be rigorously formalized using Logic. Moreover, we will show how to cap-
ture complex linguistic phenomena (e.g. binding, discontinuity) withinLGL
thanks to the combination between Logic power and Minimalist Program
ideas.

4.2 Bases ofLGL

4.2.1 Types & Terms

In this section, we survey the relevant bases inherent toLGL.
Following earlier proposal by Curry, HB. in Curry (1961) andother more

recent research work: de Groote (2001), Muskens (2003), oursystem dis-

L    / 23

tinguish between two fundamental levels of grammar. The first level is an
abstract language (tectogrammar) which encapsulates universalprinciples.
The second level is aconcreteone which may contain a range of components
(e.g. phenogrammar, semantics) used to encode cross-linguistic variation (e.g.
word order, lexical semantics).

Our core logic operates on abstract syntactic types which are inductively
defined as follows:

T (A) := A | T ⊸ T | !T

A is a finite set of atomic types that contains usual primitivesof minimalist
grammars (e.g.c (sentence),dacc (noun phrase with accusative case),dnom

(noun phrase with nominative case). Composite types are built using the lin-
ear implication⊸ and the exponential operator ! introduced in Girard (1987).

Our framework supports a two-dimensional concrete level dealing respec-
tively with phonetics and semantics. Therefore, we consider two kinds of
concrete types, namelyΦ-types (TΦ) andλ-types (Tλ) whose definitions are
the following:

TΦ := s | TΦ ⊸ TΦ

Tλ := e | t | Tλ → Tλ
The setTΦ is composed of only one atomic typeswhich represents phonetic
structures (structured trees), whereasTλ contains two primitivese (individu-
als) andt (truth values). Notice that compositeΦ-types are built upon linear
implication⊸, whereas compositeλ-types use intuitionistic implication→.

Both phonetic and semantic representation of expressions are easily de-
fined owing toλ-calculus, thus leading to two sets of terms, namelyΦ-terms
ΛΦ andλ-termsΛλ. Let Σ be a finite set of phonetic constants andC a finite
set of semantic constants. LetVΦ (resp.Vλ) be an infinite countable set of
typed phonetic (resp. semantic) variables. The setΛΦ(Σ) of well-typed linear
Φ-terms is inductively defined as follows:

1. ǫ∈ΛΦ(Σ) andǫ is of types1

2. if φ∈Σ thenφ∈ΛΦ(Σ) andφ is of types

3. if (xΦ: tΦ)∈VΦ thenxΦ∈ΛΦ(Σ)

4. if s1 ands2 areΦ-terms of types thens1•s2∈ΛΦ(Σ) and it is of types (•
operator is used to combine phonetic structures, it is neither associative
nor commutative)

5. if φ1 andφ2 areΦ-terms of typest1 andt1 ⊸ t2 with no common free
variable then (φ1 φ2)∈ΛΦ(Σ) and is of typet2

6. if xΦ is a variable of typet1, φ1 aΦ-term of typet2 andxΦ occurs free
exactly once inφ1 then (λx. φ1)∈ΛΦ(Σ) and has typet1⊸t2

1ǫ represents a phonetically empty element used for traces

24 / H A & A  L

ΛΦ(Σ) is provided with the usual relation ofβ-reduction
β
⇒ enhanced with

two additional rewriting rules:φ1•ǫ
β
⇒ φ1 andǫ•φ1

β
⇒ φ1.

On the other hand, the setΛλ(C) of λ-terms is defined using a simply
typedλ-calculus with two basic operations, namely intuitionistic application
and abstraction.

Finally, letτλat be a function which assigns aλ-type to each atomic abstract
type (we assume for instance that:τλat(c)=t, τλat(n)= e→t, τλat(dcase)= e).
Two homomorphismsτΦ andτλ are defined to link abstract types to concrete
types as follows:

τΦ τλ
∀ t∈ A, τΦ(t)=s ∀ t∈ A, τλ(t)= τλat(t)

τΦ(t1⊸t2)= τΦ(t1)⊸ τΦ(t2) τλ(t1⊸t2)= τλ(t1)→ τλ(t2)
τΦ(! t1)=τΦ(t1) τλ(! t1)= τλ(t1)

4.2.2 Lexical Entries & Controlled Hypotheses

We now introduce the notion of 2-dimensional signs which arethe basic units
managed by our system. Such signs are of the following form (lΦ, lλ) : ty,
where:

. ty ∈ T (A) (abstract type). lΦ ∈ ΛΦ(Σ) andlΦ is of concrete typeτΦ(ty). lλ ∈ Λλ(C) andlλ is of concrete typeτλ(ty)

We distinguish between three classes of signs, namelyvariablesigns (when
lΦ ∈ VΦ andlλ ∈ Vλ), constantsigns (whenlΦ ∈ Σ andlλ ∈ C) andcompound
signs (whenlΦ or lλ is a compound term).

These signs are used to define lexical entries. Lexical entries ofLGL are
proper axioms which can be coupled with prespecified sequences of con-
trolled hypotheses. Such hypotheses will occupy intermediary sites, they
should be introduced in the appropriate order and then discharged at the same
time by their associated entry.

Lexical entries obey the syntax below:

⊢ (aφ , aλ) : ty J lhyps

where:

. (aφ , aλ) : ty is a 2-dimensional sign.. lhyps= ([H1 : t ⊢ H′1 : t], ..., [Hk : t ⊢ H′k : t]) is a sequence of controlled
axioms of length|lhyps|=k, (∀ i∈{1..k}, Hi=(hφi , hλi) and H′i=(h′φi , hλi)
wherehφi ∈ VΦ (Φ-variable),hλi ∈ Vλ (λ-variable) andh′φi∈ ΛΦ(Σ)) .

Lexical entries are classified in two groups:linked entries(when k>0) and
free ones(when k=0). Linked entries are coupled with non-empty sequences
of controlled hypotheses. Each hypothesis is encapsulatedinside an axiom

L    / 25

‘(hφi , hλi):t ⊢ (h′φi , hλi):t ’ which can be either logical (ifhφi= h′φi) or extra-
logical (if hφi, h′φi). Extra-logical axioms are extremely useful since they rep-
resent pronounced variables or phonetically non-empty traces stemming from
displacement (e.g. pronouns: he, her ...).

The abstract typety of the lexical entry should verify the following speci-
fication:

1. if k=0 then ty is an arbitrary abstract type
2. if k=1 then ty=t1⊸ ...⊸ tn⊸ (t⊸ t’)⊸t”
3. otherwise ty=t1⊸...⊸ tn⊸ (!t⊸ t’)⊸t”

Intuitively, the second (resp. third) point above means that our lexical entry
represents a constituent that needs to merge with exactlyn (n≥0) expressions
of typest1 ... tn respectively, and then move once (resp. an unspecified number
of times, e.g. cyclic move) to reach its final position.

Finally, a lexicon is nothing else but a finite set of lexical entries{e1, ...,
en}.

Let us illustrate the previous definitions in a concrete example. If we as-
sume that (whom∈Σ) and (∧∈C) then the phonetic behavior and the seman-
tic representation of the relative pronoun ‘whom’ can be modeled using the
linked entry below:

⊢

(
λφ λm. m• (whom• φ(ǫ))
λP λQ λx. P(x) ∧ Q(x)

)
: (dacc⊸ c)⊸ n⊸ n J [X : dacc ⊢ X : dacc]

Our entry is linked to one hypothesis which will occupy the initial position
of ‘whom’, namely the object of its relative clause (e.g.(book) whom Noam
wrote). This assumption will be discharged afterwards by its related entry,
thus guaranteeing the combination between the relative pronoun and its sub-
ordinate clause. Formal rules that manage this overt displacement will be set
forth in the next section.

4.3 Logical simulation of Minimalism
4.3.1 Inference rules

Let lex={e1, e2, ...,en} be a lexicon.LGL grammar with lexiconlex is based
upon a deductive logical system which deals simultaneouslywith two inter-
faces (syntactic-phonetic, syntactic-semantic).

Judgments of our calculus are sequents of the following form:

Γ ⊢ (lΦ , lλ) : ty ; E

where:

. Γ the context is a finite multiset of 2-dimensional variable signs. (lΦ , lλ) : ty is a 2-dimensional sign

26 / H A & A  L

. E is a finite multiset containing identifiers of all linked lexical entries that
were used in the course of the derivation and whose associated assump-
tions are not yet discharged

Variable signs included in the contextΓ correspond to controlled hypotheses
that were introduced in the course of the derivation. Each hypothesis will be
marked using a superscript ‘↑i ’ which points at the lexical entry to which the
assumption is attached (e.g.x↑

i

Φ
: hypothesis linked toei entry).

The first group ofLGL inference rules are axioms which coincide with
derivations’ leaves. Figure 1 shows axioms that our system supports2.

ei = (⊢ aφ : tyJ l)

⊢ aφ : ty; i f l = () then∅ else{ei}
Lex

ei = (⊢ J lhyp) lhyp[j] = (xφ : A ⊢ yφ : A)

x↑
i

φ : A ⊢ yφ : A; ∅
Ctrl

FIGURE 1 Axioms ofLGL(lex)

Our core logic includes extra-logical axioms which are extracted from lex-
ical entries owing to ruleLex. If the involved entry is linked, then its identifier
is added to the multisetE. On the other hand, our system excludes the freely
accessible identity axiom. Available axioms stem from controlled hypotheses
which are coupled with linked lexical entries. These axiomscan be introduced
in the derivations by means ofCtrl rule.

Linked entries inLGL can be attached to more than one controlled hy-
pothesis. This specification has a very strong linguistic motivation. In fact, it
can happen that a constituent occupies more than one intermediary site be-
fore reaching its target. Such phenomenon is illustrated for instance in the
interrogative sentence ‘Which book did John file without reading it?’. In
that case, the wh-element ‘which book’ occupied two positions before dis-
placement (in the D-structure), namely the complement of the verbfile and
that of the infinitivewithout reading. After movement, the first position be-
comes empty while the second is occupied by a pronounced variable ‘it’. At
the semantic level, both these sites of origin represent thesame object.

To account for such non-linear phenomena withinLGL, we use the expo-
nential ! whose behavior is described by the usual rules of linear logic (Girard
(1987)). Figure 2 presents the derived rules which are relevant to our study.

The generic process that handles the management of controlled hypothe-
ses can be summarized as follows. On the first hand, each assumption of type

2For the sake of readability, we focus on the syntactic-phonetic interface

L    / 27

∆, x↑
i

φ : B ⊢ yφ : A; E1

∆, x↑
i

φ :!B ⊢ yφ : A; E1

!L
∆, x↑

i

φ :!B, y↑
i

φ :!B ⊢ uφ : A; E1

∆, b↑
i

φ :!B ⊢ uφ[xφ := bφ, yφ := bφ] : A; E1

!Lc

FIGURE 2 Relevant derived rules for !

ty will get the decorated type!ty if it is related to a linked entryei which is
attached to more than one controlled hypothesis. This transformation is car-
ried out by means of!L rule. Intuitively, this means that a hypothesis which
represents only one controlled assumption (i.e. of typety) is a particular case
of hypotheses that encapsulateat leastone controlled assumption (i.e. of type
!ty). On the second hand, contraction rule !Lc is applied to gather all the hy-
potheses linked to a specific entryei in one assumption. This will make it
possible to abstract these hypotheses in tandem.

Now, the ground is well prepared to present our logical simulation of Min-
imalism. It is not difficult to simulatemergeoperation of Minimalist Gram-
mars in a logical setting. In our case, it is nothing else but the direct⊸ elim-
ination (⊸E, cf. Fig.3) which merges twoΦ-terms (resp.λ-terms) by means
of application operation.

Γ ⊢ fφ : A⊸ B; E1 ∆ ⊢ aφ : A; E′1
Γ,∆ ⊢ (fφ aφ) : B; E1 ∪ E′1

⊸ E

Γ ⊢ fφ : (C⊸ D)⊸ B; {ei} ∪ E1 ∆, c
↑i

φ : C ⊢ dφ : D; E′1
Γ,∆ ⊢ (fφ (λcφ. dφ)) : B; E1 ∪ E′1

⊸ IE ‡

FIGURE 3 Behavior of⊸ connective

Moveoperation is logically captured thanks to the refined elimination rule
⊸IE. This rule allows a constituent to reach its final positionby simultane-
ously discharging its controlled hypotheses which occupied intermediary po-
sitions. Our logical formalization ofmoveoperation shares some ideas with
Vermaat’s one in Vermaat (1999). In fact, we both consider this operation as
the combination of two phases, namely amergestep and ahypothetical rea-
soning3 step (abstraction over sites of origin). Thus, the elementswhich are
expected to move are assigned a higher order type (C⊸ D)⊸ B4. Such ele-
ments wait to merge with a constituent of type C⊸ D, which results from the
abstraction of the intermediary positions in the initial structure (of type D).

However, Vermaat proposal is encoded in a directional calculus:moveop-
eration is then captured using additional postulates whichreintroduce struc-

3The introduction rule of⊸ is not freely available, it is rather encapsulated inside⊸IE rule
4Vermaat considers only the case where D=B

28 / H A & A  L

tural flexibility in a controlled fashion. Our proposal is simpler as it is based
upon a flexible undirected calculus. Moreover, it makes it possible to limit
the operation of hypothetical reasoning used in displacement which is con-
strained to a specific amount of hypotheses explicitly givenby the lexicon.

Rule⊸IE cannot be applied unless the pre-condition‡ is verified: all
linked axioms coupled with the lexical entryei must be introduced in an ap-
propriate order (from the right to the left oflhypssequence) during the deriva-

tion of (∆, c↑
i

φ : C ⊢ dφ : D; E′1). Once these assumptions are abstracted, entry
ei regains its final position and is automatically withdrawn from the multiset
of unstable lexical entries involved in the derivation.

To formalize the pre-condition‡, we assume that each assumptionx↑
i
of

the context encapsulates a kind ofhistoryused to record some relevant data.
This additional parameter does not have any impact on our logical system.
It only ensures the efficiency of parsing by making the constraint‡ easier
to check. The notationx↑

i
⌊σ⌋ is used when the historyσ of the assumption

x↑
i
is explicitly given. Otherwise, a functionhist() can be applied to a given

hypothesisx↑
i
to get its masked history.

Owing to the contraction rule !Lc, each hypothesisx↑
i

gathers a sub-set
of controlled hypotheses related to entryei . The history of an assumptionx↑

i

can then be encoded as a set of pairs of natural numbers. The first number
of each pair represents the index of an involved controlled hypothesis taken
from lhyps sequence, while the second one is nothing else but the depth5 of
this hypothesis in the current bottom-up derivation.

Each deduction step updates the history of all assumptions included in the
context. For instance,Ctrl rule enables the introduction of a specific con-
trolled hypothesis of indexj and initiates its history with the single pair (j, 0).
On the other hand, rules of Fig.2 and Fig.3 increment6 the depth of the pre-
viously introduced controlled hypotheses. We show below two logical rules
enhanced with their explicit management of histories:

ei = (⊢ J lhyp) lhyp[j] = (xφ : A ⊢ yφ : A)

x↑
i

φ ⌊{(j, 0)}⌋ : A ⊢ yφ : A; ∅
Ctrl

∆, x↑
i

φ ⌊σ1⌋ :!B, y↑
i

φ ⌊σ2⌋ :!B ⊢ uφ : A; E1

∆, b↑
i

φ ⌊σ
++
1 ∪ σ

++
2 ⌋ :!B ⊢ uφ[xφ := bφ, yφ := bφ] : A; E1

!Lc

5The number of deduction steps between the introduction of the hypothesis and the current
state of the derivation

6Incrementing operation is denoted by ()++: {...;(ki ,di);...}++={...;(ki ,di+1);...}

L    / 29

Therefore, the side condition‡ can be stated formally as follows:

‡ i f f


∀k, 1 ≤ k ≤ | lhyps | ⇒ ∃! d | (k, d) ∈ hist(c↑

i

φ)

∀(k, d) ∈ hist(c↑
i

φ) ∀(k′, d′) ∈ hist(c↑
i

φ), k < k′ ⇒ d < d′

Finally, it is worth noticing that the constraint‡ is significant only if the
considered derivations are in normal form. Therefore, the absence of both the
freely accessible identity axiom and the⊸I rule is necessary to the success
of our approach.

4.3.2 LGL grammars & generated language

LGL grammars have two parameters, namely a lexicon and an atomicdistin-
guished typec. LetG(lex, c) be aLGL grammar and ‘at’ an atomic syntactic
type. We say that a sequence of phonetic constants l=m1m2...mn has abstract
type ‘at’ within G (i.e. l∈ Lat(G)) iff:

∃ xφ, xλ |xφ ∈ struct(m1, ...,mn) ∧ (⊢ (xφ, xλ) : at; ∅)

wherestruct(m1, ...,mn) is the range of phonetic structures built using• oper-
ator and whose leaves arem1, m2, ...,mn in that order.

Notice that the convergence of derivations requires the introduction and
the simultaneous abstraction of all controlled assumptions related to involved
lexical entries.

Finally, checking whether a sequence of phonetic constantsl is recognized
by the grammarG (i.e. l∈ L(G)) amounts to verifying thatl has abstract type
c.

4.3.3 Example ofLGL derivations

This section is devoted to the study of a hybrid example ‘More logicians met
Godel than physicists knew him’ which involves two complex linguistic phe-
nomena: binding and discontinuity. The analysis of these phenomena within
the directional approach constitutes a real challenge for researchers. All pro-
posed solutions are complex insofar as they led to the extension of the core
logic either by defining new syntactic connectives (discontinuity connectives:
Morrill (2000)) or by introducing additional packages of postulates as in Hen-
driks (1995). However, our proposal is able to capture such phenomena in an
elegant fashion without using any additional material.

Our treatment of binding follows the same ideas of Kayne. R inKayne
(2002) where he argues that the antecedent-pronoun relation (e.g. between
Godelandhim) stems from the fact that both enter the derivation together
as a doubling constituent ([Godel, him]) and are subsequently separated after
movement. In our system, we account for this idea by defining alinked entry
e1 (cf. Fig. 4) associated with the proper nounGodel. This entry requires the
introduction of two hypotheses (where the first ‘him’ is a pronounced one)

30 / H A & A  L

which must be discharged at the same time. Therefore,e1 entry will reach its
final position thus making it possible to semantically link the pronoun with
its antecedent.

Id Φ-terms λ-terms Abstract types Hyps

e1 λ Pφ. Pφ(Godel) λ Pλ. Pλ(Godel) (!dacc⊸c)⊸c [X:dacc⊢X:dacc],
[X’: dacc⊢him:dacc]

e2 logicians Logician n ()
e3 physicists Physicist n ()
e4 λx. λy. (y•(met•x)) λx. λy. MeetPast(y,x) dacc⊸dnom⊸ c ()
e5 λx. λy. (y•(knew•x)) λx. λy. KnowPast(y,x) dacc⊸dnom⊸c ()

λx. λy. λ P.λ Q. λP1. λQ1. λP2. λQ2. n⊸n⊸

e6 ((more•y)•Q(ǫ))• More(λx. Q1(x)∧Q2(x), (dnom⊸c)⊸ ()
(than•(x•P(ǫ))) λx. P1(x)∧P2(x)) (dnom⊸c)⊸c

FIGURE 4 Example ofLGL lexicon

On the other hand, we capture discontinuity by gathering thedifferent
components of a discontinuous expression in the same lexical entry. For in-
stance, entrye6 defines the phonetic and semantic behavior of the discontin-
uous constituent (more... than).

We present, in the following, the main steps of our example’sanalysis. For
the sake of legibility, the bottom-up derivation tree is split into different key
parts which will be commented on progressively.

⊢

(
λx. λy. y • (knew• x)
λx. λy. KnowPast(y, x)

)
: dacc⊸ dnom⊸ c; ∅

Lex 
x↑

1

Φ

x↑
1

λ

 : dacc ⊢

(
him
xλ

)
: dacc; ∅

Ctrl


x↑

1

Φ

x↑
1

λ

 : dacc ⊢

(
λy. y • (knew• him)
λy. KnowPast(y, xλ)

)
: dnom⊸ c; ∅

⊸ E


x↑

1

Φ

x↑
1

λ

 : dacc ⊢

(
λQ. ((more• logicians) • Q(ǫ)) • (than• (physicists• (ǫ • (knew• him))))
λQ2. More(λx. Logician(x) ∧ Q2(x) , λx. Physicist(x) ∧ KnowPast(x, xλ))

)
:

(dnom⊸ c)
⊸ c; ∅


x↑

1

Φ

x↑
1

λ

 :!dacc ⊢

(
λQ. ((more• logicians) • Q(ǫ)) • (than• (physicists• (ǫ • (knew• him))))
λQ2. More(λx. Logician(x) ∧ Q2(x) , λx. Physicist(x) ∧ KnowPast(x, xλ))

)
:

(dnom⊸ c)
⊸ c; ∅

The derivation above starts by introducing the last controlled hypothesis
(i.e. the assumption representing the accusative pronounhim) of the sequence
attached toe1 entry. This hypothesis, then, merges with lexical entrye5 by
means of⊸E rule. On the other hand, a partial derivation is built by consec-
utively combining entrye6 with entriese3 ande2. The resulting sequent then
merges with the previous one. The last deduction step does nothing but deco-
rating the type of the introduced hypothesis by a ! marker in order to express
its ability to gather with the other controlled hypothesis linked to its proper

L    / 31

entry. At this stage of analysis, only the second controlledhypothesis ofe1 has
been used. Moreover, it was involved in exactly three deduction steps after its
introduction, so we can deduce that its current history is: hist(x↑

1
)={(2,3)}.

⊢

(
λx. λy. y • (met• x)
λx. λy. MeetPast(y, x)

)
: dacc⊸ dnom⊸ c; ∅

Lex 
z↑

1

Φ

z↑
1

λ

 : dacc ⊢

(
zΦ
zλ

)
: dacc; ∅

Ctrl


z↑

1

Φ

z↑
1

λ

 : dacc ⊢

(
λy. y • (met• zΦ)
λy. MeetPast(y, zλ)

)
: dnom⊸ c; ∅

⊸ E


z↑

1

Φ

z↑
1

λ

 :!dacc ⊢

(
λy. y • (met• zΦ)
λy. MeetPast(y, zλ)

)
: dnom⊸ c; ∅

!L

In this second part of analysis, the first controlled assumption linked toe1 en-
try is introduced. Then, it merges withe4 entry which represents the past form
of the transitive verbmeet. This branch of the derivation ends by a !L step like
the previous one. We can easily check that, at this point of the derivation, the
history ofz↑

1
assumption is nothing else but hist(z↑

1
)={(1,2)}.

...
x↑

1

Φ

x↑
1

λ

 :!dacc,


z↑

1

Φ

z↑
1

λ

 :!dacc ⊢

(
((more• logicians) • (ǫ • (met• zΦ))) • (than• (physicists• (ǫ • (knew• him))))
More(λx. Logician(x) ∧MeetPast(x, zλ) , λx. Physicist(x) ∧ KnowPast(x, xλ))

)
: c; ∅


y↑

1

Φ

y↑
1

λ

 :!dacc ⊢

(
((more• logicians) • (ǫ • (met• yΦ))) • (than• (physicists• (ǫ • (knew• him))))
More(λx. Logician(x) ∧MeetPast(x, yλ) , λx. Physicist(x) ∧ KnowPast(x, yλ))

)
: c; ∅

The partial derivation above stems from merging the two previously presented
branches into one tree. Contraction rule is then applied to encapsulate both
controlled hypotheses linked toe1 in one assumptiony↑

1
. The current history

of this latter compound assumption is: hist(y↑
1
)={(1,4) ; (2,5)}.

⊢

(
λPΦ.PΦ(Godel)
λPλ.Pλ(Godel)

)
: (!dacc⊸ c)⊸ c; {e1}

Lex
...

y↑
1

Φ

y↑
1

λ

 :!dacc ⊢

(
(more• logicians) • ...

More(..., ...)

)
: c; ∅

⊢

(
((more• logicians) • (met•Godel)) • (than• (physicists• (knew• him)))

More(λx. Logician(x) ∧MeetPast(x,Godel) , λx. Physicist(x) ∧ KnowPast(x,Godel))

)
: c; ∅

⊸ IE

The whole derivation ends by simultaneously discharging controlled hypothe-
ses linked to entrye1 by means of⊸IE rule. In fact, the application of this
rule is allowed since the side-condition‡ is entirely verified: asy↑

1
’s his-

tory shows, the leftmost hypothesis linked toe1 was introduced in the deriva-
tion after the rightmost one. The semantic representation of our sentence is
computed in tandem. Indeed, the final semantics coincides with the intuitive
meaning of the sentence, namely that the set of logicians whomet Godel is
larger than the range of physicists that knew him.

32 / H A & A  L

4.4 EnhancingLGL
It is not difficult to notice that our logic is too flexible as the application of
movement is not constrained. For instance, if we assign the entry below7 to
the wh-element ‘which’, we can analyze both sentences *which man do you
think the child of speaks?and ‘which man do you think John loves the child
of ?’, where the first is ungrammatical.

⊢

(
λmλφ (which•< m) •> φ(ǫ)
λP λQ λx.P(x) ∧ Q(x)

)
: n⊸ (ddat⊸ c)⊸ c J [X : ddat ⊢ X : ddat]

In fact, we need to control displacement operation to rule out extraction from
islands. For that purpose, we propose to enhanceLGL with some meta-rules
encoding locality constraints (e.g. SPIC: Specifier IslandCondition, SMC:
Shortest Move Condition). We focus in the following on theSPICdefined
in Koopman and Szabolcsi (2000) which stipulates that the moved element
should be a member of the extraction domain (i.e.comp+: transitive closure
of the complement relation, or a specifier of acomp+).

In order to locate the position of the head, the complement and the specifier
inside a phonetic expression, we decorate the building structure connective•
with a mode of composition taken from the set{<, >}. This mode points
towards the sub-tree where the head is located:•< (resp.•>) if the head is
located on the left (resp. right) sub-tree.

A linked lexical entry which is expected to undergo an overt constituent
movement has a phonetic-term that obeys the following syntax:

λ x1 ... λ xn λ PΦ λ y1 ... λ yk. g(y1, ... ,yk, f(x1, ... , xn) •>PΦ(ǫ))

In the expression above,x1, ... , xn, y1, ... ,yk (n≥ 0, k≥ 0) areΦ-variables of
arbitrary types, whereasPΦ is aΦ-variable of type s⊸s. Moreover,f (resp.g)
is a function that takesn (resp. k+1)Φ-terms and builds a phonetic structure
using these parameters together with constants ofΣ.

Intuitively, this syntax means that our entry will firstly combine with n
structuresx1, ... , xn by means of merge operation, thus leading to a maxi-
mal projectionf(x1, ... , xn). Then, the intermediary sites will be replaced by
traces in the initial structurePΦ and our maximal projection will be placed in
specifier position, hence making it possible to carry out theexpected move-
ment. Finally, our resulting constituent can merge with other structures, thus
yielding a complete expression (e.g.whomentry in section 2.2).

Notice that this syntax suits the type specification defined in section 2.2
(points 2 & 3) if we add additional conditions, namely that both types t
(type of intermediary sites) and t’ (type of the D-structurebefore movement)
are atomic. The first condition (i.e. t∈A) follows from constraints proposed
by Koopman and Szabolcsi (Koopman and Szabolcsi (2000)) which forces

7ddat represent noun phrases with dative case

R / 33

moved elements to be maximal projections (i.e. complete expressions). How-
ever, the latter condition (t’∈ A) is a logical formalization of themerge over
moveprinciple Chomsky (1995) which stipulates that merge operation has
priority over movement because of its simplicity. Therefore, a structure that
will undergo move operation should be complete.

According to the syntax of phonetic terms associated with moved ele-
ments, SPIC condition can be encoded inLGL as a pre-condition of⊸IE rule
(cf. Fig 3) stipulating the inclusion of all occurrences ofΦ-variablecΦ within
the extraction domain of theΦ-termdΦ. Therefore, adding this meta-rule to
LGL prevents us from analyzing the previous ungrammatical sentence.

4.5 Conclusion & Future Work

LGL is a new logical formalism which proposes a deductive simulation of
Minimalist Program. Our proposal is powerful enough to describe several lin-
guistic phenomena such as medial extraction, binding, ellipsis and disconti-
nuity thanks to using linked lexical entries (related to controlled hypotheses).
Moreover, one can solve over-generation problems caused bythe freedom of
displacement by adding some meta-rules encoding locality constraints.

In addition, it is not difficult to show that these grammars are richer than
context free grammars as they are able to generate crossed-dependencies lan-
guages (e.g.{anbmcndm | n, m≥ 0}). In fact, this latter language is recognized
byLGL grammar containing the lexicon below8:

⊢ ǫ: pi (∀ i∈{1..4})

⊢ λx. λy. λz. λu. x•(y•(z•u)): ty

⊢ λ P.λx. λy. λz. λu. P(a•x, y, c•z, u): ty⊸ ty

⊢ λ P.λx. λy. λz. λu. P(x, b•y, z, d•u): ty⊸ ty

The next direction to explore concerns the study ofLGL formal proper-
ties: expressive power, decidability, and complexity. We also intend to build
bridges betweenLGL and other well-known grammatical frameworks (e.g.
Minimalist Grammar, TAGs).

Finally, we are developing a meta-linguistic toolkit usingCoq proof assis-
tant (Coq Team (2004)), in order to study logical propertiesof LGL gram-
mars being enhanced with packages of meta-constraints. This toolkit can help
users manage complex derivations by automatically handling some technical
proofs thanks to powerful computation tools (strategies).

References
Chomsky, N. 1995.The minimalist program. MIT Press.

8In that case,A={p1,p2,p3,p4,c} andty denotes the composite typep1⊸p2⊸p3⊸p4⊸c

34 / H A & A  L

Coq Team. 2004. The coq proof assistant, reference manual, version 8.0. Tech. rep.,
INRIA.

Curry, HB. 1961. Some logical aspects of grammatical structures. In R. Jackobson,
ed.,Symposium in Applied Mathematics, pages 56–68.

de Groote, P. 2001. Towards abstract categorial grammars. In 39th Annual Meeting of
the Association for Computational Linguistics. Toulouse.

Girard, Jean-Yves. 1987. Linear logic.Theoretical Computer Science50:1–102.

Harkema, H. 2000. A recognizer for minimalist grammars. InIWPT.

Hendriks, P. 1995.Comparatives and Categorial Grammar. Ph.D. thesis, University
of Groningen, The Netherlands.

Kayne, R. 2002. Pronouns and their antecedents. In S. E. . T. Seely, ed.,Derivation
and Explanation in the Minimalist Program. Blackwell.

Koopman, H. and A. Szabolcsi. 2000. Verbal complexes. InCurrent series in Lin-
guistic Theory. MIT Press.

Lambek, J. 1958. The mathematics of sentence structure.American Mathematical
Monthly .

Lecomte, A and C Retore. 2001. Extending lambek grammars: a logical account of
minimalist grammars. In39th Annual Meeting of the Association for Computa-
tional Linguistics, pages 354–362. Toulouse.

Moortgat, M. 1997. Categorial type logic. In V. B. . ter Meulen, ed.,Handbook of
Logic and Language, chap. 2. Elsevier.

Morrill, G. 2000. Type logical anaphora. Tech. rep., Universitat Politecnica,
Catalunya.

Muskens, R. 2003. Language, lambdas, and logic. InResource Sensitivity in Binding
and Anaphora, Studies in Linguistics and Philosophy. Kluwer.

Stabler, E. 1997. Derivational minimalism. In C. Retore, ed., Logical Aspects of
Computational Linguistics. Springer.

Vermaat, W. 1999.Controlling Movement: Minimalism in a deductive perspective.
Master’s thesis, master’s thesis, Utrecht University.

5

P-TIME decidability of NL1 with
assumptions
M B́

Abstract
Buszkowski (2005) showed that systems of Non-associative Lambek Calculus with

finitely many non-logical axioms are decidable in polynomial time and generate context-
free languages. The same holds for systems with unary modalities, studied in Moortgat
(1997),n-ary operations, and the rule of permutation, studied in Jäger (2004). The poly-
nomial time decidability for Classical Non-associative Lambek Calculus was established
by de Groote and Lamarche (2002). We study Non-associative Lambek Calculus with
identity enriched with a finite set of assumptions. To prove that this system is decidable in
polynomial time we adapt the method used in Buszkowski (2005). The context-freeness
of the languages generated of the systems of Non-associative Lambek Calculus is also
established.

Keywords L , P-TIME 

5.1 Introduction and preliminaries
Non-logical axioms can be of interest for linguistics for several reason. We
can use them to describe subcategorization in natural language. For instance,
restrictive adjectives are a sub-category of adjectives. Further, by enriching
Non-associative Lambek Calculus with finitely new axioms, we can improve
its expressibility without lacking the nice computationalsimplicity.

First we describe the formalism of Non-associative Lambek Calculus with
identity constant (NL1). Let At= {p, q, r, . . .} be the denumerable set of atoms
(primitive types).

The set of formulas (also called types) Tp1 is defined as the smallest set
fulfilling the following conditions:

. 1 ∈ Tp1,

35

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

36 /M B́

. At ⊆ Tp1,. if A, B ∈ Tp1, then (A•B) ∈ Tp1, (A/B) ∈ Tp1, (A\B) ∈ Tp1, where binary
connectives \ , / , • , are calledleft residuation, right residuation, and
product, respectively.

The set of formula structures STR1 is defined recursively as follows:

. Λ ∈ STR1, whereΛ denotes an empty structure,. Tp1 ⊆ STR1; these formula structures are called atomic formula struc-
tures,. if X,Y ∈ STR1, then (X ◦ Y) ∈ STR1.

We set (X ◦ Λ) = (Λ ◦ X) = X.
Substructures of a formula structure are defined in the following way:

. Λ is the only substructure ofΛ,. if X is an atomic formula structure, thenΛ andX are the only substructures
of X,. if X = (X1◦X2), thenX and all substructures ofX1 andX2 are substructures
of X.

By X[Y] we denote a formula structureX with a distinguished substructure
Y, and byX[Z] - the substitution ofZ for Y in X.

Sequents are formal expressionsX→ A such thatA ∈ Tp1, X ∈ STR1.
The Gentzen-style axiomatization of the calculus NL1 employs the axiom

schemas:

(Id) A→ A (1R) Λ→ 1

and the following rules of inference:

(1L)
X[Λ] → A
X[1] → A

,

(•L)
X[A ◦ B] → C
X[A • B] → C

, (•R)
X→ A; Y→ B
X ◦ Y→ A • B

,

(\L)
Y→ A; X[B] → C
X[Y ◦ (A\B)] → C

, (\R)
A ◦ X→ B
X→ A\B

,

(/L)
X[A] → C; Y→ B
X[(B/A) ◦ Y] → C

, (/R)
X ◦ B→ A
X→ A/B

,

(CUT)
Y→ A; X[A] → B

X[Y] → B
.

For any system S we write S⊢ X → A if the sequentX → A is derivable
in S.

The most general models of NL1 are residuated groupoid with identity.

P-TIME   NL1   / 37

A residuated groupoidwith identity is a structure

M = (M,≤, ·, \, /, 1)

such that. (M, ·, 1) is a groupoid with identity in whicha · 1 = a, 1 · a = a for all
a ∈ M,. (M,≤) is a poset ,. \, / are binary operations onM satisfying the equivalences :

(RES) ab≤ c iff b ≤ a\c iff a ≤ c/b

for all a, b, c ∈ M.

Every residuated groupoid fulfills the following monotonicity laws:

(MON) If a ≤ b then ca≤ cb and ac≤ bc

(MRE) If a ≤ b then c\a ≤ c\b, a/c ≤ b/c,

b\c ≤ a\c, c/b ≤ c/

for all a, b, c ∈ M.
A modelis a pair (M, µ) such thatM is a residuated groupoid with identity

andµ is an assignment of elements ofM for atoms. One extendsµ for all
formulas :

µ(1) = 1, µ(A • B) = µ(A) · µ(B),

µ(A\B) = µ(A)\µ(B), µ(A/B) = µ(A)/µ(B).

and formula structure:

µ(Λ) = µ(1) = 1, µ(X ◦ Y) = µ(X) · µ(Y).

A sequentX → A is said to be true in model (M, µ) if µ(X) ≤ µ(A). In
particular a sequentΛ→ A is said to be true in model (M, µ) if 1 ≤ µ(A).

One can prove the following property for formula structures:

(MON − STR) If µ(Y) ≤ µ(Z) then µ(X[Y]) ≤ µ(X[Z]).

5.2 NL1 with assumptions
Let Γ be a set of sequents of the formA→ B, whereA, B ∈ Tp1. By NL1(Γ)
we denote the calculus NL1 with additional setΓ of assumptions. NL1 is
strongly complete with respect to the residuated groupoidswith identity, i.e.
all sequents provable in NL1(Γ) are precisely those which are true in all mod-
els (M, µ) in which all sequents fromΓ are true. Soundness is easily proved
by induction on derivation in NL1(Γ). Completeness follows from the fact
that the Lindenbaum algebra of NL1 is a residuated groupoid with identity.

In general, the calculus NL1(Γ) has not the standard sub-formula property,
since (CUT) is legal rule in this system. Thus we take into consideration the
sub-formula property in some extended form.

38 /M B́

Let T be a set of formulas closed under sub-formulas and such that all
formulas appearing inΓ belong toT. By a T-sequent we mean a sequent
X→ A such thatA and all formulas appearing inX belong toT. Now, we can
reformulate the sub-formula property as follows:

EveryT-sequent provable in a system S has a proof in S such that all sequents
appearing in this proof areT-sequents.

To prove the sub-formula property for NL1(Γ) we will use special models,
namely residuated groupoids with identity of cones over given pre-ordered
groupoids with identity.

Let (M,≤, ·) be a pre-ordered groupoid, that means, it is a groupoid witha
pre-ordering (i.e. a reflexive and transitive relation), satisfying (MON).

A set P ⊆ M is called aconeon M if a ≤ b andb ∈ P entailsa ∈ P. Let
C(M) denotes the set of cones onM.

The operations·, \, / onC(M) are defined as follows:

(M1) I = {a ∈ M : a ≤ 1}

(M2) P1P2 = {c ∈ M : (∃a ∈ P1, b ∈ P2) c ≤ ab}

(M3) P1\P2 = {c ∈ M : (∀a ∈ P1) ac ∈ P2}

(M4) P1/P2 = {c ∈ M : (∀b ∈ P2) cb∈ P1}.

A structure (C(M),⊆, ·, \, /, I) is a residuated groupoid with identity. It is
called the residuated groupoid with identity of cones over the given pre-
ordered groupoid with identity.

Let M be the set of all formula structures all of whose atomic substructures
belong toT andΛ ∈ M. If a sequentX→ A has a proof in NL1(Γ) consisting
of T-sequents only, we write:X→T A.

First, we define onM a relation≤b. X ≤b Y denotesX directly reduces to
Y. The definition of this relation is as follows:

Y[Z] ≤b Y[Λ] if Z→T 1,

Y[Z] ≤b Y[A] if Z→T A,

Y[A • B] ≤b Y[A ◦ B] if A • B ∈ T.

A pre-ordering≤ on M is defined as a reflexive and transitive closure of
the relation≤b. ThenX ≤ Y iff there existY0, . . . ,Yn, n ≥ 0 such thatX =
Y0,Y = Yn andYi−1 ≤b Yi , for eachi = 1, . . . , n.

Clearly, (M,≤, ◦,Λ) is a pre-ordered groupoid with identityΛ fulfilling
(MON).

Next, we take into consideration the residuated groupoid ofcones with
identity C(M) = (C(M),⊆, ·, \, /, I) over (M,≤, ◦,Λ) defined above. An as-
signmentµ onC(M) is defined by setting:

µ(p) = {X ∈ M : X→T p},

P-TIME   NL1   / 39

for all atomsp. One can easily prove that

µ(A) = {X ∈ M : X→T A},

for all A ∈ T.

Fact 1 Every sequent provable inNL1(Γ) is true in(C(M), µ).

Proof. It suffice to show, that each axiom fromΓ is true in (C(M), µ). Assume
thatA→ Bbelongs toΓ. It yieldsA→T B. We need to show thatµ(A) ⊆ µ(B).
Let X ∈ µ(A). Then,X →T A. By (CUT), we getX →T B, which yields
X ∈ µ(B). ⊔⊓

Lemma 2 The systemNL1(Γ) has the extended sub-formula property.

Proof. Let X → A be aT-sequent provable in NL1(Γ). By fact 1 it is true in
the model (C, µ), i.e.µ(X) ⊆ µ(A). SinceX ∈ µ(X), we haveX ∈ µ(A). But it
meansX→T A. ⊔⊓

A sequent is said to bebasic if it is a T-sequent of the formΛ → A,
A → B, A ◦ B → C. Let Γ be finite, and letT be a finite set of formulas,
closed under sub-formulas and such thatT contains all formulas appearing
in Γ. For suchT we shall describe an effective procedure which produces all
basic sequents derivable in NL1(Γ).

LetS0 consist of allT-sequent of the form (Id), all sequents fromΓ,Λ→ 1
and allT-sequents of the form:

1 ◦ A→ A, A ◦ 1→ A, A ◦ B→ A • B,
A ◦ (A\B)→ B, (A/B) ◦ B→ A.

AssumeSn has already been defined.Sn+1 is Sn enriched with sequents
resulting from the following rules:

(S1) if (A ◦ B→ C) ∈ Sn and (A • B) ∈ T, then (A • B→ C) ∈ Sn+1,

(S2) if (A ◦ X→ C) ∈ Sn and (A\C) ∈ T, then (X→ A\C) ∈ Sn+1,

(S3) if (X ◦ B→ C) ∈ Sn and (C/B) ∈ T, then (X→ C/B) ∈ Sn+1,

(S4) if (Λ→ A) ∈ Sn and (A ◦ X→ C) ∈ Sn, then (X→ C) ∈ Sn+1,

(S5) if (Λ→ A) ∈ Sn and (X ◦ A→ C) ∈ Sn, then (X→ C) ∈ Sn+1,

(S6) if (A→ B) ∈ Sn and (B ◦ X→ C) ∈ Sn, then (A ◦ X→ C) ∈ Sn+1,

(S7) if (A→ B) ∈ Sn and (X ◦ B→ C) ∈ Sn, then (X ◦ A→ C) ∈ Sn+1,

(S8) if (A ◦ B→ C) ∈ Sn and (C→ D) ∈ Sn, then (A ◦ B→ D) ∈ Sn+1.

Clearly,Sn ⊆ Sn+1 for all n ≥ 0. We defineST as the join of this chain.ST

is a set of basic sequents, hence it must be finite. It yieldsST = Sk+1, for the
leastk such thatSk = Sk+1, and thisk is not greater then the number of basic
sequents.

Fact 3 The set ST can be constructed in polynomial time.

40 /M B́

Proof. Let n be the cardinality ofT. There aren, n2 andn3 basic sequents
of the formΛ → A, A → B andA ◦ B → C, respectively. Hence, we have
m = n3 + n2 + n basic sequents. The setS0 can be constructed in time 0(n2).
To getSi+1 from Si we must closeSi under the rules (S1)-(S8) which can be
done in at mostm3 steps for each rule. For example, to closeSi under (S1)
we must check if (A ◦ B→ C) ∈ Si and (A • B) ∈ T which needs at mostm
andn steps, respectively. The sequentA • B→ C is added toSi+1 only if it
doesn’t belong to this set. To check this fact the nextm steps are needed. The
leastk such thatST = Sk is at mostm. Then finely, we can constructST from
T in time 0(m4) = 0(n12). ⊔⊓

By S(T) we denote the system whose axioms are all sequents fromST and
whose only inference rule is (CUT). Then, every proof inS(T) consist of
T-sequents only.

If as premises of (CUT) in the proof inS(T) of some sequentX→ A only
sequents without empty antecedents are used, then the length of all sequents
in this proof is not greater than the length ofX → A. But it doesn’t hold if
we allow in (CUT) the premises of the formΛ → A. Therefore we introduce
another systemS(T)− whose axioms are all sequents fromST and whose only
inference rule is (CUT) with premises without empty antecedents, and show
the following lemma.

Lemma 4 For any sequent X→ A, S(T) ⊢ X→ A iff S(T)− ⊢ X→ A.

Proof. The ’if’ direction is evident. To prove the ’only if’ direction we show
thatS(T)− is closed under (CUT), i.e.

(*) If S(T)− ⊢ X→ B andS(T)− ⊢ Y[B] → A, thenS(T)− ⊢ Y[X] → A.

AssumeS(T)− ⊢ X→ B andS(T)− ⊢ Y[B] → A.
If X , Λ, thenS(T)− ⊢ Y[X] → A by definition ofS(T)−.
If X = Λ, then the sequentX→ B is of the formΛ→ B andS(T)− ⊢ Λ→

B, which means thatΛ → B is an axiom ofS(T)−. To prove (*) we proceed
by induction on derivation of the second premise:Y[B] → A.

If Y[B] → A is an axiom ofS(T)−, then (Y[B] → A) ∈ ST . ST is closed
under (CUT). Hence, (Y[Λ] → A) ∈ ST which yieldsS(T)− ⊢ Y[Λ] → A.

If Y[B] → A is a conclusion of (CUT) from premises without empty an-
tecedents, thenY[B] = Z[Y′] and for someC ∈ T, S(T)− ⊢ Y′ → C and
S(T)− ⊢ Z[C] → A. We consider the following cases.

I. B is contained inY′. ThenY′ = Y′[B].
(1) Y′[B] , B. By the induction hypothesis, (*) holds forΛ → B and

Y′[B] → C, soS(T)− ⊢ Y′[Λ] → C. SinceY′[B] , B, we haveY′[Λ] ,
Λ. Using (CUT), we getS(T)− ⊢ Z[Y′[Λ]] → A, which meansS(T)− ⊢
Y[Λ] → A.

(2) Y′[B] = B. By the induction hypothesis, (*) holds forΛ → B and

P-TIME   NL1   / 41

B→ C, soS(T)− ⊢ Λ → C. Using inductive hypothesis toΛ → C and
Z[C] → A, we getS(T)− ⊢ Z[Λ] → A, which meansS(T)− ⊢ Y[Λ] →
A.

II. B andY′ do not overlap. ThenB is contained inZ and does not overlap
C in Z. We write Z[C] = Z[B,C]. From the assumption we haveY′ ,
Λ. By induction hypothesis, (*) holds forΛ → B andZ[B,C] → A, so
S(T)− ⊢ Z[Λ,C] → A. By (CUT), S(T)− ⊢ Z[Λ,Y′] → A, which means
S(T)− ⊢ Y[Λ] → A.

⊔⊓

Corollary 5 Every basic sequents provable in S(T) belongs to ST .

Proof. We proceed by induction on proofs inS(T). AssumeX→ A is a basic
sequent derivable inS(T). If X→ A is an axiom ofS(T), then (X→ A) ∈ ST .
If X→ A is a conclusion of (CUT), we consider three cases.

(1) X = Λ. By lemma 4,Λ → A has a proof inS(T)−. HenceΛ → A is an
axiom, which means (Λ→ A) ∈ ST .

(2) X = B. By lemma 4, there exists a proof such thatB→ A is a conclusion
from premisesB → C andC → A, whereC , Λ. Since proofs in S(T)
consist withT-sequents only,B → C andC → A are basic sequents. By
induction hypothesis, (B → C) ∈ ST and (C → A) ∈ ST . ST is closed
under (CUT), so (B→ A) ∈ ST.

(3) X = B ◦ C. By lemma 4, there exists a proof such thatB ◦ C → A is a
conclusion from premises without empty premises. Hence, they are of the
form: (B◦C→ D , D→ A) or (B→ D , D◦C→ A) or (C→ D , B◦D→
A). By the same argument as in (2), in each case, we get (B◦C→ A) ∈ ST .

⊔⊓

Now, we can state an interpolation lemma forS(T).

Lemma 6 If S(T) ⊢ X[Y] → A, then there exists D∈ T such that S(T) ⊢
Y→ D and S(T) ⊢ X[D] → A.

Proof. We proceed by induction on proofs inS(T).

I. AssumeX[Y] → A is an axiom ofS(T). We consider the following
cases.

(1) X[Y] = Y. Then Y = X (observe, that this case includes sub case
X = Λ). We setD = A. We haveS(T) ⊢ X → A from assumption and
S(T) ⊢ A→ A, since (A→ A) ∈ ST .

(2) X[Y] = B, Y = Λ. ThenX[Y] = X[Λ] = B = B◦Λ or X[Y] = Λ◦B and
D = 1. We haveS(T) ⊢ Λ → 1 andS(T) ⊢ B→ A. (B ◦ 1→ B) ∈ ST ,
so S(T) ⊢ B ◦ 1 → B. Using (CUT) we getS(T) ⊢ X[1] → A. For
X[Y] = Λ ◦ B the argument is dual.

42 /M B́

(3) X[Y] = B ◦C, Y , Λ. ThenY = B or Y = C, henceD = B or D = C,
respectively.

(4) X[Y] = B ◦ C, Y = Λ. ThenX[Λ] has one of the form:Λ ◦ (B ◦ C),
(B ◦ C) ◦ Λ, (Λ ◦ B) ◦ C, (B ◦ Λ) ◦ C, B ◦ (Λ ◦ C), B ◦ (C ◦ Λ). In
all these cases we setD = 1. For example, ifX[Λ] = Λ ◦ (B ◦ C),
we haveS(T) ⊢ Λ → 1 and using (CUT) toS(T) ⊢ B ◦ C → A and
S(T) ⊢ 1 ◦ A→ A, we getS(T) ⊢ 1 ◦ (B ◦C)→ A.

II. AssumeX[Y] → A is a conclusion of (CUT). ThenX[Y] = Z[Y′] and for
someB ∈ T: S(T) ⊢ Y′ → B andS(T) ⊢ Z[B] → A.

In this part the proof is analogous to the proof of lemma 2 in Buszkowski
(2005). The following cases are considered.
(1) Y is contained inY′. ThenY′ = Y′[Y]. By the induction hypothesis,

there existsD ∈ T such thatS(T) ⊢ Y → D andS(T) ⊢ Y′[D] → B.
Using (CUT) with the premisesZ[B] → A and Y′[D] → B we get
S(T) ⊢ Z[Y′[D]] → A, which meansS(T) ⊢ X[D] → A.

(2) Y′ is contained inY. Then X[Y] = X[Y[Y′]] = Z[Y′] and Z[B] =
X[Y[B]]. By the induction hypothesis, there existsD ∈ T such that
S(T) ⊢ Y[B] → D and S(T) ⊢ X[D] → A. Using (CUT) with the
premisesY′ → B andY[B] → D we getS(T) ⊢ Y[Y′]] → D.

(3) Y andY′ do not overlap. ThenY is contained inZ and does not overlap
B in Z. We write Z[B] = Z[B,Y]. By the induction hypothesis, there
existsD ∈ T such thatS(T) ⊢ Y → D and S(T) ⊢ Z[B,D] → A.
Using (CUT) with the premisesY′ → B and Z[B,D] → B we get
S(T) ⊢ Z[Y′,D] → A, which meansS(T) ⊢ X[D] → A.

⊔⊓

Lemma 7 For any T-sequent X→ A, X→T A iff S(T) ⊢ X→ A.

Proof. Recall, thatX →T A means that the sequentX → A has the proof in
NL1(Γ) consisting withT-sequents only.

To prove ’if’ direction observe thatX →T A, for all sequentsX → A in
ST .

TheT-sequents which are axioms of NL1(Γ) belong toS0. Thus, to prove
the ’only if’ direction it suffices to show that all inference rules of NL1(Γ),
restricted toT-sequents, are admissible inS(T). For example, let us consider
(1L). AssumeX[Λ] → A. By lemma 6, there existD ∈ T such thatS(T) ⊢
Λ→ D andS(T) ⊢ X[D] → A. Since (D◦1→ D) ∈ ST , thenS(T) ⊢ D◦1→
D. By two applications of (CUT), we getS(T) ⊢ X[Λ◦1] → A, which means
S(T) ⊢ X[1] → A. ⊔⊓

Theorem 8 If Γ is finite, thenNL1(Γ) is decidable in polynomial time.

Proof. Let Γ be a finite set of sequents of the formB → C and letX → A
be a sequent. Letn be the number of logical constants and atoms inX → A

R / 43

andΓ. As T we choose the set of all sub-formulas of formulas appearing in
X→ A and formulas appearing inΓ. Since the number of sub-formulas of any
formulaB is equal to the number of logical constants and atoms inB, T hasn
elements and we can construct it in time 0(n2). By lemma 2, NL1(Γ) ⊢ X→ A
iff X→T A. By lemma 7,X→T A iff S(T) ⊢ X→ A. Proofs inS(T) are actu-
ally derivation trees of a context-free grammar whose production rules are the
reversed sequents fromST . Checking derivability in context-free grammars
is P-TIME decidable. For example, by known CYK algorithm, itcan be done
in time not exceedk · n3, wherek is the size ofST . By the proof of fact 3, the
size ofST is at most 0(n3) andST can be constructed in 0(n12). Hence, the
total time is 0(n12), i.e. NL1(Γ) is P-TIME decidable. ⊔⊓

By theorem 8, we have immediately that languages generated by the cate-
gorial grammar based on the system NL1(Γ) are context-free. In Buszkowski
(2005) the analogous result was established for NL(Γ), NL(Γ) with permuta-
tion rule and Generalized Lambek Calculus (GLC(Γ)). The context-freeness
of the languages generated by Non-associative Lambek Calculus were studied
by Buszkowski (1986), Kandulski (1988) and Jäger (2004). Bulińska (2005)
obtained the weak equivalence of context-free grammars andgrammars based
on the associative Lambek calculus with finite set of simple non-logical ax-
ioms of the formp→ q, wherep, q are primitive types.

References
Bulińska, M. 2005. The Pentus Theorem for Lambek Calculus with Simple Nonlogi-

cal Axioms.Studia Logica81:43–59.

Buszkowski, W. 1986. Generative capacity of Nonassociative Lambek Calculus.Bul-
letin of Polish Academy of Sciences. Mathematics34:507–516.

Buszkowski, W. 2005. Lambek Calculus with Nonlogical Axioms. In C. Casadio, P. J.
Scott, and R. A. G. Seely, eds.,Language and Grammar, Studies in Mathematical
Linguistics and Natural Language, pages 77–93. CSLI Publications.

de Groote, P. and F. Lamarche. 2002. Clasical Non-Associative Lambek Calculus.
Studia Logica71:355–388. Special issue: The Lambek calculus in logic andlin-
guistics.

Jäger, G. 2004. Residuation, Structural Rules and ContextFreeness.Journal of Logic,
Language and Information13:47–59.

Kandulski, M. 1988. The equivalence of Nonassociative Lambek Categorial Gram-
mars and Context-Free Grammars.Zeitschrift für mathematische Logik und Grund-
lagen der Mathematik52:34–41.

Moortgat, M. 1997. Categorial Type Logics. In J. van Benthemand A. ter Meulen,
eds., Handbook of Logic and Language, pages 93–177. Amsterdam, Cambrigde
Mass.: Elsvevier, MIT Press.

6

Program transformations for
optimization of parsing algorithms and
other weighted logic programs
J E  J B

Abstract
Dynamic programming algorithms in statistical natural language processing can be

easily described as weighted logic programs. We give a notation and semantics for such
programs. We then describe several source-to-source transformations that affect a pro-
gram’s efficiency, primarily by rearranging computations for better reuse or by changing
the search strategy. We present practical examples of usingthese transformations, mainly
to optimize context-free parsing algorithms, and we formalize them for use with new
weighted logic programs.

Specifically, we defineweightedversions of the folding and unfolding transforma-
tions, whose unweighted versions are used in the logic programming and deductive
database communities. We then present a novel transformation called speculation—a
powerful generalization of folding that is motivated by gap-passing in categorial gram-
mar. Finally, we give a simpler and more powerful formulation of the magic templates
transformation.1

Keywords   ,  ,  -
,  

6.1 Introduction

In this paper, we show how some algorithmic efficiency tricks used in the nat-
ural language processing (NLP) community, particularly for parsing, can be
regarded as specific instances of transformations on weighted logic programs.

1This material is based upon work supported by the National Science Foundation under
Grants No. 0313193 and 0347822 to the first author.

45

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

46 / J E  J B

We define weighted logic programs and sketch the general formof the
transformations, enabling their application to new programs in NLP and other
domains. Several of the transformations (folding, unfolding, magic templates)
have been known in the logic programming community, but are generalized
here to our weighted framework and applied to NLP algorithms. We also
present a powerful generalization of folding—speculation—which appears
new and is able to derive some important parsing algorithms.

We also formalize these transformations in a way that we find more intu-
itive than conventional presentations. Influenced by the mechanisms of cate-
gorial grammar, we introduce “slashed” terms whose values may be regarded
as functions. These slashed terms greatly simplify our constructions. In gen-
eral, our work can be connected to the well-established literature on grammar
transformation.

The framework that we use for specifying the weighted logic programs is
roughly based on that of Dyna (Eisner et al., 2005), an implemented system
that can compile such specifications into efficient C++. Some of the programs
could also be handled by PRISM (Zhou and Sato, 2003), an implemented
probabilistic Prolog.

It is especially useful to have general optimization techniques for dynamic
programming algorithms (a special case in our framework), because compu-
tational linguists regularly propose new such algorithms.Dynamic program-
ming is used to parse many different grammar formalisms, and in syntax-
based approaches to machine translation and language modeling. It is also
used in finite-state methods, stack decoding, and grammar induction.

One might select program transformations either manually or automati-
cally. Our goal here is simply to illustrate the search spaceof semantically
equivalent programs. We do not address the practical question of searching
this space—that is, the question of where and when to apply the transfor-
mations. For some programs and their typical inputs, a transformation will
speed a program up (at least on some machines); in other cases, it will slow it
down. The actual effect can of course be determined empirically by running
the transformed program on typical inputs (or, in some cases, can be rea-
sonably well predicted from runtime profiles of theuntransformedprogram).
Thus, one could in principle use automated methods, such as stochastic lo-
cal search, to search for sets of transformations that provide good practical
speedups.

6.2 Weighted Logic Programming

Before moving to the actual transformations, we will take several pages to
describe our proposed formalism of weighted logic programming.

T     / 47

6.2.1 Logical Specification of Dynamic Programs

We will use context-free parsing as a simple running example. Recall that one
can write a logic program for CKY recognition (Younger, 1967) as follows,
whereconstit(X,I,K) is provable iff the context-free grammar (CFG), starting
at nonterminalX, can generate the input substring from positionI to position
K. The capitalized symbols arevariables.

constit(X,I,K) :- rewrite(X,W), word(W,I,K).
constit(X,I,K) :- rewrite(X,Y,Z), constit(Y,I,J), constit(Z,J,K).
goal :- constit(s,0,N), length(N).

rewrite(s,np,vp). % tiny grammar
rewrite(np,det,n).
rewrite(np,”Dumbo”).
rewrite(np,”flies”).
rewrite(vp,”flies”).

word(”Dumbo”,0,1).% tiny input sentence
word(”flies”,1,2).
length(2).

For example, the second line permits us to prove the proposition constit(X,I,K)
once we can prove that there exist constituentsconstit(Y,I,J) andconstit(Z,J,K)—
which are adjacent2—as well as a context-free grammar rulerewrite(X,Y,Z)
(i.e, X → Y Z) to combine them. This deduction is permitted foranyspecific
values ofX,Y,Z (presumably nonterminals of the grammar) andI,J,K (presum-
ably positions in the sentence).

We suppose in this paper that the whole program above is specified at
compile time. In practice, one might instead wait until runtime to provide the
description of the sentence (theword and length facts) and perhaps even of
the grammar (therewrite facts). In this case our transformations could be used
only on the part of the program specified at compile time.3

The basic objects of the program areterms, defined in the usual way (as
in Prolog). Following parsing terminology, we refer to someterms asitems;
these are terms that the program might prove in the course of its execution,
such asconstit(np,0,1) but notnp (which appears only as asub-termof items)
nor constit(foo(bar),baz).4 Each line in the program is aninference rule (or

2By convention, we regard positions as fallingbetweeninput words, so that the substring
from I to J is immediately adjacent to the substring fromJ to K.

3This is generally safe provided that the runtime rules may not define in the head, nor evaluate
in the body, any term that unifies with the head of a compile-time rule. It is common to assume
further that all the runtime rules are facts, known collectively as thedatabase.

4It is of course impossible to determine precisely which terms the programwill prove without
running it. It is merely helpful to refer to terms as items when we are discussing their provability
or, in the case of weighted logic programs, their value. (“Item” does have a more formal meaning

48 / J E  J B

clause).
Each of the inference rules in the above example isrange-restricted. In

the jargon of logic programming, this means that allvariables (capitalized)
in the rule’s left-hand side (rulehead) also appear in its right-hand side (rule
body). A rule with an empty body is called afact. If all rules are range-
restricted, then all provable terms areground terms, i.e., terms such ascon-
stit(s,0,2) that do not contain any variables.

Logic programs restricted in this way correspond to the “grammatical
deduction systems” discussed by Shieber et al. (1995). Sikkel (1997) gives
many parsing algorithms in this form. More generally, programs that consist
entirely of range-restricted rules correspond to conventional dynamic pro-
gramming algorithms, and we may refer to them informally asdynamic pro-
grams.

Dynamic programs can be evaluated by various techniques. The specific
technique chosen is not of concern to this paper except in section 6.6. How-
ever, for most NLP algorithms, it is common to use a bottom-upor forward
chaining strategy such as the one given by Shieber et al., which iteratively
proves all transitive consequences of the facts in the program. In the exam-
ple above, forward chaining starts with theword, rewrite, andlength facts and
derives successively widerconstit items, eventually derivinggoal iff the input
sentence is grammatical. This corresponds to chart parsing, with the role of
the chart being played by a data structure that remembers which items have
been proved so far.5

This paper deals with general logic programs, not just dynamic programs.
For example, one may wish to state once and for all that an “epsilon” word
is available ateverypositionK in the sentence:word(epsilon,K,K). We allow
this because it will be convenient for most of our transformations to intro-
duce new non-range-restricted rules, which canderivenon-ground items such
as word(epsilon,K,K). The above execution strategies continue to apply, but
the presence of non-ground items means that they must now useunification
matching to find previously derived terms of a given form. Forexample, if the
non-ground itemword(epsilon,K,K) has been derived, representing an infinite
collection of ground terms, then if the program looks up the set of terms in
the chart matchingword(W,2,K), it should find (at least)word(epsilon,2,2).

in a practical setting—where, for efficiency, the user or the compiler declares anitem datatype
that is guaranteed to be able to represent at least all provable terms, though not necessarily all
terms. We then use “item” to refer to terms that can be represented by this explicit datatype.)

5An alternative strategy is Prolog’s top-downbackward-chaining strategy, which starts by
trying to provegoal and tries to prove other items as subgoals. However, this strategy will waste
exponential time by re-deriving the same constituents in different contexts, or will fail to termi-
nate if the grammar is left-recursive. It may be rescued by memoization, also known as “tabling,”
which re-introduces a chart (Sagonas et al., 1994).

T     / 49

One can often eliminate non-range-restricted rules (in particular, the ones
we introduce) to obtain a semantically equivalent dynamic program, but we
do not here explore transformations for doing so systematically.

6.2.2 Weighted Logic Programs

We now define our notion ofweightedlogic programs, of which the most use-
ful in NLP are the semiring-weighted dynamic programs discussed by Good-
man (1999) and Eisner et al. (2005). See the latter paper for adiscussion of
relevant work on deductive databases with aggregation (e.g., Fitting, 2002,
Van Gelder, 1992, Ross and Sagiv, 1992).

In a weighted logic program, each provable item has avalue. Our running
example is the inside algorithm for context-free parsing:

constit(X,I,K) += rewrite(X,W) * word(W,I,K).
constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).
goal += constit(s,0,N) * length(N).

rewrite(s,np,vp) = 1. % p(s→ np vp | s)
rewrite(np,det,n) = 0.5. % p(np→ det n | np)
rewrite(np,”Dumbo”) = 0.4. % p(np→ ”Dumbo” | np)
rewrite(np,”flies”) = 0.1. % p(vp→ ”flies” | vp)
rewrite(vp,”flies”) = 1. % p(vp→ ”flies” | vp)

word(”Dumbo”,0,1) = 1. % 1 for all words in the sentence
word(”flies”,1,2) = 1.
length(2) = 1.

This looks just like the unweighted logic program in section6.2.1, except
that now the body of each inference rule is an arbitraryexpression, and the
:- operator is replaced by anaggregation operatorsuch as+= or max=. One
might call these rules “Horn equations,” by analogy with the(definite) Horn
clauses of the unweighted case. Afact is now a rule whose body is a constant
or an expression on constants.

To understand the meaning of the above program, consider forexam-
ple the itemconstit(s,0,2). The old version of line 2 allowed one toprove
constit(s,0,2) if rewrite(s,Y,Z), constit(Y,0,J), andconstit(Z,J,2) were all true for
at least one tripleY,Z,J. The new version of line 2 insteaddefines the valueof
constit(s,0,2)—or more precisely, as

∑

Y,Z,J

rewrite(s,Y,Z) ∗ constit(Y,0,J) ∗ constit(Z,J,2)

The aggregation operator+= requires a sum over all ways of grounding the
variables that appear only in the rule body, namelyY, Z, andJ. The rest of
the value ofconstit(s,0,2) is added in by line 1. We will formalize all of this in
section 6.2.3 below.

50 / J E  J B

To put this another way, one way of grounding line 2 (i.e., oneway
of substituting a ground term for each of its variables) isconstit(s,0,2) +=
rewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2). Therefore, one operand to
+= in defining the value ofconstit(s,0,2) will be the value (if defined) of
rewrite(s,np,vp) * constit(np,0,1) * constit(vp,1,2).

The result—for this program—is that the computed value ofconstit(X,I,J)
will be the traditional inside probabilityβX(I, J) for a particular input sentence
and grammar.6

If the heads of two rules unify, then the rules must use the same aggrega-
tion operator, to guarantee that each provable term’s valueis aggregated in a
consistent way. Eachconstit(. . .) term above is aggregated with+=.

Substitutingmax= for += throughout the program would find Viterbi prob-
abilities (best derivation) rather than inside probabilities (sum over deriva-
tions). Similarly, we can obtain the unweighted recognizerof section 6.2.1 by
writing expressions over boolean values:7

constit(X,I,K) |= rewrite(X,Y,Z) & constit(Y,I,J) & constit(Z,J,K).

Of course, these programs are all essentially recognizers rather than
parsers. They only compute a boolean or real value forgoal. To recover
actual parse trees, one can extract the proof trees ofgoal. To make the
parse trees accessible to the program itself, one can define aseparate item
parse(constit(X,I,K)) whose value is a tree.8 We do not give the details here to
avoid introducing new notation and issues that are orthogonal to the scope of
this paper.

The above examples, like most of our examples, can be handledby the
framework of Goodman (1999). However, we allow a wider classof rules.
Goodman allows only range-restricted rules (cf. our section 6.2.1), and he
requires all values to fall in a single semiring and all rulesto use only the
semiring operations. The latter requirements—in particular the distributivity
property of the semiring—imply that an item’s value can be found by sep-
arately computing values for all of its complete proof treesand then aggre-
gating them at the end. That is not the case for neural networks, game trees,

6However, unlike probabilistic programming languages (Zhou and Sato, 2003), we do not
enforce that values be reals in [0, 1] or have probabilistic interpretations.

7Using | for “or” and & for “and.” The aggregation operators|= and&= can be regarded as
implementing existential and universal quantification.

8Another option is to say that the value ofconstit(X,I,K) is not just a number but a (num-
ber,tree) pair, and to definemax= over such pairs Goodman (1999). This resembles the use
of semantic attachments to build output in programming language parsers. However, it requires
building a tree (indeed, many trees, of which the best is kept) for eachconstit, including con-
stituents that do not appear in the final parse. Our preferredscheme is to hold the best tree in
a separateparse(constit(X,I,K)) item. Then we can choose to use backward chaining, or the
magic templates transformation of section 6.6, to limit ourcomputation of parse trees to those
that are needed to assemble the final tree,parse(goal).

T     / 51

practical NLP systems that mix summation and maximization,or other useful
systems of equations that can be handled in our more general framework.

6.2.3 Semantics of Weighted Logic Programs

We now formalize the semantics of a weighted logic program, and define
what it means for a program transformation to preserve the semantics. Read-
ers who are interested in the actual transformations may skip this section,
except for the brief definitions of the special aggregation operator= and of
side conditions.

In an unweighted logic program, the semantics is the set of provable
ground terms.9 For aweightedlogic program, the semantics is a partial func-
tion, thevaluation function, that maps each provable ground termr to a
value JrK. All items in our example above take values inR. However, one
could use values of any type or of multiple types.

The domain of the valuation functionJ·K is the set of ground terms for
which there exist finite proofs under theunweightedversion of the program.
We extendJ·K in the obvious way to expressions on provable ground terms:
for example,Jx * yK

def
= JxK * JyK provided thatJxK andJyK are defined.

For each ground termr that is provable in programP, let P(r) be the
non-empty multiset of all expressionsE, over provable ground terms, such
thatr ⊕r = E grounds some rule ofP. Here⊕r= denotes the single aggregation
operator shared by all those rules.

We now interpret the weighted rules as a set of simultaneous equations
that constrain theJ·K function. If ⊕r = is +=, then we require that

JrK =
∑

E∈P(r)

JEK

(perhaps permittingJrK = ∞ if the sum diverges). More generally, we require
that

JrK = JE1K ⊕r JE2K ⊕r . . .

whereP(r) = {E1,E2, . . .}. For this to be well-defined,⊕r must be associative
and commutative. If⊕r = is the special operator=, as in the final rules of our
example, then we setJrK = JE1K if P(r) is a singleton set{E1}, and generate
a runtime error otherwise.

Example. In the example of section 6.2.2, lines 1–2, this means that for any
particularX, I ,K for which constit(X,I ,K) is a provable item,Jconstit(X, I ,K)K
equals

9Note that if a non-ground term can be proved under the program, so can any one of the
infinitely many ground terms that instantiates (specializes) that non-ground term. Our formal
semantics are described in terms of these ground terms only.

52 / J E  J B

∑
WJrewrite(X,W)K ∗ Jword(W,I ,J)K

+
∑

J,Y,ZJrewrite(X,Y,Z)K ∗ Jconstit(Y,I ,J)K ∗ Jconstit(Z,J,K)K

where, for example, the second summation ranges over term triples J,Y,Z
such that the summand has a value. We sum overJ,Y,Z because they do not
appear in the rule’s headconstit(X, I ,K), which is being defined.

Remark. Our constraints on the valuation functionJ·K are equivalent to say-
ing that it is a fixed point of an “equational update” operatorTP,10 which acts
on valuation functionsI and is analogous to the “monotone consequence”
operator for unweighted logic programs. Such a fixed point need not be
unique.11 Operationally, one may seek a single fixpoint by initializing I = {},
repeatedly updatingI to TP(I), and hoping for convergence. That is the basic
idea of the forward-chaining algorithm in section 6.2.4 below.

Side conditions. A mechanism for handling “side conditions” (e.g., Good-
man, 1999) is to use rules like12

a += b * c whenever ?d.

We defineJb * c whenever ?dK
def
= Jb * cK, independent of the value ofd. But by

our earlier definitions, it will appear inP(a) and be added intoJaK only if the
side conditiond, along withb andc, is provable.

Definition. Roughly speaking, a program transformationP → P′ is said
to besemantics-preservingiff it preserves the partial functionJ·K. In other
words, exactly the same ground terms must be provable under both programs,
and they must have the same values.

We make two adjustments to this rough definition. First, for generality, we
must handle the case whereP andP′ do not both have uniquely determined
semantics. In general, we say that the transformation is semantics-preserving
iff it preserves thesetof valuation functions.

Second, we would like a program transformation to be able to introduce
new provable items for its own use. Therefore, we only require that it preserve

10That is,J·K = TP(J·K). Given a valuation functionI , TP(I) is defined as follows: for ordinary
ground termsr , put

(TP(I))(r) =
⊕

r

E such thatE is a ground expression where
I (E) is defined andr ⊕r= E grounds some rule ofP

I(E)

if this sum is non-empty, and leave it undefined otherwise. Then extendTP(I) over expressions
as usual.

11There is a rich line of research that attempts to more precisely characterize which fixed point
gives the “intuitive” semantics of a logic program with negation or aggregation (see e.g. Fitting,
2002, Van Gelder, 1992, Ross and Sagiv, 1992).

12whenever ?d is defined to mean “whenever d is provable,” whereaswhenever d would mean
“whenever d’s value istrue.” The latter construction is also useful, but not needed in this paper.

T     / 53

the restriction of J·K to the Herbrand base ofP (more precisely, to the Her-
brand base of all expressible constants and the functors inP). Thus, a trans-
formed version of the inside algorithm would be allowed to prove additional
temp(. . .) items, but not additionalconstit(. . .) items. The user may therefore
safely interrogate the transformed program to find out whether constit(np,0,5)
is provable and if so, what its value is.

Notice that a two-step transformationP → P′′ → P′ might introduce
new temp(. . .) items in the first step and eliminate them in the second. This
composite transformation may still be semantics preserving even though its
second stepP′′ → P′ is not.

All of the transformations developed in this paper are intended to be
semantics-preserving (except for rule elimination and magic templates, which
preserve the semantics of only a subset of the ground terms).To prove this
formally, one would show that every fixed point ofTP′ is also a fixed point
of TP, when restricted to the Herbrand base ofP, and conversely, that every
fixed point ofP can be extended to a fixed point ofTP′ .

6.2.4 Computing Semantics by Forward Chaining

A basic strategy for computing a semantic interpretation is“forward chain-
ing.” The idea is to maintain current values for all proved items, and to prop-
agate updates to these values, from the body of a rule to its head, until all
the equations are satisfied. This may be done in any order, or in parallel (as
for the equational update operator of section 6.2.3). Note that in the presence
of cycles such asx += 0.9 * x, the process can still convergenumericallyin
finite time (to finite values or to∞, representing divergence). Indeed, the for-
ward chaining strategy terminates in practice for many programs of practical
interest.13

As already noted in section 6.2.1, Shieber et al. (1995) gavea forward
chaining algorithm (elsewhere called “semi-naive bottom-up evaluation”) for
unweighteddynamicprograms. Eisner et al. (2005) extended this to handle ar-
bitrary semiring-weighted dynamic programs. Goodman (1999) gave a mixed
algorithm.

Dealing with our full class of weighted logic programs—not just semiring-
weighted dynamic programs—is a substantial generalization. Once we allow
inference rules that are not range-restricted, the algorithm must derive non-
ground items and store them and their values in the chart, andobtain the value
of foo(3,3), if not explicitly derived, by “backing off” to the derived value of
non-ground items such asfoo(X,X) or foo(X,3), which are preferred in turn to

13Of course, no strategy can possibly terminate on all programs, because the language (even
when limited to unweighted range-restricted rules) is powerful enough to construct arbitrary Tur-
ing machines. We remark that forward chaining may fail to terminate either because of oscillation
or because infinitely many items are derived (e.g.,s(N) = N).

54 / J E  J B

the less specificfoo(X,Y). Once we drop the restriction to semirings, the algo-
rithm must propagate arbitrary updates (notice that it is not trivial to update
the result ofmax= if one of its operands decreases). Certain aggregation op-
erators also allow important optimizations thanks to theirspecial properties
such as distributivity and idempotence. Finally, we may wish to allow rules
such asreciprocal(X) = 1/X that cannot be handled at all by forward chaining.
We defer all these algorithmic details to a separate paper, focusing instead on
the denotational semantics.

6.3 Folding: Factoring Out Subexpressions
Weighted logic programs are schemata that define possibly infinite systems of
simultaneous equations. Finite systems of equations can often be rearranged
without affecting their solutions (e.g., Gaussian elimination). In the same way,
weighted logic programs can be transformed to obtain new programs with
better runtime.

Notation. We will henceforth adopt a convention of underlining any vari-
ables that appear only in a rule’s body, to more clearly indicate the range of
the summation. We will also underline any variables that appear only in the
rule’s head; these indicate that the rule is not range-restricted.

Example. Consider first our previous rule from section 6.2.2,

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

If the grammar hasN nonterminals, and the input is ann-word sentence
or ann-state lattice, then the above rule can be grounded in onlyO(N3 · n3)
different ways. For this—and the other parsing programs we consider here—
it turns out that the runtime of forward chaining can be kept down to O(1)
time per grounding.14 Thus the runtime isO(N3 · n3).

However, the following pair of rules is equivalent:

temp(X,Y,Z,I,J) = rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += temp(X,Y,Z,I,J) * constit(Z,J,K).

We have just performed a weighted version of the classicalfolding trans-
formation for logic programs (Tamaki and Sato, 1984). The original body
expression would be explicitly parenthesized as(rewrite(X,Y,Z) * constit(Y,I,J))
* constit(Z,J,K); we have simply introduced a “temporary item” (like a tem-
porary variable in a traditional language) to hold the result of the parenthe-
sized subexpression, then “folded” that temporary item into the computation

14Assuming that the grammar is acyclic (in that it has no unary rule cycles) and so is the
input lattice. Even without such assumptions, a meta-theorem of McAllester (1999) allows one
to derive asymptotic run-times of appropriately-indexed forward chaining from the number of
instantiations. However, that meta-theorem applies only to unweighted dynamic. Similar results
in the weighted case require acyclicity. Then one can use thetwo-phase method of Goodman
(1999), which begins by running forward chaining on an unweighted version of the program.

T     / 55

of constit. The temporary item mentions all the capitalized variablesin the
expression.

Distributivity. A more important use appears when we combine folding
with the distributive law. In the example above, the second rule’s body sums
over the (underlined) free variables,J, Y, andZ. However,Y appears only
in the temp item. We could therefore have summed over values ofY before
multiplying by constit(Z,J,K), obtaining the following transformed program
instead:

temp2(X,Z,I,J) += rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += temp2(X,Z,I,J) * constit(Z,J,K).

This version of the transformation is permitted only because + distributes
over*.15 By “forgetting” Y as soon as possible, we have reduced the runtime
of CKY from O(N3 · n3) to O(N3 · n2 + N2 · n3).

Using the distributive law to improve runtime is a well-known technique.
Aji and McEliece (2000) present what they call a “generalized distributive
law,” which is equivalent to repeated application of the folding transforma-
tion. While their inspiration was the junction-tree algorithm for probabilistic
inference in graphical models (discussed below), they demonstrate the ap-
proach to be useful on a broad class of weighted logic programs.
A categorial grammar view of folding. From a parsing viewpoint, notice
that the itemtemp2(X,Z,I,J) can be regarded as a categorial grammar con-
stituent: an incompleteX missing a subconstituentZ at its right (i.e., anX/Z)
that spans the substring fromI to J. This leads us to an interesting and appar-
ently novel way to write the transformed program:

constit(X,I,K)/constit(Z,J,K) += rewrite(X,Y,Z) * constit(Y,I,J).
constit(X,I,K) += constit(X,I,K)/constit(Z,J,K) * constit(Z,J,K).

HereA/B is syntactic sugar forslash(A,B). That is,/ is used as an infix functor
and does not denote division, However, it is meant tosuggestdivision: as the
second rule shows,A/B is an item which, if multiplied byB, yields a summand
of A. In effect, the first rule above is derived from the original rule at the
start of this section by dividing both sides byconstit(Z,J,K). The second rule
multiplies the missing factorconstit(Z,J,K) back in, now that the first rule has
summed overY.

Notice thatK appears free (and hence underlined) in the head of the first
rule. The only slashed items that are actuallyprovableby forward chaining
are non-ground terms such asconstit(s,0,K)/constit(vp,1,K). That is, they have
the formconstit(X,I,K)/constit(Z,J,K) whereX,I,J are ground variables butK re-
mains free. The way thatK appears twice in the slashed item (i.e., internal

15All semiring-weighted programs enforce a similar distributive property. In particular, the
trick can be applied equally well to common cases discussed in section 6.2.2: Viterbi parsing
(max distributes over either* or +) and unweighted recognition (| distributes over&.

56 / J E  J B

unification) indicates that the missingZ is always at theright of theX, while
the fact thatK remains a variable means that the shared right edge of the full
X and missingZ are still unknown (and will remain unknown until the second
rule fills in a particularZ). Thus, the first rule performs a computation once
for all possibleK—always the source of folding’s efficiency.

Our earlier program withtemp2 could now be obtained by a further au-
tomatic transformation that replaces allconstit(X,I,K)/constit(Z,J,K) having free
K with the more compactly storedtemp2(X,Z,I,J). The resulting rules are all
range-restricted.

We emphasize that although our slashed items are inspired bycategorial
grammars, they can be used to describe folding inany weighted logic pro-
gram. Section 6.5 will further exploit the analogy to obtaina novel “specula-
tion” transformation.

Further applications. The folding transformation unifies various ideas that
have been disparate in the natural language processing literature. Eisner and
Satta (1999) speed up parsing with bilexical context-free grammars from
O(n5) to O(n4), using precisely the above trick (see section 6.4 below). Huang
et al. (2005) employ the same “hook trick” to improve the complexity of
syntax-based MT with ann-gram language model.

Another parsing application is the common “dotted rule” trick (Earley,
1970). If one’s CFG contains ternary rulesX → Y1 Y2 Y3, the naive CKY-
like algorithm takesO(N4 · n4) time:

constit(X,I,L) += ((rewrite(X,Y1,Y2,Y3) * constit(Y1,I,J))
* constit(Y2,J,K)) * constit(Y3,K,L).

Fortunately, folding allows one to sum first overY1 before summing sepa-
rately overY2 andJ, and then overY3 andK:

temp3(X,Y2,Y3,I,J) += rewrite(X,Y1,Y2,Y3) * constit(Y1,I,J).
temp4(X,Y3,I,K) += temp3(X,Y2,Y3,I,J) * constit(Y2,J,K).
constit(X,I,L) += temp4(X,Y3,I,K) * constit(Y3,K,L).

This restoresO(n3) runtime (more precisely,O(N4 ·n2+N3 ·n3+N2 ·n3))16 by
reducing the number of nested loops. Even if we had declined to sum overY1
andY2 in the first two rules, then the summation overJ would already have
obtainedO(n3) runtime, in effect by binarizing the ternary rule. For exam-
ple, temp4(X,Y1,Y2,Y3,I,K) would have corresponded to a partial constituent
matching thedottedrule X→ Y1 Y2 . Y3. The additional summations overY1
andY2 result in a more efficient dotted rule that “forgets” the names of the
nonterminals matched so far,X → ? ? . Y3. This takes further advantage of
distributivity by aggregating dotted-rule items (with+=) that will behave the
same in subsequent computation.

16For a dense grammar, which may have up toN4 ternary rules. Tighter bounds on grammar
size would yield tighter bounds on runtime.

T     / 57

The variable elimination algorithm for graphical models can be viewed as
repeated folding. An undirected graphical model expressesa joint probability
distribution overP,Q by marginalizing (summing) over a product of clique
potentials. In our notation,

marginal(P,Q) += p1(. . .) * p2(. . .) * · · · * pn(. . .).

where a function such asp5(Q,X,Y) represents a clique potential over graph
nodes corresponding to the random variablesQ,X,Y. Assume without loss of
generality that variableX appears as an argument only topk+1, pk+2, . . . , pn.
We mayeliminatevariableX by transforming to

temp5(. . .) += pk+1(. . . , X, . . .) * · · · * pn(. . . , X, . . .).
marginal(P,Q) += p1(. . .) * · · · * pk(. . .) * temp5(. . .).

Line 2 no longer mentionsX because line 1 has summed over it. To elimi-
nate the remaining variables one at a time, the variable elimination algorithm
applies this procedure repeatedly to the last line.17

Common subexpression elimination.Folding can also be used multiple
times to eliminate common subexpressions. Consider the following code,
which is part of an inside algorithm forbilexicalCKY parsing:18

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,I,J) * constit(Z:H2,J,K).

constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)
* constit(Y:H2,I,J) * constit(Z:H,J,K).

HereX:H is syntactic sugar forntlex(X,H), meaning a nonterminalX whose
head word is the lexical itemH. The grammar uses two types of lexicalized
binary productions (defined byrewrite facts not shown here), which pass the
head word to the left or right child, respectively.

We could fold together the last two factors of the first rule toobtain

temp6(Y:H,Z:H2,I,K) += constit(Y:H,I,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) * temp6(Y:H,Z:H2,I,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H)

* constit(Y:H2,I,J) * constit(Z:H,J,K).

We canreusethis definition of thetemp rule to fold together the last two fac-
tors of line 3—which is the same subexpression, modulo variable renaming.

17Determining the optimal elimination order is NP-complete.However, there are many heuris-
tics in the literature (such as min-width) that could be usedif automatic optimization of long rules
is needed.

18This algorithm is obviously an extension of the ordinary inside algorithm in section 6.2.2.
The other rules are

constit(X:H,I,K) += rewrite(X,H) * word(H,I,K).

goal += constit(s:H,0,N) * length(N).

58 / J E  J B

Given a new ruleR in the formr ⊕= F[s] (which will be used to replace a
group of rulesR1, . . . ,Rn in P). Let S1, . . . ,Sn be the complete list of rules
in P whose heads unify withs. Suppose that all rules in this list use⊙ as
their aggregation operator.
Now for eachi, whens is unified with the head ofSi , the tuple (r, F, s,Si)19

takes the form (r i , Fi , si , si ⊙= Ei). Suppose that for eachi, there is a distinct
ruleRi in the program that is equal tor i ⊕= Fi [Ei], modulo renaming of its
variables.
Then the folding transformation deletes then rulesR1, . . . ,Rn, and replaces
them with the new ruleR, provided that

.Any variable that occurs in any of theEi which also occurs in eitherFi

or r i must also occur insi .20

.Either⊙= is simply=,21 or else the distributive propertyJF[µ] ⊕ F[ν]K =
JF[µ ⊙ ν]K holds for all assignments of terms to variables and all valuation
functionsJ·K.22

19Before forming this 4-tuple, rename the variables inSi so that they do not conflict with
those inr, F, s. Perform the desired unification within the 4-tuple by unifying it with the fixed
term(R,F,S,S ⊙= E), which contains two copies ofS.

20This ensures that computingsi by ruleSi does not sum over this variable, which would break
the covariation ofEi with F or r as required by the original ruleRi .

21For instance, in the very first example of section 6.3, thetemp item was defined using=
and therefore performed no aggregation (see section 6.2.3). No distributivity was needed.

22That is, all valuation functions over the space of ground terms, including dummy termsµ
andν, when extended over expressions in the usual way.

FIGURE 1 The weighted folding transformation.

(Below, for clarity, we explicitly and harmlessly swap the names ofH2 andH
within the temp rule.)

temp7(Y:H2,Z:H,I,K) += constit(Y:H2,I,J) * constit(Z:H,J,K).
constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) * temp7(Y:H,Z:H2,I,K).
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H) * temp7(Y:H2,Z:H,I,K).

Using the sametemp7 rule (modulo variable renaming) in both folding
transformations, rather than introducing a new temporary item for each fold,
gives us a constant-factor improvement in time and space.

Formal definition of folding. Our definition, shown in Figure 1, may seem
surprisingly complicated. Its most common use is to replacea single rule
r ⊕= F[E] with r ⊕= F[s] in the presence of a rules⊙= E. However, we have
given a more general form that is best understood as precisely reversing the
weighted unfolding transformation to be discussed in the next section (Fig-
ure 2). In unfolding, it is often useful fors to be defined by a group of rules

T     / 59

whose heads unify withs (i.e., they may be more general or specific patterns
thans). We define folding to allow the same flexibility.

In particular, this definition of folding allows an additional use of distribu-
tivity. Both the original itemr and the temp items may aggregate values
not just within a single rule (summing over free variables inthe body), but
also acrossn rules. In ordinary mathematical notation, we are performing a
generalized version of the following substitution:

Before After
r =

∑n
i=1 (f ∗ Ei) ⇒ r = f ∗ s

s=
∑n

i=1 Ei ⇒ s=
∑n

i=1 Ei

given the distributive property
∑

i(f ∗Ei) = f ∗
∑

i Ei . The common context in
the original rules is the function “multiply by expressionf ,” so the temp item
splays the role ofr/ f .

Figure 1 also generalizes beyond “multiply byf .” It allows an arbitrary
common contextF—a sort of function. In Figure 1 and throughout the paper,
we use the notationF[E] to denote theliteral substitution of expressionE for
all instances ofµ in an expressionF over items, even ifX contains variables
that appear inE or elsewhere in the rule containingF[E]. We assume thatµ
is a distinguished symbol that does not appear elsewhere.

Generalized distributivity. Figure 1 states the required distributive prop-
erty as generally as possible in terms ofF. An interesting example is
Jlog(p) + log(q)K = Jlog(p * q)K, which says thatlog distributes over* and
changes it to+. This means that the definitions(J) *= e(J,K) may be used
to replacer += b(I,J) * log(e(J,K)) with r += b(I,J) * log(s(J)). Here n = 1,
F = b(I,J) * log(µ), E1 = e(J,K), ands= s(J).

By contrast, the definitions += e(J) maynotbe used to replacer += e(J)*e(J)
with r += s*s, which would incorrectly replace a sum of squares with a square
of sums. If we takeF to bee(J)*µ or µ*e(J), it is blocked by the first require-
ment in Figure 1 (variable occurrence). If we takeF to beµ*µ, it is blocked
by the second requirement (distributivity).

Introducing slashed definitions for folding. Notice that Figure 1 requires
the rules defining the temp items to be in the programalreadybefore folding
occurs. If necessary, their presence may be arranged by a trivial definition in-
troduction transformation that addsslash(r ,F) ⊙= Ei for eachi, whereslash is
a new functor not used elsewhere inP, and⊙ is chosen to ensure the required
distributive property. We then takes to beslash(r ,F) (or if one wants to use
syntactic sugar,r /F).

Note that thensi will be slash(r i ,Fi), which automatically satisfies the re-
quirement in Figure 1 that certain variables that occur inFi or r i must also
occur insi . This technique of introducing slashed items will reappearin sec-
tion 6.5, where it forms a fundamental part of our speculation transformation.

60 / J E  J B

Let R be a rule inP, given in the formr ⊕= F[s]. Let S1, . . . ,Sn be the
complete list of rules inP whose heads unify withs. Suppose that all rules
in this list use⊙ as their aggregation operator.
Now for eachi, whens is unified with the head ofSi , the tuple (r, F, s,Si)23

takes the form (r i , Fi , si , si ⊙= Ei).
Then the unfolding transformation deletes the ruleR, replacing it with the
new rulesr i ⊕= Fi [Ei] for 1 ≤ i ≤ n. The transformation is allowed under
the same two conditions as for the weighted folding transformation:

.Any variable that occurs in any of theEi which also occurs in eitherFi

or r i must also occur insi ..Either ⊙ = is simply =, or else we have the distributive property
JF[µ] ⊕ F[ν]K = JF[µ ⊙ ν]K.

23Before forming this tuple, rename the variables inSi so that they do not conflict with those
in r, F, s.

FIGURE 2 The weighted unfolding transformation.

If no operator⊙ can be found such that the distributive property will hold,
andn = 1, then one can still use folding without the distributive property
(as in the example that opened this section). In this case, introduce a rule
temp(E1) = E1, and takes to be temp(E1), which “memoizes” the value of
expressionE1. Again, this satisfies the requirements of Figure 1.

6.4 Unfolding and Rule Elimination: Inlining Subroutines

Unfolding. The inverse of the folding transformation, calledunfolding (Fig-
ure 2), replacess with its definition inside the rule bodyr ⊕= F[s]. This def-
inition may comprise several rules whose heads unify withs. If s is regarded
as a subroutine call, then unfolding is tantamount to inlining that call.

Recall that afolding transformation leaves the asymptotic runtime alone,
or may improve it when combined with the distributive law. Henceunfolding
makes the asymptotic runtime the same or worse. However, it may help the
practical runtime by reducing overhead. (This is exactly the usual argument
for inlining subroutine calls.)

An obvious example is program specialization. Consider theinside algo-
rithm in section 6.2.2. If we take the second line,

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

and unfoldrewrite(X,Y,Z) inside it, then we replace the above rule with asetof
rules, one for each binary production of the grammar (i.e., each rule whose
head unifies withrewrite(X,Y,Z)):

T     / 61

constit(s,I,K) += 1 * constit(np,I,J) * constit(vp,J,K).
constit(np,I,K) += 0.5 * constit(det,I,J) * constit(n,J,K).

The resulting parser is specialized to the grammar, perhapsproviding a
constant-time speedup. It avoids having to look up the valueof rewrite(s,np,vp)
or rewrite(np,det,n) since these are now “hard-coded” into specialized infer-
ence rules. A compiled version can also “hard-code” patternmatching rou-
tines against specialized patterns such asconstit(np,I,J); such pattern matches
are used during forward or backward chaining to determine which rules to
invoke.

Note that recursive calls can also be unfolded. For example,constit is re-
cursively defined in terms of itself. If we unfold theconstit(np,I,J) inside the
first of the new rules above, we get

constit(s,I,K) += 1 * 0.5 * constit(det,I,L) * constit(n,L,J) * constit(vp,J,K).
constit(s,I,K) += 1 * 0.4 * word(”Dumbo”,I,J) * constit(vp,J,K).
constit(s,I,K) += 1 * 0.1 * word(”flies”,I,J) * constit(vp,J,K).

Unfolding is often a precursor to other transformations. For example, the
patternconstit(vp,I,J) above can now be transformed toconstit vp(I,J) for more
efficient storage. Furthermore, constant subexpressions like1 * 0.5 can now be
replaced in the source code by their values—a transformation that is known,
not coincidentally, as constant folding. We will see another useful example of
this unfold-refold pattern below, and yet another when we derive the (Eisner
and Satta, 1999) algorithm in section 6.5.1.

Rule elimination. A practically useful transformation that is closely related
to unfolding is what we callrule elimination (Figure 3). Rather than fully
expanding one call to subroutines, it removes one of the defining clauses of
sand requiresall of its callers to do the work formerly done by that clause.

This may change or eliminate the definition ofs, so the transformation is
not semantics-preserving. The advantage of changing the semantics is that
if some s items become no longer provable, then it is no longer necessary
to store them in the chart.26 Thus,rule elimination saves space. It also shares
the advantages of unfolding—it can specialize a program, move unification to
compile-time, eliminate intermediate steps, and serve as aprecursor to other

26A similar space savings—while preserving semantics—couldbe arranged simply by elect-
ing not to memoize these items, so that they are computed on demand rather than stored. Indeed,
if we extend our formalism so that a program can specify what to memoize, then it is not hard
to combine folding and unfolding to define a transformation that acts just like rule elimination
(in that the callers are specialized) and yet preserves semantics. The basic idea is to fold together
all of theother clauses that defines, then unfold all calls tos (which accomplishes the special-
ization), and finally declare thats (which is no longer called) should not be memoized (which
accomplishes the space savings). However, we suppress the details as beyond the scope of this
paper. Our main interest in rule elimination in this paper isto eliminate rules fortemp items,
whose semantics were introduced by a previous transformation and need not be preserved.

62 / J E  J B

Let S be a rule ofP to eliminate, with heads. Let R1,R2, . . .Rn be a com-
plete list of rules inP whose bodies may depend ons.24 Suppose that each
Ri can be expressed in the formr i ⊕i= Fi [si], wheresi is a term that unifies
with sandFi is an expression that is independent ofs.25

For eachi, whensi is unified with the head ofS, the tuple (r i , Fi , si ,S) takes
the form (r ′i , F

′
i , s
′
i , s
′
i ⊙= E′i). Then the rule elimination transform removes

rule S from P and, for eachi, adds the new ruler ′i ⊕= F′i [E
′
i] (while also

retainingRi). The transformation is allowed under the same two conditions
as for weighted folding and unfolding:

.Any variable that occurs in any of theE′i which also occurs in eitherF′i
or r ′i must also occur ins′i ..Either ⊙ = is simply =, or else we have the distributive property
JF[µ] ⊕ F[ν]K = JF[µ ⊙ ν]K.

Warning: This transformation alters the semantics of ground terms that
unify with s.

24That is, the bodies of all other rules inP must be independent ofs. The notion of indepen-
dence relies on the semantics of expressions, not on the particular programP. An expressionE
is said to beindependentof a terms if for any two valuation functions on ground terms that
differ only in the values assigned to groundings ofs, the extensions of these valuation functions
over expressions assign the same values to all groundings ofE.

25For example, supposes is s(X,X). Then the ruler(X) += s(X,Y) * t(Y) should be expressed
asr(X) += (µ * t(Y))[s(X,Y)], while r(X) min= s(X,Y) * s(X,Y) should be expressed asr(X) += (µ *
µ)[s(X,Y)] andr min= 3 can be expressed asr min= 3[s(X,X)]. However,r(X) += s(X,Y) * s(Y,Z)
cannot be expressed in the required form at all. We regardµ as a ground term in considering
whetherFi is independent ofs.

FIGURE 3 The weighted rule elimination transformation.

transformations.
To see the difference between rule elimination and unfolding, let us start

with the same example as before, and selectively eliminate just the single bi-
nary productionrewrite(np,det,n) = 0.5. In contrast to unfolding, this no longer
replaces the original general rule

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

with a slew of specialized rules. Rather, itkeepsthe general rule but adds a
specialization

constit(np,I,K) += 0.5 * constit(det,I,J) * constit(n,J,K).

while deletingrewrite(np,det,n) = 0.5 so that it does notalsofeed into the gen-
eral rule.

A recursive example of rule elimination. An interesting recursive exam-
ple is shown below. The original program is in the first column. Eliminating

T     / 63

its second or third rule gives the program in the second or third column, re-
spectively. Each of these changes damages the semantics ofs, as warned, but
preserves the value ofr.27

s += 1. s += 1.

s += 0.5*s. s += 0.5*s.
s += 0.5*1. s += 0.5*0.5*s.

r += s. r += s. r += s.
r += 1. r += 0.5*s.

JsK = 2, JrK = 2 JsK = 1, JrK = 2 JsK = 4
3 , JrK = 2

Unfolding or rule elimination followed by folding. 28 Recall the bilexical
CKY parser given near the end of section 6.3. The first rule originally shown
there has runtimeO(N3 · n5), since there areN possibilities for each ofX,Y,Z
andn possibilities for each ofI,J,K,H,H2. Suppose that instead of that slow
rule, the original programmer had written the following folded version:

temp8(X:H,Z:H2,I,J) += rewrite(X:H,Y:H,Z:H2) * constit(Y:H,I,J).
constit(X:H,I,K) += temp8(X:H,Z:H2,I,J) * constit(Z:H2,J,K).

This partial program has asymptotic runtimeO
(
N3 · n4 + N2 · n5

)
. and needs

O
(
N2 · n4

)
space to store the items (rule heads) it derives.

By either unfolding the call totemp8 or eliminating thetemp8 rule, we
recover the first rule of the original program:

constit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2)
* constit(Y:H,I,J) * constit(Z:H2,J,K).

This worsens the time complexity toO
(
N3 · n5

)
. The payoff is that now we

can refold this rule differently—either as follows (Eisner and Satta, 1999),

temp9(X:H,Y:H,J,K) += rewrite(X:H,Y:H,Z:H2) * constit(Z:H2,J,K).
constit(X:H,I,K) += temp9(X:H,Y:H,J,K) * constit(Y:H,I,J).

or alternatively as already shown in section 6.3 (whosetemp item had the ad-
ditional advantage of being reusable). Either way, the asymptotic time com-
plexity is nowO

(
N3 · n4 + N2 · n4

)
—better than the original programmer’s

version.
How about the asymptotic space complexity? If the first step used rule

elimination rather than unfolding, then it actually eliminated storage for the
temp8 items, reducing the storage requirements fromO

(
N2 · n4

)
to O

(
N · n3

)
.

27Sincer was defined to equal the (original) value ofs, it provides a way to recover the original
semantics ofs. Compare the similar construction sketched in footnote 26.

28Rule elimination can also be usedafter another transformation, such as speculation, to clean
away unnecessary temp items. See footnote 42.

64 / J E  J B

Regardless, the refolding step increased the space complexity back to the
original programmer’sO

(
N2 · n4

)
.

6.5 Speculation: Factoring Out Chains of Computation

In the most important contribution of this paper, we now generalize fold-
ing to handle unbounded sequences of rules, including cycles. Thisspecu-
lation transformation, which is novel as far as we know, is reminiscent of
gap-passing in categorial grammar. It has many uses; we limit ourselves to
two real-world examples.

6.5.1 Examples of the Speculation Transformation

Unary rule closure. Unary rule closure is a standard optimization on cont-
ext-free grammars, including probabilistic ones (Stolcke, 1995). We derive
it here as an instance of speculation. Suppose we begin with aversion of
the inside algorithm that allows unary nonterminal rules aswell as the usual
binary ones:

constit(X,I,K) += rewrite(X,W) * word(W,I,K).
constit(X,I,K) += rewrite(X,Y) * constit(Y,I,K).
constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).

Suppose that the grammar includes a unary rule cycle. For example, sup-
pose thatrewrite(np,s) andrewrite(s,np) are both provable. Then the values of
constit(np,I,K) andconstit(s,I,K) “feed into each other.” Under forward chaining,
updating either one will cause the other to be updated; this process repeats un-
til numerical convergence.29

This computation is somewhat time-consuming—yet it is essentially the
same for everyconstit(np,I,K) we may start with, regardless of the particular
spanI–K or the particular input sentence. We would prefer to do the compu-
tation only once, “offline.”

A difficulty is that the computation does incorporate the particular real
value of theconstit(np,I,K) that we start with. However, if we simply ignore
this factor during our “offline” computation, we can multiply it in later when
we get an actualconstit(np,I,K). That is, we computespeculativelybefore the
particularconstit(np,I,K) and its value actually arrive.

In the transformed code below,temp(X,X0) represents the inside probabil-
ity of building up aconstit(X,I0,K0) from aconstit(X0,I0,K0) by a sequence of
0 or more unary rules. In other words, it is the total probability of all (pos-
sibly empty) unary-rewrite chainsX →∗ X0. While line 2 of the transformed

29If we gave the Viterbi algorithm instead, withmax= in place of+=, then convergence would
occur in finite time (at least for a PCFG, where allrewrite items have values in [0, 1]). The same
algorithm applies.

T     / 65

program still computes these items by numerical iteration,it only needs to
compute them once for eachX,X0, since they are now independent of the par-
ticular spanI0–K0 covered by these two constituents.30

temp(X0,X0) += 1.
temp(X,X0) += rewrite(X,Y) * temp(Y,X0).
other(constit(X,I,K)) += rewrite(X,W) * word(W,I,K).
other(constit(X,I,K)) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).
constit(X,I,K) += temp(X,X0)*other(constit(X0,I,K)).

The temp(s,np) item sums the probabilities of the infinitely many unary-
rewrite chainss →∗ np, which build np up into s using only line 2 of the
original program. Now, to get values likeconstit(s,4,6) for a particular input
sentence, we can simply sum finite products liketemp(s,np)
* other(constit(np,4,6)), whereother(constit(np,4,6)) sums up ways of building
anconstit(np,4,6) other thanby line 2 of the original program.31

The semantics of this program, which can derive non-ground terms. fully
defined by section 6.2.3. We omit further discussion of how itexecutes di-
rectly under forward chaining (section 6.2.4). However, note that the program
could be transformed into a more conventional dynamic program by applying
rule elimination to the first rule (the only one that is not range-restricted).32

For efficiency, our formal transformation adds a “filter clause” to each of
the temp rules:

temp(X0,X0) += 1 needed only if constit(X0,I0,K0).
temp(X,X0) += rewrite(X,Y)*temp(Y,X0) needed only if constit(X0,I0,K0).

The exact meaning of this clause will be discussed in section6.5.2. It permits
laziness, so that we compute portions of the unary rule closure only when
they will be needed. Its effect is that for each nonterminalX0, thetemp items

30We remark that the firstn steps of this iterative computation could be moved to compile
time, by eliminating line 1 as discussed below, specializing line 2 to the grammar by unfolding
rewrite(X,Y), and then computing the series sums by alternately unfolding thetemp items and
performing constant folding to consolidate eachtemp item’s summands.

31For example, it includes derivations where thenp is built from a determiner and a noun, or
directly from a word, but not where it is built directly from somes or anothernp. Excluding the
last option prevents double-counting of derivations.

32Here is the result, which alters the semantics of the slashedtemp item to ignore derivations
of length 0:

temp(X,X0) += rewrite(X,Y) * temp(Y,X0).
temp(X,X0) += rewrite(X,X0) * 1.
other(constit(X,I,K)) += rewrite(X,W) * word(W,I,K).
other(constit(X,I,K)) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K).
constit(X,I,K) += temp(X,X0)*other(constit(X0,I,K)).
constit(X0,I,K) += 1*other(constit(X0,I,K)).

66 / J E  J B

are proved or updated only once someconstit(X0,I0,K0) constituent has been
built.33 At that time, all thetemp(X,X0) values for thisX0 will be computed
once and for all, since there is now something for them to combine with.
Usefully, these values will then remain static while the grammar does, even if
the sentence changes.

Adopting the categorial view we introduced in section 6.3, we can regard
temp(s,np) as merely an abbreviation for thenon-groundslashed itemcon-
stit(s,I0,K0)/constit(np,I0,K0): the cost of building up aconstit(s,I0,K0) if we al-
ready had aconstit(np,I0,K0). This cost is independent ofI0 andK0, which is
why we only need to compute a single item to hold it, albeit onethat contains
variables.

As we will see, the slashed notation is not merely expository. Our for-
mal speculation transformation will actually produce a program with slashed
terms, essentially as follows:

constit(X0,I0,K0)/constit(X0,I0,K0) += 1.
constit(X,I,K)/constit(X0,I0,K0) += rewrite(X,Y)

* constit(Y,I,K)/constit(X0,I0,K0).
other(constit(X,I,K)) += rewrite(X,W) * word(W,I,K).
other(constit(X,I,K)) += rewrite(X,Y,Z)

* constit(Y,I,J) * constit(Z,J,K).
constit(X,I,K) += (constit(X,I,K)/constit(X0,I0,K0))

* other(constit(X0,I0,K0)).

A variable-free example. To understand better how the slash andother
mechanisms work, consider this artificial variable-free program, illustrated
by the hypergraph in Figure 4:

a += b * c.
b += r.
c += f * c.
c += d * e * x.
c += g.
x += . . .

The values ofa andc depend onx. We elect to create speculative versions of
the first, third, and fourth rules. The resulting program is drawn in Figure 5. It
includes rules to compute slashed versions ofa, c andx itself that are “missing
anx”:

a/x += b * c/x.
c/x += f * c/x.
c/x += d * e * x/x.
x/x += 1.

33In this example, the filter clause on the second rule is redundant. Runtime analysis or static
analysis could determine that it has no actual filtering effect, allowing us to drop it.

T     / 67a
b c

r d e f g
x

FIGURE 4 A simple variable-free program before applying the speculation
transformation.

a / x
b c / x

r d e f g
o t h e r (a) o t h e r (c)x

a c

FIGURE 5 The program of Figure 4 after applying the speculation transformation. The
x/x rule and variousother(. . .) rules have been eliminated for simplicity.

68 / J E  J B

It also reconstitutes full-fledged versions ofa, c, andx. Each is defined
by a sum that is split into two cases: summands that were builtfrom an x
using a sequence of≥ 0 of the selected rules, and “other” summands that
were not. (Notice that the first rule isnot a += a/x * x; this is becausex might
in general include derivations that are built from anotherx (though not in
this example), and this would lead to double-counting. By using a += a/x *
other(x), we split each derivation ofa uniquely into a maximal sequence of
selected rules, applied to a minimal instance ofx.)

a += a/x * other(x).
c += c/x * other(x).
x += x/x * other(x).
a += other(a).
c += other(c).

Finally, the program must define the “other” summands:

other(a) += b * other(c).
other(c) += f * other(c).
other(c) += g.
other(x) += . . .

In Figure 5, this program has been further simplified by eliminating the
rules forx/x andother(x).

Split bilexical grammars. For our next example, consider a “split” bilexical
CFG, in which a head word must combine with all of its right children before
any of its left children. The naive algorithm for bilexical context-free parsing
is O(n5). In the split case, we will show how to derive theO(n4) andO(n3)
algorithms of Eisner and Satta (1999).

The “inside algorithm” below34 builds up rconstit items by successively
adding 0 or more child constituents to the right of aword, then builds up
constit items by adding 0 or more child constituents to the left of this rconstit.
As before,X:H represents a nonterminalX whose head word isH.

rconstit(X:H,I,K) += rewrite(X,H) * word(H,I,K). % 0 right children so far
rconstit(X:H,I,K) += rewrite(X:H,Y:H,Z:H2) % add right child

* rconstit(Y:H,I,J) * constit(Z:H2,J,K).
constit(X:H,I,K) += rconstit(X:H,I,K). % 0 left children so far
constit(X:H,I,K) += rewrite(X:H,Y:H2,Z:H) % add left child

* constit(Y:H2,I,J) * constit(Z:H,J,K).
goal += constit(s:H,0,N) * length(N).

34We deal here with context-free grammars, rather than the head-automaton grammars of Eis-
ner and Satta. In particular, our complete constituents carry nonterminal categories and not just
head words. Note that the algorithm is correct only for a “split” grammar (formally, one that
does not contain two rules of the formrewrite(X:H1,Y:H2,Z:H1) andrewrite(V:H1,X:H1,W:H3)),
since otherwise the grammar would license trees that cannotbe constructed by the algorithm.

T     / 69

This obvious algorithm has runtimeO(N3 · n5) (dominated by line 4). We
now speed it up by exploiting the conditional independence of left children
from right children. To build up aconstit whose head word starts atI, we will
no longer start with aparticular, existingrconstit from I to K (line 3) and then
add left children (line 4). Rather, we transform the programso that it ab-
stracts away the choice of startingrconstit. It can then build up theconstit item
speculatively, adding left children without having committed to any particular
rconstit. As this work is independent of therconstit, the items derived during it
do not have to specify any value forK. Thus, work is shared across all values
of K, improving the asymptotic complexity. Only after finishingthis specu-
lative computation does the program fill in each of the various rconstit items
that could have been chosen at the start. To accomplish this transformation,
replace lines 3–4 with

lconstit(X0:H0,X0,J0,J0) += 1.
lconstit(X:H0,X0,I,J0) += rewrite(X:H0,Y:H2,Z:H)

* constit(Y:H2,I,J) * lconstit(Z:H0,X0,J,J0).
constit(X:H0,I,K0) += lconstit(X:H0,X0,I,J0) * rconstit(X0:H0,J0,K0).

The new temp itemlconstit(X:H0,X0,I,J0) represents theleft half of a con-
stituent, stretching fromI to J0. We can regard it again in categorial terms: as
the last line suggests, it is just a more compact notation foraconstit missing its
rconstit right half fromJ0 to someK0. This can be written more perspicuously
asconstit(X:H0,I,K0)/rconstit(X0:H0,J0,K0), whereK0 is always a free variable,
so thatlconstit need not specify any particular value forK0.

The first lconstit rule introduces an empty left half. This is extended with
its left children by recursing through the secondlconstit rule, allowingX andI
to diverge fromX0 andJ0 respectively. Finally, the last rule fills in the missing
right half rconstit.

Again, our speculation transformation will actually produce the slashed
notation as its output. Specifically, it will replace lines 3–4 of the original
untransformed program with the following.35

rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0) += 1
needed only if rconstit(X0:H0,J0,K0).

constit(X:H,J,K)/rconstit(X0:H0,J0,K0)
+= rconstit(X:H,J,K)/rconstit(X0:H0,J0,K0)
needed only if rconstit(X0:H0,J0,K0).

35In fact our transformation in Figure 6 will produce something a bit more complicated.
The version shown has been simplified by using rule elimination (section 6.4) to trim away all
other(. . .) items, which do not play a significant role in this example. That is because the only
slashed items areconstit/rconstit, and there is no other way to build aconstit except from an
rconstit.

70 / J E  J B

constit(X:H,I,K)/rconstit(X0:H0,J0,K0)
+= rewrite(X:H,Y:H2,Z:H) * constit(Y:H2,I,J)

* constit(Z:H,J,K)/rconstit(X0:H0,J0,K0)
needed only if rconstit(X0:H0,J0,K0).

constit(X:H,I,K) += constit(X:H,I,K)/rconstit(X0:H0,J0,K0)
* rconstit(X0:H0,J0,K0).

The first line introduces a slashed item. The next two lines are the result of
slashingrconstit(X0:H0,J0,K0) out of the original lines 3–4; note thatX0, H0,
J0, andK0 appeared nowhere in the original program. The final line reconsti-
tutes theconstit item defined by the original program, so that the transformed
program preserves the original program’s semantics.

By inspecting this program, one can see that the only provable items of
the formconstit(X:H,I,K)/rconstit(X0:H0,J0,K0) actually haveH=H0, K=K0, and
K0 a free variable.36 These conditions are true for the slashed item that is
introduced in the first line, and they are then preserved by every rule that
derives a new slashed item. This is why in our earlier presentation of this
code, we were able to abbreviate such a slashed item bylconstit(X:H0,X0,I,J0),
which uses only 5 variables rather than 8. Discovering such abbreviations
by static analysis is itself a transformation that we do not investigate in this
paper.

Filter clauses can improve asymptotic runtime. The special filter clause
needed only if rconstit(X0:H0,J0,K0) is added solely for efficiency, as always.
It says that it is not necessary to build a left half that mightbe useless (i.e.,
purely speculatively), but only when there is at least one right half for it to
combine with.

In this example, the filter clause is subtly responsible for avoiding an extra
factor of V in the runtime, whereV ≫ n is the size of the vocabulary. For
simplicity, let us return to the unslashed notation:

lconstit(X:H0,X0,I,J0) += rewrite(X:H0,Y:H2,Z:H)
* constit(Y:H2,I,J) * lconstit(Z:H0,X0,J,J0).

needed only if rconstit(X0:H0,J0,K0).

The intent is to build only left halveslconstit(H:H0,X0,I,J0) whose
head word H0 will actually be found starting at the right edgeJ0.
However, without the filter, the above rule could be far more specula-
tive, combining a finished left child such asconstit(np:dumbo,4,5) with a
rewrite rule such asrewrite(s:flies,np:dumbo,vp:flies) and the non-ground item
lconstit(X0:H0,X0,J0,J0) (defined elsewhere with value 1) to obtainlcon-
stit(s:flies,vp,4,5)—regardless of whetherflies actually starts at position 5 or
even appears in the input sentence at all! This would lead to aproliferation of

36By contrast, we already noted thatX and I could diverge fromX0 andJ0 respectively, in
this particular program.

T     / 71

O(V) lconstit items with speculative head words such asflies thatmightstart at
position 5. The filter clause prevents this by “looking ahead” to see whether
any items of the formrconstit(vp:flies,5,K0) have actually been proved.

As a result, the runtime is nowO
(
n4

)
(as compared toO

(
n5

)
for the un-

transformed program).37 This is so because the rule above may be grounded
in O

(
n4

)
ways reflecting different bindings ofI, J, J0, and wordH2, whereH2

may in practice be any of the words in the spanI–J. Although the rule also
mentionsH0, the filter clause has ensured thatH0’s binding is completely
determined byJ0’s.

As a bonus, we can now apply the unfold-refold pattern to obtain theO
(
n3

)

algorithm of Eisner and Satta (1999). Starting with our transformed program,
unfold constit in the body of each rule where it appears,38 giving

rconstit += rconstit * rewrite * (lconstit′ * rconstit′).
lconstit += (lconstit′ * rconstit′) * rewrite * lconstit.

where the′ symbol marks the halves of the unfoldedconstit, and the three ad-
jacent half-constituents are written in left-to-right order. Now re-parenthesize
these rules as

rconstit += (rconstit * (rewrite * lconstit′)) * rconstit′.
lconstit += lconstit′ * ((rconstit′ * rewrite) * lconstit).

and fold out each parenthesized subexpression, using distributivity to sum
over its free variables. The items introduced when folding the large subex-
pressions correspond, respectively, to Eisner and Satta’s“right trapezoid” and
“left trapezoid” items. The speedup arises because there areO(n) fewer possi-
ble trapezoids thanconstits: aconstit had to specify a head word that could be
any of the words covered by theconstit, but a trapezoid’s head word is always
the word at its left or right edge.

6.5.2 Semantics and Operation of Filter Clauses

Our approach to filtering is novel. Ourneeded only if clauses may be regarded
as “relaxed” versions of side conditions (Goodman, 1999). In the denotational
semantics (section 6.2.3), they relax the restrictions on the valuation function,
allowing more possible valuations for the transformed program. (In the case
of speculation, these valuations may disagree on the new slashed items, but
all of them preserve the semantics of the original program.)

Specifically, when constructingP(r) to determine whether a ground item
r is provable and what its value is, we mayoptionallyomit the summand cor-

37We could also have achievedO
(
n4

)
simply by folding the original program as discussed

in section 6.3. However, that would not have allowed the further reduction toO
(
n3

)
discussed

below.
38Including if desired thegoal rule, not discussed here. The oldconstit rule is then useless,

except perhaps to the user, and may be trimmed away if desiredby rule elimination.

72 / J E  J B

responding to a grounded ruler ⊕r = E if this rule has an attached filter clause
needed only if C such that no consistent grounding ofC has been proved.39

How does this help operationally, in the forward chaining algorithm?
When a rule triggers an update to a groundor non-ground item, but carries
a (partly instantiated) filter clause that does not unify with any proved item,
then the update has infinitely low priority and need not be propagated further
by forward chaining. The update must still be carried out if the filter clause is
proved later.

The optionality of the filter is crucial for two reasons. First, if a filter be-
comes false, the forward-chaining algorithm is not required to retract updates
that were performed when the filter was true. In the examples of section 6.5.1
above or section 6.6.3 below, the filter clauses ensure that entries are filled
into the unary-rule-closure and left-corner tables only asneeded. Once this
work has been done, however, these entries are allowed to persist even when
they are no longer needed, e.g., once the facts describing the input sentence
are retracted. This means that we can reuse them for a future sentence rather
than re-deriving them every time they are needed.

Second, the forward-chaining algorithm is not required to bind variables in
the rule when it checks for consistent groundings of the filter clause. Consider
this rule from earlier:

constit(X:H,I,K)/rconstit(X0:H0,J0,K0)
+= rewrite(X:H,Y:H2,Z:H) * constit(Y:H2,I,J)

* constit(Z:H,J,K)/rconstit(X0:H0,J0,K0)
needed only if rconstit(X0:H0,J0,K0).

Recall that the onlyconstit/rconstit items that are actually derived are non-
ground items in whichK=K0 and is free, such asconstit(s:flies,4,K0)/ rcon-
stit(vp:flies,5,K0). Such a non-ground item actually represents an infinite
collection of possible ground items that specialize it. Thesemantics of
needed only if, which are defined over ground terms, say that we only need
to derive a subset of this collection: rather than proving the non-ground item
above, we are welcome to prove only the “needed” ground instantiations,
with specific values ofK0 such thatrconstit(vp:flies,5,K0) has been proved.
However, in general, this would proveO(n) ground items rather than a single
non-ground item. It would destroy the whole point of speculation, which is
to achieve a speedup by leavingK0 free until specificrconstit items are multi-
plied back in at the end. Thus, the forward-chaining algorithm is better off ex-
ploiting the optionality of filtering and proving the non-ground version—thus

39The “consistent” groundings are those in which variables ofC that are shared withr or
E are instantiated accordingly. In the speculation transformation, all variables ofC are in fact
shared withr andE. If they were not,C could have many consistent groundings, but we would
still aggregate only one copy ofE, just as if the filter clause were absent, not one per copy per
consistent grounding.

T     / 73

proving more than is strictly needed—as long as at least one of its groundings
is needed (i.e., as long as some item that unifies withrconstit(vp:flies,4,K0) has
already been proved).

For a simpler example, consider
rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0) += 1

needed only if rconstit(X0:H0,J0,K0).

A reasonable implementation of forward chaining will provethe non-ground
item rconstit(X0:H0,J0,K0)/rconstit(X0:H0,J0,K0)—just as if the filter clause
were not present—provided thatsomegrounding ofrconstit(X0:H0,J0,K0) has
been proved. It is not required to derive a separate grounding of the slashed
item for eachgrounding ofrconstit(X0:H0,J0,K0); this would also be correct
but would be less efficient.

6.5.3 Formalizing Speculation for Semiring-Weighted Program
Fragments

To formalize the speculation transformation, we begin witha useful common
case that suffices to handle our previous examples. This definition (Figure6)
allows us to speculate over a set of rules that manipulate values in a semiring
of weightsW. Such rules must all use the same aggregation operator, which
we call⊕=, with identity element̄0. Furthermore, each rule body must be
a simple product of one or more items, using an associative binary operator
⊗ that distributes over⊕ and has an identity element̄1. This version of the
transformation is only able to slash the final term in such a product; however,
if ⊗ is commutative, then the terms in a product can be reordered to make any
term the final term.

Our previous examples of speculation can be handled by taking the semir-
ing (W,⊕,⊗, 0̄, 1̄) to be (R, +, *, 0, 1). Moreover, any unweighted program can
be handled by taking (W,⊕,⊗, 0̄, 1̄) to be ({F, T}, |, &, F, T).

Intuitively, other(A) in Figure 6 accumulates ways of buildingA other than
groundings ofFi1 ⊗ Fi2 ⊗ · · · ⊗ Fi j ⊗ x for j > 0. Meanwhile,slash(A,x)
accumulates ways of buildingA by grounding products of the formFi1 ⊗

Fi2 ⊗ · · · ⊗ Fi j for j ≥ 0. To “fill in the gap” and recover the final value ofA
(as is required to preserve semantics), we multiplyslash(A,x) only byother(x)
(rather than byx), in order to prevent double-counting (which is analogous to
spurious ambiguity in a categorial grammar).

To apply our formal transformation in the unary-rule elimination example,
takex=constit(X0,I0,K0). As required,X0,I0,K0 do not appear in the original
program. TakeR1 to be the “unary”constit rule of the original program where
t1 is the last item in the body ofRi . Herek = 0.

To apply our formal specification in the artificial variable-free example
of Figures 4–5, takex = x, R1 = a += b * c, R2 = c += f * c, and R3 =

c += (d * e) * x. Since, among theti , only t3 unifies withx, we havek = 2.

74 / J E  J B

Given a semiring (W,⊕,⊗, 0̄, 1̄).
Given a termx to slash out, where any variables inx do not occur any-
where in the programP. Given distinct rulesR1, . . . ,Rn in P from which
to simultaneously slashx out, where eachRi has the formr i ⊕= Fi ⊗ ti for
some expressionFi (which may bē1) and some itemti .
Let k be the index40 such that 0≤ k ≤ n and
• For i ≤ k, ti does not unify withx.
• For i > k, ti unifies withx; moreover, their unification equalsti .41

Then the speculation transformation constructs the following new pro-
gram. Recall that⊕r denotes the aggregation operator forr (which may
or may not be⊕). Let slash, other, andmatches x be new functors that do
not already appear inP.
• slash(x,x) ⊕x= 1̄ needed only if x.
• (∀1 ≤ i ≤ n) slash(r i , x) ⊕= Fi ⊗ slash(ti , x) needed only if x.
• (∀1 ≤ i ≤ k) other(r i) ⊕= Fi ⊗ other(ti).
• (∀ rulesp ⊕p= E not among theRi) other(p) ⊕p= E.42

• matches x(x) |= true. • matches x(A) |= false.
• A ⊕A= other(A) if not matches x(A).43

• A ⊕A= slash(A,x) ⊗ other(x).

40If necessary, the program can be pre-processed so that such an index exists. Any rule can be
split into three more specialized rules: ani ≤ k rule, ani > k rule, and a rule not among theRi .
Some of these rules may require boolean side conditions to restrict their applicability.

41That is,ti is “more specific” thanx: it matches a non-empty subset of the ground terms that
x does.

42It is often worth following the speculation transformationwith a rule elimination transfor-
mation (section 6.4) that removes some of theseother items. In particular, ifp does not unify
with x or any of theti , then the only rule that usesother(p) is A ⊕A= other(A). In this case,
eliminating the old ruleother(p) ⊕p= E simply restores the original rulep ⊕p= E.

43Note thatA ranges over all ground terms. (Except those that unify withx, which are covered
by the next rule.) The aggregation into a particular ground term A must be handled using the
appropriate aggregation operator for that ground term, here denoted⊕A=. (⊕x= was similarly
used above.) In the example programs, this awkward notationwas avoided by splitting this rule
into several rules, which handle variousdisjointclasses of itemsA that have different aggregation
operators.

FIGURE 6 The semiring-weighted speculation transformation.

To apply our formal transformation in the split bilexical grammar example,
takex=rconstit(X0:H0,J0,K0), theRi to be the two rules definingconstit, each
ti to be the last item in the body ofRi , andk = 1.

Folding as a special case of speculation.As was mentioned earlier, the
folding transformation is a special case of the speculationtransformation, in
which application is restricted to rules with a single ground term at their head,

T     / 75

and the item to be slashed out must appear literally in each affected rule. For
ease of presentation, however, the formulations above are not quite parallel. In
folding, we adopt the convention that a common functionF is being “slashed
out” of a set of rules, and the different items to which that function applies
are aggregated first into a new intermediate item. In speculation, we take the
opposite view, where there is a common item to be slashed out present as the
argument to different functions, so that the functions get aggregated into a
new lambda term. We chose the former presentation for folding to avoid the
needless complication of using the lambda calculus, but we needed the flex-
ibility of the latter for a fully general version of speculation. In the case of
ordinary semiring-weighted programs , this distinction istrivial; when slash-
ing out itema from a rule likef += a * b, we can equally easily say that we are
slashing out the function “multiply bya” from its argumentb or that we are
slashing out the itema from inside the function “multiply byb”. However,
in general, being able to leave behind functions allows us toconstruct inter-
mediate terms which don’t carry a numerical value; for example, we could
choose to slash out thea item from a rule likef += log(a) and propagate just
the functionslash(f, a) += λx log(x).

6.5.4 Formalizing Speculation for Arbitrary Weighted Logic Programs

The speculation transformation becomes much more complicated when it
is not restricted to semiring-weighted programs. In general, the value of a
slashed item is afunction, just like the semantics of a slashed constituent in
categorial grammar. Functions are aggregated pointwise: that is, we define
(λz. f (z)) ⊕ (λz. g(z)) = λz. (f (z) ⊕ g(z)).

As in categorial grammar semantics, gaps are introduced with the iden-
tity function, passed with function composition, and eliminated with function
application.

In the commutative semiring-weighted programs discussed above, all
functions had the form “multiply byw” for some weightw. We were able
to avoid the lambda-calculus there by representing such a function simply as
w, and by usinḡ1 for the identity function, semiring multiplication⊗ for both
composition and application, and semiring addition⊕ for pointwise addition.

We defer the details of the formal transformation to a later paper. It is sig-
nificantly more complicated than Figure 6 because we can no longer rely on
the mathematical properties of the semiring. As in folding and unfolding (Fig-
ures 1–2), we must demand a kind of distributive-law property to ensure that
the semantics will be preserved (recall the log example fromsection 6.3). This
property is harder to express for speculation, which is likefolding through un-
bounded sequences of rules, including cycles.

Consider the semiring-weighted program in Figures 4–5. Theoriginal pro-
gram only used the itemx early in the computation, multiplying it byd * e.

76 / J E  J B

The transformed program had to reconstitutea from a/x andx (andc from
c/x andx). This meant multiplyingx in later, only after the originald * e had
passed through several levels of* and+= in the rulea += b * c and the cyclic
rule c += f * c.

In general, we want to be sure that delaying the introductionof x until after
several intermediate functions and aggregations does not change the value of
the result. Hence, a version of the distributive property must be enforced at
eachintermediate rule affecting the slashed items.

Furthermore, if the slashed-out itemx contains variables, then introduc-
ing it will aggregate over those variables. For example, therule a(B,C) +=
(a(B,C)/x(B0,C0,D0))(x(B0,C0,D0)) not only applies a function to an argument,
but also aggregates overB0, C0, andD0. In the original version of the pro-
gram, these aggregations might have been performed with various operators.
Whena(B,C) is reconstituted in the transformed version, we must ensurethat
thesamesequence of aggregations is observed. In order to do this correctly,
it is necessary to keep track of the association between the variables being
aggregated in the original program and the variables in the slashed item, so
that we can ensure that the same aggregations are performed.

6.6 Magic Templates: Filtering Useless Items
The bottom-up “forward-chaining” execution strategy of section 6.2.4 will (if
it converges) compute values for all provable items. Typically, however, the
user is primarily interested in certain items (often justgoal) and perhaps the
other items involved in deriving them.

In parsing, for example, the user may not care about buildingall legal
constituents—only those that participate in a full parse. Similarly, in a pro-
gram produced by speculation, the user does not care about building all pos-
sible slashed itemsr/x—only those that can ultimately combine with some
actualx to reconstitute an itemr of the original program.

Can we prevent forward chaining from building at least some of the “use-
less” items? In the speculation transformation (section 6.5 and Figure 6), we
accomplished this by filtering our derivations withneeded only if clauses.

We now give a transformation that explains and generalizes this strategy.
It prevents the generation of some “useless” items by automatically adding
needed only if filter clauses to an existing program. A version of thismagic
templates transformation was originally presented in a well-known paper
by Ramakrishnan (1991), generalizing an earlier transformation called magic
sets.

6.6.1 An Overview of the Transformation

Since this transformation makes some terms unprovable, it cannot be
semantics-preserving. We will say that a ground terma is charmed if we

T     / 77

shouldpreserve its semantics.44 In other words, the semantic valuation func-
tions of the transformed program and the original program will agree on at
least the charmed terms. The program will determine at runtime which terms
are charmed: a ground terma is considered charmed iff the termmagic(a) is
provable (inevitably with valuetrue).

The user should explicitly charm the ground terms of interest to him or her
by writing rules such as

magic(goal) |= true.
magic(rewrite(X,Y,Z)) |= true.
magic(rewrite(X,W)) |= true.
magic(word(W,I,J)) |= true.
magic(length(N) |= true.

The transformation will then add rules that charm additional terms by proving
additionalmagic(. . .) items (known as magic templates). Informally, a term
needs to be charmed if it might contribute to the value of another charmed
term. A formal description appears in Figure 7.

Finally, filter clauses are added to say that among the groundterms prov-
able under the original program, only the charmed ones actually need to be
proved. This means in practice (see section 6.5.2) that forward chaining will
only prove an item if at least one grounding of that item is charmed.

The filter clauses in the speculation transformation were effectively intro-
duced by explicitly charming all non-slashed items, running the magic tem-
plates transformation, and simplifying the result.

6.6.2 Examples of Magic Templates

Deriving Earley’s algorithm. What happens if we apply this transformation
to the CKY algorithm of section 6.2.1, after explicitly charming the items
shown above?

Remarkably, as previously noticed by Minnen (1996), the transformed pro-
gram acts just like Earley’s (1970) algorithm. We can derivea weighted ver-
sion of Earley’s algorithm by beginning with a weighted version of CKY (the
inside algorithm of section 6.2.2).45 The transformation adds filter clauses to
theconstit rules, saying that the rule’s head is needed only if charmed:

constit(X,I,K) += rewrite(X,W) * word(W,I,K)
needed only if magic(constit(X,I,K)).

constit(X,I,K) += rewrite(X,Y,Z) * constit(Y,I,J) * constit(Z,J,K)
needed only if magic(constit(X,I,K)).

44This terminology does not appear in previous literature on magic templates.
45At least, Earley’s algorithm restricted to grammars in Chomsky Normal Form, since those

are the only grammars that CKY handles before we transform it. The full Earley’s algorithm
in roughly our notation can be found in (Eisner et al., 2005);it allows arbitrary CFG rules to
be expressed using lists, as inrewrite(np,[”the”,adj,n]). Section 6.3 already sketched how to
handle ternary rules efficiently.

78 / J E  J B

Based on the structure of theconstit rules, the transformation also adds the
following magic rules to the ones provided earlier by the user. Recall that
?rewrite(X,Y,Z) is considered to be true iff rewrite(X,Y,Z) is provable (foot-
note 12).

magic(constit(s,0,N)) | = magic(goal).
magic(constit(Y,I,J)) | = ?rewrite(X,Y,Z) & magic(constit(X,I,K)).
magic(constit(Z,J,K)) | = ?rewrite(X,Y,Z) & ?constit(Y,I,J)

& magic(constit(X,I,K)).

What do these rules mean? The secondmagic rule above says to charm all
the possible left childrenconstit(Y,I,J) of a charmed constituentconstit(X,I,K).
The thirdmagic rule says to charm all possible right children of a charmed
constituent whose left child has already been proved.

By inspecting these rules, one can see inductively that theyprove only
magic templates of the formmagic(constit(X,I,K)) whereX,I are bound andK is
free.46

The charmed constituents are exactly those constituents that are possible
given the context to their left. As in Earley’s algorithm, these are the only ones
that we try to build. Where Earley’s algorithm would predicta vp constituent
starting at position 5, we charm all potential constituentsof that form by
proving the non-ground itemmagic(constit(vp,5,K)).

Just as Earley’s predictions occur top-down, themagic rules reverse the
proof order of the original rule—they charm items in the bodyof the original
rule once the head is charmed. Themagic rules also work left to right within an
original rule, so we only need to charmconstit(vp,5,K) once we have proved
a receptive context such asrewrite(s,np,vp) * constit(np,4,5). This context is
analogous to having the dotted rules→ np . vp in column 5 of Earley’s parse
table.

In effect, the transformed program uses forward chaining to simulate the
backward-chaining proof order of a strategy like that of pure Prolog.47 The
magic templates correspond to query subgoals that would appear during back-
ward chaining. The filter clauses prevent the program from proving items that

46Note that it would not be appropriate to replace. . . & ?rewrite(X,Y,Z) with
. . . needed only if ?rewrite(X,Y,Z), since that would make this condition optional, allowing the
compiler to relax it and therefore charm more terms than intended. Concretely, in this example,
forward chaining with our usual efficient treatment ofneeded only if (section 6.5.2) would
prove overly general magic templates of the formmagic(constit(X,I,K)) where not onlyK but
alsoK was free.

47However, pure Prolog’s backtracking is deterministic, whereas forward chaining is free to
propagate updates in any order. It is more precise to say thatthe transformed program simulates
a breadth-firstor parallel version of Prolog which, when it has several ways to match a query
subgoal, pursues them along parallel threads (whose actualoperation on a serial computer may
be interleaved in any way). Furthermore, since forward chaining uses a chart to avoid duplicate
work, the transformed version acts like a version of Prolog with tabling (see footnote 5).

T     / 79

do not yet match any of these subgoals.
Shieber et al. (1995), specifying CKY and Earley’s algorithm, remark that

“proofs of soundness and completeness [for the Earley’s case] are some-
what more complex . . . and are directly related to the corresponding proofs
for Earley’s original algorithm.” In our perspective, the correctness of Ear-
ley’s emerges directly from the correctness of CKY and the correctness of the
magic templates transformation (i.e., the fact that it preserves the semantics
of charmed terms).

On-demand computation of reachable states in a finite-statemachine.
Another application is “on-the-fly” intersection of weighted finite-state au-
tomata, which recalls the left-to-right nature of Earley’salgorithm.48

In automaton intersection, an arcQ1
X
→ R1 (in some automatonM1) may

be paired with a similarly labeled arcQ2
X
→ R2 (in some automatonM2,

perhaps equal toM1). This yields an arc in the intersected machineM1 ∩ M2
whose weight is the product of the original arcs’ weights:

arc(Q1:Q2,R1:R2,X) = arc(Q1,R1,X) * arc(Q2,R2,X).

However, including this rule in a forward-chained program will pairs all
compatible arcs in all known machines (including arcs in thenew machine
M1 ∩ M2, leading to infinite regress). A magic templates transformation can
restrict this to arcs that actually need to be derived in the service of some
larger goal—just as if the definition above were backward-chained.

Consider for example the following useful program (which uses Prolog’s
notation for bracketed lists):

sum(Q,[]) += final(Q). % weight of stopping at final state Q
sum(Q,[X | Xs]) += arc(Q,R,X) * sum(R,Xs).

Now the value ofsum(q,[”a”,”b”,”c”]) is the total weight of all paths from state
q that accept the stringabc.

We might like to find (for example)sum(q1:q2,[”a”,”b”,”c”]), constructing just
the necessary paths from stateq1:q2 in the intersection ofq1’s automaton with
q2’s automaton. To enable such queries, apply magic templatestransforma-
tion to thesum rules and thearc intersection rule, charming nothing in ad-
vance. We can then setmagic(sum(q1:q2, [”a”,”b”,”c”])) to true at runtime. This
results in charm spreading forward fromq1:q2 along paths in the intersected
machine, and spreading “top-down” from each arc along this path to the arcs
that must be intersected to produce it (and which may themselves be the result
of intersections). This permits the weights of all relevantarcs to be computed
“bottom-up” and multiplied together along the desired paths.

48Composition of finite-state transducers is similar.

80 / J E  J B

6.6.3 Second-order magic

Earley’s algorithm does top-down prediction quite aggressively, since it pre-
dicts all possible constituents that are consistent with the left context. Many
of these predictions could be ruled out with one word of lookahead—an im-
portant technique when using Earley’s algorithm in practice.49 This is known
as a “left-corner” filter: we should only bother to provemagic(constit(X,I,K))
if there is some chance of provingconstit(X,I,K), in the sense that there is a
word(W,I,J) that could serve as the first word (“left corner”) in a phrasecon-
stit(X,I,K).

Remarkably, we can get this behavior automatically by applying the magic
templates transformation asecondtime. We now require themagic items
themselves to be charmed before we will derive them. This activation flows
bottom-up in the parse tree: we first charmmagic(constit(X,I,K)) whereX can
rewrite directly asW, then move up to nonterminals that can rewrite starting
with X, and so on.

Thus, the original CKY algorithm proved constituents bottom-up; the
transformed Earley’s algorithm filtered these constituents by top-down pre-
dictions; and the doubly transformed algorithm will filter the predictions by
bottom-up propagation of left corners.

Before illustrating this transformation, we point out somesimplifications
that are possible with second-order magic. This time we willusemagic2 to
indicate charmed items, to avoid conflict with themagic predicate that already
appears in the input program. We also assume that the user is willing to ex-
plicitly charm everything but themagic terms—since any other terms that the
user regards as uninteresting are presumably already beingfiltered by the last
transformation. Suppose that the original program contained the rulea += b *
c. The input program then also usually contains

magic(b) |= magic(a).
magic(c) |= ?b & magic(a).

However, either of these rules may be omitted if the user explicitly charmed
its head during the first round of magic (i.e., by statingmagic(b) |= true or
magic(c) |= true). As we will see, omitting these rules when possible will re-
duce the work that second-order magic has to do.

If we apply a second round of magic literally, the above rules(when
present) respectively yield the new rules

magic2(magic(a)) |= magic2(magic(b)).

and
magic2(b) |= magic2(magic(c)).
magic2(magic(a)) |= ?b & magic2(magic(c)).

These rules propagate charm on themagic items, frommagic(b) or magic(c)

49Earley (1970) himself described how to usek words of lookahead.

T     / 81

up to magic(a). However, it turns out that the second and often the third of
thesemagic2 rules can be discarded, as they are redundant with more lenient
rules that prove the same heads. The second is redundant because the user
has already explicitly stated thatmagic2(b) |= true. The third is redundantif
the first is present, since if the program has provedb then it must have previ-
ously provedmagic(b) and before thatmagic2(magic(b)), so that the first rule
(if present) would already have been able to provemagic2(magic(a)).

The input program also contains
a += b * c needed only if magic(a).

We want to provemagic(a) if it will be useful in such a clause, so the second
round of magic will also generate

magic2(magic(a)) |= ?b & ?c & magic2(a).

This is the rule that initiates the desired bottom-up charming ofmagic items. It
too can be simplified. We can drop themagic2(a) condition, since the user has
already explicitly stated thatmagic2(a) |= true. We can drop the?c condition
if the third magic2 rule above is present, and drop the entire rule if the first
magic2 rule above is present. (Thus, we will end up discarding the rule unless
b was charmed by the user prior to the first round of magic—making it the
appropriate “bottom” where bottom-up propagation begins.)

Applying second-order magic with these simplifications to our version of
Earley’s algorithm, we obtain the following natural rules for introducing and
propagating left corners. Note that these affect only theconstit terms. Intu-
itively, the other terms of the original program do not needmagic2 templates
to entitle them to acquire first-order charm, as they were explicitly charmed
by the user prior to first-order magic.

magic2(magic(constit(X,I,K))) |= rewrite(X,W) & word(W,I,K).
magic2(magic(constit(X,I,K))) | = ?rewrite(X,Y,Z).

& magic2(magic(constit(Y,I,J))).

The transformation then applies the left-corner filter to the magic templates
defined by first-order magic:

magic(constit(s,0,N)) | = magic(goal)
needed only if magic2(magic(constit(s,0,N))).

magic(constit(Y,I,J)) | = ?rewrite(X,Y,Z)
& magic(constit(X,I,K))

needed only if magic2(magic(constit(Y,I,J))).
magic(constit(Z,J,K)) | = ?rewrite(X,Y,Z) & ?constit(Y,I,J)

& magic(constit(X,I,K)).
needed only if magic2(magic(constit(Z,J,K))).

Note that themagic2(constit(X,I,K)) items proved above are specific to the
spanI–K in the current sentence: they haveX,I,K all bound. However, one
could remove this dependence onI,K by using the speculation transformation
(section 6.5). Then the first time a particular wordW is observed via some fact

82 / J E  J B

Given a unary predicatemagic that may already appear inP. We say that a
termt is already charmed50 if P contains a rulemagic(s) |= true wheres is
at least as general ast.
For each ruleRi inP, of the formr i ⊕i= Ei , given an orderingei1, . . . , eiki of
the items whose values are combined byEi (including any filter clauses).51

foreach rule Ri

unless r i is already charmed
append “needed only if magic(r i)” to Ri

for j = 1, 2, . . . ki

unless ei j is already charmed
add “magic(ei j) |= ?ei1 & · · · & ?ei(j−1) & magic(r i)” to P
optionally relax this new rule by generalizing its head52

50This test is used only to simplify the output.
51In the examples in the text, this is taken to be the order of mention, which is a reasonable

default.
52That is, replace the head with a more general pattern. For example, one may replace some

variables or other sub-terms in the head with variables thatdo not appear in the rule body. See
section 6.6.4 for discussion.

FIGURE 7 The magic templates transformation.

word(W,I,K), the program will derivemagic2(constit(X,I0,K0))/word(W,I0,K0) for
each nonterminalX of whichW is a possible left corner. These left corner table
entries leaveI0,K0 free, so once they are computed, they can be combined not
only with word(W,I,K) but also with later appearances of the same word, such
asword(W,I2,K2).

6.6.4 Formalizing Magic Templates

Our version of magic templates is shown in Figure 7. Readers who are
familiar with Ramakrishnan (1991) should note that our presentation focuses
on the case that Ramakrishnan calls “full sips,” where each term used in a
rule’s body constrains the bindings of variables in subsequent terms.

However, to allow other “sips” (sideways information-passing strategies),
we can optionally rename variables in the heads ofmagic(. . .) |= · · · rules so
that they become free. This results in proving fewer, more generalmagic(. . .)
items.53

Ramakrishnan’s construction instead attempts todrop these variables—as
well as other variables that provably remain free. However,his construction

53This may even avoid an asymptotic slowdown. Why? It is possible to prove more magic
templates than items in the original program, becausemagic(a) (proved top-down) may acquire
bindings for variables that are still free ina (proved bottom-up). It is wise to drop such variables
from magic(a) or leave them free.

T     / 83

is less flexible because it only drops variables that appear as direct arguments
to the top-level predicate. It also leads to a proliferationof new and non-
interacting predicates (such asmagic constitbb f /2), which correspond to differ-
ent binding patterns in the top-level predicate.

Dropping variables rather than freeing them does have the advantage that
it makes terms smaller, perhaps resulting in constant-timereductions of speed
and space. However, we opt to defer this kind of “abbreviation” of terms to
an optional subsequent transformation—the same transformation (not given
in this paper) that we would use to abbreviate theslash(. . .) items introduced
by speculation in section 6.5.1. Pushing abbreviation intoa separate trans-
formation keeps our Figure 7 simple. The abbreviation transformation could
also attempt more ambitious simplifications than Ramakrishnan (1991), who
does not simplify away nested free variables, duplicated bound variables, or
constants, nor even detect all free variables that are arguments to the top-level
predicate.

6.7 Conclusions

This paper has introduced the formalism of weighted logic programming,
a powerful declarative language for describing a wide rangeof useful algo-
rithms.

We outlined several fundamental techniques for rearranging a weighted
logic program to make it more efficient. Each of the techniques is connected
to ideas in both logic programming and in parsing, and has multiple uses
in natural language processing. We used them to recovered several known
parsing optimizations, such as

. unary rule cycle elimination. Earley’s (1970) algorithm with an added left corner filter. Eisner and Satta’s (1999)O(n3) bilexical parsing. on-the-fly intersection of weighted automata

as well as various other small rearrangements of algorithms, such as a slight
improvement to lexicalized CKY parsing.

We showed how weighted logic programming can be made more expres-
sive and its transformations simplified by allowing non-ground items to be
derived, and we introduced a new kind of side condition that does not bind
variables—theneeded only if construction—to streamline the use of non-
ground items.

Our specific techniques included weighted generalizationsof folding and
unfolding; the speculation transformation (an original generalization of fold-
ing); and an improved formulation of the magic templates transformation.
This work does not exhaust the set of useful transformations. For example,

84 / J E  J B

Eisner et al. (2005) briefly discuss transformations that derive programs to
compute gradients of, or bounds on, the values computed by the original dy-
namic program. We intend in the future to give formal treatments of these.
We also plan to investigate other potentially useful transformations, in partic-
ular, transformations that exploit program invariants to perform tasks such as
“abbreviating” complex items.

We hope that the paradigm presented here proves useful to those who wish
to further study the problems to which weighted logic programming can be
applied, as well as to those who wish to apply it to those problems themselves.

In the long run, we hope that by detailing a set of possible program trans-
formation steps, we can work toward creating a system that would search au-
tomatically for practically effective transformations of a given weighted logic
program, by incorporating observations about the program’s structure as well
as data collected from experimental runs. Such an implemented system could
be of great practical value.

References
Aji, S. and R. McEliece. 2000. The generalized distributivelaw. IEEE Transactions

on Information Theory46(2):325–343.

Earley, J. 1970. An efficient context-free parsing algorithm.Comm. ACM13(2):94–
102.

Eisner, J., E. Goldlust, and N. A. Smith. 2005. Compiling comp ling: Weighted dy-
namic programming and the Dyna language. InProc of HLT/EMNLP.

Eisner, J. and G. Satta. 1999. Efficient parsing for bilexical context-free grammars and
head-automaton grammars. InProc. of ACL, pages 457–464.

Fitting, M. 2002. Fixpoint semantics for logic programminga survey. TCS278(1-
2):25–51.

Goodman, J. 1999. Semiring parsing.Computational Linguistics25(4):573–605.

Huang, L., H. Zhang, and D. Gildea. 2005. Machine translation as lexicalized parsing
with hooks. InProc. of IWPT, pages 65–73.

McAllester, D. 1999. On the complexity analysis of static analyses. InProc of 6th
Internat. Static Analysis Symposium.

Minnen, G. 1996. Magic for filter optimization in dynamic bottom-up processing. In
Proc 34th ACL, pages 247–254.

Ramakrishnan, R. 1991. Magic templates: a spellbinding approach to logic programs.
J. Log. Prog.11(3-4):189–216.

R / 85

Ross, K. A. and Y. Sagiv. 1992. Monotonic aggregation in deductive databases. In
PODS ’92, pages 114–126.

Sagonas, Konstantinos, Terrance Swift, and David S. Warren. 1994. XSB as an effi-
cient deductive database engine.ACM SIGMOD Record23(2):442–453.

Shieber, S. M., Y. Schabes, and F. Pereira. 1995. Principlesand implementation of
deductive parsing.J. Logic Prog.24(1–2):3–36.

Sikkel, Klaus. 1997.Parsing Schemata: A Framework for Specification and Analysis
of Parsing Algorithms. Texts in Theoretical Computer Science. Springer-Verlag.

Stolcke, A. 1995. An efficient probabilistic context-free parsing algorithm that com-
putes prefix probabilities.Computational Linguistics21(2):165–201.

Tamaki, H. and T. Sato. 1984. Unfold/fold transformation of logic programs. InProc
2nd ICLP, pages 127–138.

Van Gelder, A. 1992. The well-founded semantics of aggregation. In PODS ’92,
pages 127–138. New York, NY, USA: ACM Press. ISBN 0-89791-519-4.

Younger, D. H. 1967. Recognition and parsing of context-free languages in timen3.
Info. and Control10(2):189–208.

Zhou, N.-F.. and T. Sato. 2003. Toward a high-performance system for symbolic and
statistical modeling. InProc of IJCAI Workshop on Learning Stat. Models from
Relational Data.

7

On theoretical and practical complexity
of TAG parsers
C G́-Rı́, M A. A, M V

Abstract
We present a system allowing the automatic transformation of parsing schemata to

efficient executable implementations of their corresponding algorithms. This system can
be used to easily prototype, test and compare different parsing algorithms. In this work,
it has been used to generate several different parsers for Context Free Grammars and
Tree Adjoining Grammars. By comparing their performance ondifferent sized, artifi-
cially generated grammars, we can measure their empirical computational complexity.
This allows us to evaluate the overhead caused by using Tree Adjoining Grammars to
parse context-free languages, and the influence of string and grammar size on Tree Ad-
joining Grammars parsing.

Keywords P ,  ,   -
,   

7.1 Introduction

The process of parsing, by which we obtain the structure of a sentence as a
result of the application of grammatical rules, is a highly relevant step in the
automatic analysis of natural languages. In the last decades, various parsing
algorithms have been developed to accomplish this task. Although all of these
algorithms essentially share the common goal of generatinga tree structure
describing the input sentence by means of a grammar, the approaches used
to attain this result vary greatly between algorithms, so that different parsing
algorithms are best suited to different situations.

Parsing schemata, introduced in (Sikkel, 1997), provide a formal, simple
and uniform way to describe, analyze and compare different parsing algo-
rithms. The notion of a parsing schema comes from considering parsing as a

87

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

88 / C G́-Rı́, M A. A, M V

deduction process which generates intermediate results called items. An ini-
tial set of items is directly obtained from the input sentence, and the parsing
process consists of the application of inference rules (called deductive steps)
which produce new items from existing ones. Each item contains a piece of
information about the sentence’s structure, and a successful parsing process
will produce at least onefinal itemcontaining a full parse tree for the sentence
or guaranteeing its existence.

Almost all known parsing algorithms may be described by a parsing
schema (non-constructive parsers, such as those based on neural networks,
are exceptions). This is done by identifying the kinds of items that are used
by a given algorithm, defining a set of inference rules describing the legal
ways of obtaining new items, and specifying the set of final items.

As an example, we introduce a CYK-based algorithm (Vijay-Shanker and
Joshi 1985) for Tree Adjoining Grammars (TAG) (Joshi and Schabes 1997).
Given a tree adjoining grammarG = (VT ,VN,S, I ,A)1 and a sentence of
length n which we denote bya1 a2 . . . an

2, we denote byP(G) the set of
productions{Nγ → Nγ

1 Nγ

2 . . .N
γ
r } such thatNγ is an inner node of a tree

γ ∈ (I ∪A), andNγ
1 Nγ

2 . . .N
γ
r is the ordered sequence of direct children ofNγ.

The parsing schema for the TAG CYK-based algorithm is a function that
maps such a grammar G to a deduction system whose domain is theset of
items

{[Nγ, i, j, p, q, ad j]}

verifying thatNγ is a tree node in an elementary treeγ ∈ (I ∪ A), i and j
(0 ≤ i ≤ j) are string positions,p andq may be undefined or instantiated to
positionsi ≤ p ≤ q ≤ j (the latter only whenγ ∈ A), andad j ∈ {true, f alse}
indicates whether an adjunction has been performed on nodeNγ.

The positionsi and j indicate that a substringai+1 . . .a j of the string is
being recognized, and positionsp andq denote the substring dominated by
γ’s foot node. The final item set would be

{[Rα, 0, n,−,−, ad j] | α ∈ I }

for the presence of such an item would indicate that there exists a valid parse
tree with yielda1 a2 . . . an and rooted atRα, the root of an initial tree; and
therefore there exists a complete parse tree for the sentence.

A deductive stepη1...ηm

ξ
Φ allows us to infer the item specified by its con-

1WhereVT denotes the set of terminal symbols,VN the set of nonterminal symbols,S the
axiom, I the set of initial trees andA the set of auxiliary trees.

2From now on, we will follow the usual conventions by which nonterminal symbols are rep-
resented by uppercase letters (A, B . . .), and terminals by lowercase letters (a, b . . .). Greek letters
(α, β...) will be used to represent trees,Nγ a node in the treeγ, andRγ the root node of the tree
γ.

O      TAG  / 89

sequentξ from those in its antecedentsη1 . . . ηm. Side conditions(Φ) specify
the valid values for the variables appearing in the antecedents and consequent,
and may refer to grammar rules or specify other constraints that must be ver-
ified in order to infer the consequent. An example of one of theschema’s
deductive steps would be the following, where the operationp∪ p′ returnsp
if p is defined, andp′ otherwise:

CYK B:

[Oγ

1, i, j′, p, q, ad j1]
[Oγ

2, j′, j, p′, q′, ad j2]

[Mγ, i, j, p∪ p′, q∪ q′, f alse]
Mγ → Oγ

1Oγ

2 ∈ P(G)

This deductive step represents the bottom-up parsing operation which joins
two subtrees into one, and is analogous to one of the deductive steps of the
CYK parser for Context-Free Grammars (Kasami 1965, Younger1967). The
full TAG CYK parsing schema has six deductive steps (or seven, if we work
with TAGs supporting the substitution operation) and can befound at (Alonso
et al., 1999). However, this sample deductive step is an example of how pars-
ing schemata convey the fundamental semantics of parsing algorithms in sim-
ple, high-level descriptions. A parsing schema defines a setof possible in-
termediate results and allowed operations on them, but doesn’t specify data
structures for storing the results or an order for the operations to be executed.

7.2 Compilation of parsing schemata
Their simplicity and abstraction of low-level details makes parsing schemata
very useful, allowing us to define parsers in a simple and straightforward
way. Comparing parsers, or considering aspects such as their correction and
completeness or their computational complexity, also becomes easier if we
think in terms of schemata.

However, the problem with parsing schemata is that, although they are very
useful when designing and comparing parsers with pencil andpaper, they
cannot be executed directly in a computer. In order to execute the parsers
and analyze their results and performance they must be implemented in a
programming language, making it necessary to abandon the high abstraction
level and focus on the implementation details in order to obtain a functional
and efficient implementation.

In order to bridge this gap between theory and practice, we have de-
signed and implemented a compiler able to automatically transform parsing
schemata into efficient Java implementations of their corresponding algo-
rithms. The input to this system is a simple and declarative representation of
a parsing schema, which is practically equal to the formal notation that we
used previously. For example, this is the CYK deductive stepwe have seen
as an example in a format readable by our compiler:

90 / C G́-Rı́, M A. A, M V

@step CYKBinary
[Node1 , i , j’ , p , q , adj1]
[Node2 , j’ , j , p’ , q’ , adj2]
--- Node3 -¿ Node1 Node2
[Node3 , i , j , Union(p;p’) , Union(q;q’) , false]

The parsing schemata compilation technique behind our system is based
on the following fundamental ideas:

. Each deductive step is compiled to a Java class containing code to match
and search for antecedent items and generate the corresponding conclu-
sions from the consequent.. The generated implementation will create an instance of this class for each
possible set of values satisfying the side conditions that refer to production
rules. For example, a distinct instance of the CYK B step will be cre-
ated for each grammar rule of the formMγ → Oγ

1Oγ
2 ∈ P(G), as specified

in the step’s side condition.. The step instances are coordinated by a deductive parsing engine, as the
one described in (Shieber et al., 1995). This algorithm ensures a sound
and complete deduction process, guaranteeing that all items that can be
generated from the initial items will be obtained. It is a generic, schema-
independent algorithm, so its implementation is the same for any parsing
schema. The engine works with the set of all items that have been gener-
ated and anagenda, implemented as a queue, holding the items we have
not yet tried to trigger new deductions with.. In order to attain efficiency, an automatic analysis of the schema is per-
formed in order to create indexes allowing fast access to items. Two kinds
of index structures are generated:existence indexesare used by the parsing
engine to check whether a given item exists in the item set, while search
indexesare used to search for all items conforming to a given specifica-
tion. As each different parsing schema needs to perform different searches
for antecedent items, the index structures that we generateare schema-
specific. Each deductive step is analyzed in order to keep track of which
variables will be instantiated to a concrete value when a search must be
performed. This information is known at schema compilationtime and al-
lows us to create indexes by the elements corresponding to instantiated
variables. In this way, we guarantee constant-time access to items so that
the computational complexity of our generated implementations is never
above the theoretical complexity of the parsing algorithms.. Deductive step indexesare also generated to provide efficient access to the
set of deductive step instances which can be applicable to a given item.
Step instances that are known not to match the item are filtered out by

O      TAG  / 91

these indexes, so less time is spent on unsuccessful item matching.. Since parsing schemata have an open notation, for any mathematical ob-
ject can potentially appear inside items, the system includes an extensibil-
ity mechanism which can be used to define new kinds of objects to use
in schemata. The code generator can deal with these user-defined objects
as long as some simple and well-defined guidelines are followed in their
specification.

A more detailed description of this system, including a morethorough ex-
planation of automatic index generation, can be found at (G´omez-Rodrı́guez
et al., 2006b, 2007).

7.3 Parsing natural language CFGs
Although our main focus in this paper is on performance of TAGparsing al-
gorithms, we will briefly outline the results of some experiments on Context-
Free Grammars (CFG), described in further detail in (Gómez-Rodrı́guez
et al., 2006b), in order to be able to contrast TAG and CFG parsing.

Our compilation technique was used to generate parsers for the CYK
(Kasami 1965, Younger 1967), Earley (Earley 1970) and Left-Corner (Rosen-
krantz and Lewis II 1970) algorithms for context-free grammars, and these
parsers were tested on automatically-generated sentencesfrom three different
natural language grammars: Susanne (Sampson 1994), Alvey (Carroll 1993)
and Deltra (Schoorl and Belder 1990). The run-times for all the algorithms
and grammars showed an empirical computational complexityfar below the
theoretical worst-case bound ofO(n3), wheren denotes the length of the input
string. In the case of the Susanne grammar, the measurementswere close to
being linear with string size. In the other grammars, the run-times grew faster,
approximatelyO(n2), still far below the cubic worst-case bound.

Another interesting result was that the CYK algorithm performed better
than the Earley-type algorithms in all cases, despite beinggenerally consid-
ered slower. The reason is that these considerations are based on time com-
plexity relative to string length, and do not take into account time complexity
relative to grammar size, which isO(|P|) for CYK andO(|P|)2 for the Earley-
type algorithms, where|P| is the number of production rules in the grammar..
This factor is not very important when working with small grammars, such as
the ones used for programming languages, but it becomes fundamental when
we work with natural language grammars, where we use thousands of rules
(more than 17,000 in the case of Susanne) to parse relativelysmall sentences.
When comparing the results from the three context-free grammars, we ob-
served that the performance gap between CYK and Earley was bigger when
working with larger grammars.3

3It is possible to reduce the computational complexity of Earley’s parser to linear with respect

92 / C G́-Rı́, M A. A, M V

7.4 Parsing artificial TAGs

In this section, we make a comparison of four different TAG parsing al-
gorithms: the CYK-based algorithm used as an example in section 7.1, an
Earley-based algorithm without the valid prefix property (described in Alonso
et al. 1999 and Alonso et al. 2004, inspired in the one in Schabes 1994), an
Earley-based algorithm with the valid prefix property (Alonso et al. 1999) and
Nederhof’s algorithm (Nederhof 1999, Alonso et al. 2004). These parsers are
compared on artificially generated grammars, by using our schema compiler
to generate implementations and measuring their executiontimes with several
grammars and sentences.

Note that the advantage of using artificially generated grammars is that we
can easily see the influence of grammar size on performance. If we test the
algorithms on grammars from real-life natural language corpora, as we did
with the CFG parsers, we don’t get a very precise idea of how the size of the
grammar affects performance. Since our experience with CFGs showed this
to be an important factor, and existing TAG parser performance comparisons
(e.g. Dı́az and Alonso 2000) work with a fixed (and small) grammar, we de-
cided to use artificial grammars in order to be able to adjust both string size
and grammar size in our experiments and see the influence of both factors.

For this purpose, given an integerk > 0, we define the tree-adjoining
grammarGk to be the grammarGk = (VT ,VN,S, I ,A) whereVT = {a j |0 ≤
j ≤ k}, VN = {S, B}, and

I = {S(B(a0))}4,
A = {B(B(B∗ a j))|1 ≤ j ≤ k}.
Therefore, for a givenk, Gk is a grammar with one initial tree andk

auxiliary trees, which parses a language over an alphabet with k + 1 ter-
minal symbols. The actual language defined byGk is the regular language
Lk = a0(a1|a2|..|ak)∗. 5 We shall note that although the languagesLk are triv-
ial, the grammarsGk are built in such a way that any of the auxiliary trees
may adjoin into any other. Therefore these grammars are suitable if we want
to make an empirical analysis of worst-case complexity.

to the grammar size by defining a new set of intermediate itemsand transforming accordingly
prediction and completion deduction steps. Even in this case, CYK performs better that Earley’s
algorithm due to the lower number of items generated:O(|VN∪VT | n2) for CYK vs.O(|G| n2) for
Earley’s algorithm, where|G| denotes the size of the grammar measured as|P| plus the summation
of the lengths of all productions.

4Where trees are written in bracketed notation, and * is used to denote the foot node.
5Also, it is easy to prove that the grammarGk is one of the minimal tree adjoining grammars

(in terms of number of trees) whose associated language isLk. Note that we need at least a tree
containinga0 as its only terminal in order to parse the sentencea0, and for each 1≤ i ≤ k, we
need at least a tree containingai and no otheraj (j > 0) in order to parse the sentencea0ai .
Therefore, any TAG for the languageLk must have at leastk+ 1 elementary trees.

O      TAG  / 93

Table 1 shows the execution time in milliseconds6 of four TAG parsers
with the grammarsGk, for different values of string length (n) and grammar
size (k).

From this results, we can observe that both factors (string length and gram-
mar size) have an influence on runtime, and they interact between themselves:
the growth rates with respect to one factor are influenced by the other factor,
so it is hard to give precise estimates of empirical computational complexity.
However, we can get rough estimates by focusing on cases where one of the
factors takes high values and the other one takes low values (since in these
cases the constant factors affecting complexity will be smaller) and test them
by checking whether the sequenceT(n, k)/ f (n) seems to converge to a pos-
itive constant for each fixedk (if f (n) is an estimation of complexity with
respect to string length) or whetherT(n, k)/ f (k) seems to converge to a pos-
itive constant for each fixedn (if f (k) is an estimation of complexity with
respect to grammar size).

By applying these principles, we find that the empirical timecomplexity
with respect to string length is in the range betweenO(n2.8) andO(n3) for the
CYK-based and Nederhof algorithms, and betweenO(n2.6) andO(n3) for the
Earley-based algorithms with and without the valid prefix property (VPP).
Therefore, the practical time complexity we obtain is far below the theoreti-
cal worst-case bounds for these algorithms, which areO(n6) (except for the
Earley-based algorithm with the VPP, which isO(n7)).

Although for space reasons we don’t include tables with the number of
items generated in each case, our results show that the empirical space com-
plexity with respect to string length is approximatelyO(n2) for all the algo-
rithms, also far below the worst-case bounds (O(n4) andO(n5)).

With respect to the size of the grammar, we obtain a time complexity of
approximatelyO(|I ∪ A|2) for all the algorithms. This matches the theoreti-
cal worst-case bound, which isO(|I ∪ A|2) due to the adjunction steps, which
work with pairs of trees. In the case of our artificially generated grammar,
any auxiliary tree can adjoin into any other, so it’s logicalthat our times grow
quadratically. Note, however, that real-life grammars such as the XTAG En-
glish grammar (XTAG Research Group 2001) have relatively few different
nonterminals in relation to their amount of trees, so many pairs of trees are
susceptible of adjunction and we can’t expect their behavior to be much better
than this.

Space complexity with respect to grammar size is approximatelyO(|I ∪A|)
for all the algorithms. This is an expected result, since each generated item is
associated to a given tree node.

6The machine used for all the tests was an Intel Pentium 4 3.40 GHz, with 1 GB RAM and
Sun Java Hotspot virtual machine (version 1.4.201-b06) running on Windows XP.

94 / C G́-Rı́, M A. A, M V

Run-times in ms: Earley-based without the VPP

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 16 15 1,156 109,843
4 ∼0 31 63 2,578 256,094
8 16 31 172 6,891 589,578

16 31 172 625 18,735 1,508,609
32 110 609 3,219 69,406
64 485 2,953 22,453 289,984

128 2,031 13,875 234,594
256 10,000 101,219
512 61,266

Run-times in ms: CYK-based

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 ∼0 16 1,344 125,750
4 ∼0 ∼0 63 4,109 290,187
8 16 31 234 15,891 777,968

16 15 62 782 44,188 2,247,156
32 94 312 3,781 170,609
64 266 2,063 25,094 550,016

128 1,187 14,516 269,047
256 6,781 108,297
512 52,000

Run-times in ms: Nederhof’s Algorithm

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 ∼0 47 1,875 151,532
4 ∼0 15 187 4,563 390,468
8 15 31 469 12,531 998,594

16 46 188 1,500 40,093 2,579,578
32 219 953 6,235 157,063
64 1,078 4,735 35,860 620,047

128 5,703 25,703 302,766
256 37,125 159,609
512 291,141

Run-times in ms: Earley-based with the VPP

String Size (n)
Grammar Size (k)

1 8 64 512 4096
2 ∼0 ∼0 31 1,937 194,047
4 ∼0 16 78 4,078 453,203
8 15 31 234 10,922 781,141

16 31 188 875 27,125 1,787,140
32 125 750 4,141 98,829
64 578 3,547 28,640 350,218

128 2,453 20,766 264,500
256 12,187 122,797
512 74,046

TABLE 1 Execution times of four different TAG parsers for artificially-generated
grammarsGk. Best results are shown in boldface.

O      TAG  / 95

Practical applications of TAG in natural language processing usually fall
in the range of values forn andk covered in our experiments (grammars with
hundreds or a few thousands of trees are used to parse sentences of several
dozens of words). Within these ranges, both string length and grammar size
take significant values and have an important influence on execution times,
as we can see from the results in the tables. This leads us to note that tradi-
tional complexity analysis based on a single factor (stringlength or grammar
size) can be misleading for practical applications, since it can lead us to an
incomplete idea of real complexity. For example, if we are working with a
grammar with thousands of trees, the size of the grammar is the most influ-
ential factor, and the use of filtering techniques (Schabes and Joshi 1991) to
reduce the amount of trees used in parsing is essential in order to achieve
good performance. The influence of string length in these cases, on the other
hand, is mitigated by the huge constant factors related to grammar size. For
instance, in the times shown in the tables for the grammarG4096, we can see
that parsing times are multiplied by a factor less than 3 whenthe length of the
input string is duplicated, although the rest of the resultshave lead us to con-
clude that the practical asymptotic complexity with respect to string length is
at leastO(n2.6). These interactions between both factors must be taken into
account when analyzing performance in terms of computational complexity.

Earley-based algorithms achieve better execution times than the CYK-
based algorithm for large grammars, although they are worsefor small gram-
mars. This contrasts with the results for context-free grammars, where CYK
works better for large grammars: when working with CFGs, CYKhas a better
computational complexity than Earley with respect to grammar size (see sec-
tion 7.3), but the TAG variant of the CYK algorithm is quadratic with respect
to grammar size and does not have this advantage.

CYK generates fewer items than the Earley-based algorithmswhen work-
ing with large grammars and short strings, and the opposite happens when
working with small grammars and long strings.

The Earley-based algorithm with the VPP generates the same number of
items than the one without this property, and has worse execution times. The
reason is that no partial parses violating this property aregenerated by any
of both algorithms in the particular case of this grammar, soguaranteeing the
valid prefix property does not prevent any items from being generated. There-
fore, the fact that the variant without the VPP works better in this particular
case cannot be extrapolated to other grammars. However, thedifferences in
times between these two algorithms illustrates the overhead caused by the ex-
tra checks needed to guarantee the valid prefix property in a particularly bad
case.

Nederhof’s algorithm has slower execution times than the other Earley
variants. Despite the fact that Nederhof’s algorithm is an improvement over

96 / C G́-Rı́, M A. A, M V

the other Earley-based algorithm with the VPP in terms of computational
complexity, the extra deductive steps it contains makes it slower in practice.

7.5 Parsing the XTAG English grammar
In order to complement our performance comparison of the four algorithms
on artificial grammars, we have also studied the behavior of the parsers
when working with a real-life, large-scale TAG: the XTAG English gram-
mar (XTAG Research Group 2001).

The obtained execution times are in the ranges that we could expect given
the artificial grammar results, i.e. they approximately match the times in the
tables for the corresponding grammar sizes and input stringlengths. The most
noticeable difference is that the Earley-like algorithm verifying the valid pre-
fix property generates fewer items that the variant without the VPP in the
XTAG grammar, and this causes its run-times to be faster. Butthis difference
is not surprising, as explained in the previous section.

Note that, as the XTAG English grammar has over a thousand elementary
trees, execution times are very large (over 100 seconds) when working with
the full grammar, even with short sentences. However, when atree selection
filter is applied in order to work with only a subset of the grammar in function
of the input string, the grammar size is reduced to one or two hundred trees
and our parsers process short sentences in less than 5 seconds. Sarkar’s XTAG
distribution parser written in C7 applies further filtering techniques and has
specific optimizations for this grammar, obtaining better times for the XTAG
than our generic parsers.

Table 2 contains a summary of the execution times obtained byour parsers
for some sample sentences from the XTAG distribution. Note that the gen-
erated implementations used for these executions apply thementioned tree
filtering technique, so that the effective grammar size is different for each
sentence, hence the high variability in execution times. More detailed infor-
mation on these experiments with the XTAG English grammar can be found
at (Gómez-Rodrı́guez et al., 2006a).

7.6 Overhead of TAG parsing over CFG parsing
The languagesLk that we parsed in section 7.4 were regular languages, so in
practice we don’t need tree adjoining grammars to parse them, although it was
convenient to use them in our comparison. This can lead us to wonder how
large is the overhead caused by using the TAG formalism to parse context-free
languages.

Given the regular languageLk = a0(a1|a2|..|ak)∗, a context-free grammar
that parses it isG′k = (N,Σ,P,S) with N = {S} and

7Downloadable at: ftp://ftp.cis.upenn.edu/pub/xtag/lem/

O      TAG  / 97

Sentence
Run-times in milliseconds

CYK
Ear. no
VPP

Ear.
VPP Neder.

He was a cow 2985 750 750 2719
He loved himself 3109 1562 1219 6421
Go to your room 4078 1547 1406 6828
He is a real man 4266 1563 1407 4703
He was a real man 4234 1921 1421 4766
Who was at the door 4485 1813 1562 7782
He loved all cows 5469 2359 2344 11469
He called up her 7828 4906 3563 15532
He wanted to go to the city 10047 4422 4016 18969
That woman in the city contributed to
this article 13641 6515 7172 31828

That people are not really amateurs at
intellectual dueling 16500 7781 15235 56265

The index is intended to measure future
economic performance 16875 17109 9985 39132

They expect him to cut costs through-
out the organization 25859 12000 20828 63641

He will continue to place a huge burden
on the city workers 54578 35829 57422 178875

He could have been simply being a jerk 62157 113532 109062 133515

A few fast food outlets are giving it a
try 269187 3122860 3315359

TABLE 2 Run-times obtained by applying different XTAG parsers to several
sentences. Best results for each sentence are shown in boldface.

P = {S→ a0} ∪ {S→ S ai |1 ≤ i ≤ k}

This grammar minimizes the number of rules needed to parseLk (k + 1
rules), but has left recursion. If we want to eliminate left recursion, we can
use the grammarG′′k = (N,Σ,P,S) with N = {S,A} and

P = {S→ a0A} ∪ {A→ aiA|1 ≤ i ≤ k} ∪ {A→ ǫ}

which hask+ 2 production rules.
The number of items generated by the Earley algorithm for context-free

grammars when parsing a sentence of lengthn from the languageLk by using
the grammarG′k is (k+2)n. In the case of the grammarG′′k , the same algorithm
generates (k+4)n+ n(n−1)

2 +1 items. In both cases the amount of items generated
is linear with respect to grammar size, as in TAG parsers. With respect to
string size, the amount of items isO(n) for G′k andO(n2) for G′′k , and it was
approximatelyO(n2) for the TAGGk. Note, however, that the constant factors

98 / C G́-Rı́, M A. A, M V

behind complexity are much greater when working withGk than withG′′k ,
and this reflects on the actual number of items generated (forexample, the
Earley algorithm generates 16,833 items when working withG′′64 and a string
of lengthn = 128, while the TAG variant of Earley without the valid prefix
property generated 1,152,834 items).

The execution times for both algorithms appear in table 3. From the ob-
tained times, we can deduce that the empirical time complexity is linear with
respect to string length and quadratic with respect to grammar size in the case
of G′k; and quadratic with respect to string length and linear withrespect to
grammar size in the case ofG′′k . So this example shows that, when parsing
a context-free language using a tree-adjoining grammar, weget an overhead
both in constant factors (more complex items, more deductive steps, etc.) and
in asymptotic behavior, so actual execution times can be several orders of
magnitude larger. Note that the way grammars are designed also has an in-
fluence, but our tree adjoining grammarsGk are the simplest TAGs able to
parse the languagesLk by using adjunction (an alternative would be to write
a grammar using the substitution operation to combine trees).

n
Grammar Size (k), grammarG′k

1 8 64 512 4096
2 ∼0 ∼0 ∼0 31 2,062
4 ∼0 ∼0 ∼0 62 4,110
8 ∼0 ∼0 ∼0 125 8,265

16 ∼0 ∼0 ∼0 217 15,390
32 ∼0 ∼0 15 563 29,344
64 ∼0 ∼0 31 1,062 61,875

128 ∼0 ∼0 109 2,083 122,875
256 ∼0 15 188 4,266 236,688
512 15 31 328 8,406 484,859

n
Grammar Size (k), grammarG′′k

1 8 64 512 4096
2 ∼0 ∼0 ∼0 ∼0 47
4 ∼0 ∼0 ∼0 15 94
8 ∼0 ∼0 ∼0 16 203

16 ∼0 ∼0 ∼0 46 688
32 ∼0 ∼0 15 203 1,735
64 31 31 93 516 4,812

128 156 156 328 1,500 13,406
256 484 547 984 5,078 45,172
512 1,765 2,047 3,734 18,078

TABLE 3 Run-times obtained by applying the Earley parser for context-free grammars
to sentences inLk.

R / 99

7.7 Conclusions
In this paper, we have presented a system that compiles parsing schemata
to executable implementations of parsers, and used it to evaluate the perfor-
mance of several TAG parsing algorithms, establishing comparisons both be-
tween themselves and with CFG parsers.

The results show that both string length and grammar size canbe impor-
tant factors in performance, and the interactions between them sometimes
make their influence hard to quantify. The influence of stringlength in prac-
tical cases is usually below the theoretical worst-case bounds (betweenO(n)
andO(n2) in our tests for CFGs, and slightly belowO(n3) for TAGs). Gram-
mar size becomes the dominating factor in large TAGs, makingtree filtering
techniques advisable in order to achieve faster execution times.

Using TAGs to parse context-free languages causes an overhead both in
constant factors and in practical computational complexity, thus increasing
execution times by several orders of magnitude with respectto CFG parsing.

Acknowledgments

The work reported in this article has been supported in part by
Ministerio de Educación y Ciencia and FEDER (TIN2004-07246-C03-
01, TIN2004-07246-C03-02), Xunta de Galicia (PGIDIT05PXIC30501PN,
PGIDIT05PXIC10501PN, Rede Galega de Procesamento da Linguaxe e Re-
cuperación de Información), and Programa de becas FPU (Ministerio de Ed-
ucación y Ciencia).

References
Alonso, Miguel A., David Cabrero, Eric de la Clergerie, and Manuel Vilares. 1999.

Tabular algorithms for TAG parsing. InProc. of EACL’99, Ninth Conference of the
European Chapter of the Association for Computational Linguistics, pages 150–
157. ACL, Bergen, Norway.

Alonso, Miguel A., Eric De la Clergerie, Vı́ctor J. Dı́az, and Manuel Vilares. 2004.
Relating tabular parsing algorithms for LIG and TAG. In H. Bunt, J. Carroll, and
G. Satta, eds.,New Developments in Parsing Technology, vol. 23 of Text, Speech
and Language Technology Series, chap. 8, pages 157–184. Dordrecht-Boston-
London: Kluwer Academic Publishers,.

Carroll, J. 1993. Practical unification-based parsing of natural language. PhD thesis.
Tech. Rep. 314, Computer Laboratory, University of Cambridge, Cambridge, UK.

Dı́az, Vı́ctor J. and Miguel A. Alonso. 2000. Comparing tabular parsers for tree ad-
joining grammars. In D. S. Warren, M. Vilares, L. Rodrı́guezLiñares, and M. A.
Alonso, eds.,Proc. of Tabulation in Parsing and Deduction (TAPD 2000), pages
91–100. Vigo, Spain.

100 / C G́-Rı́, M A. A, M V

Earley, J. 1970. An efficient context-free parsing algorithm.Communications of the
ACM 13(2):94–102.

Gómez-Rodrı́guez, Carlos, Miguel A. Alonso, and Manuel Vilares. 2006a. Generat-
ing XTAG parsers from algebraic specifications. InProceedings of the 8th Inter-
national Workshop on Tree Adjoining Grammar and Related Formalisms. Sydney,
July 2006, pages 103–108. East Stroudsburg, PA: Association for Computational
Linguistics.

Gómez-Rodrı́guez, Carlos, Miguel A. Alonso, and Manuel Vilares. 2007. Genera-
tion of indexes for compiling efficient parsers from formal specifications. InProc.
of Eleventh International Conference on Computer Aided Systems Theory (EURO-
CAST 2007). Las Palmas, Spain.

Gómez-Rodrı́guez, Carlos, Jesús Vilares, and Miguel A. Alonso. 2006b. Auto-
matic generation of natural language parsers from declarative specifications. In
L. Penserini, P. Peppas, and A. Perini, eds.,STAIRS 2006 - Proceedings of the
Third Starting AI Researchers’ Symposium, Riva del Garda, Italy, August 28-29,
2006, vol. 142 ofFrontiers in Artificial Intelligence and Applications, pages 259–
260. Amsterdam/Berlin/Oxford/Tokyo/Washington DC: IOS Press. Long version
available at http://www.grupocole.org/GomVilAlo2006a long.pdf.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-adjoining grammars. In G. Rozen-
berg and A. Salomaa, eds.,Handbook of Formal Languages. Vol 3: Beyond Words,
chap. 2, pages 69–123. Berlin/Heidelberg/New York: Springer-Verlag.

Kasami, T. 1965. An efficient recognition and syntax algorithm for context-free lan-
guages. Scientific Report AFCRL-65-758, Air Force Cambridge Research Lab.,
Bedford, Massachussetts.

Nederhof, Mark-Jan. 1999. The computational complexity ofthe correct-prefix prop-
erty for TAGs.Computational Linguistics25(3):345–360.

Rosenkrantz, D. J. and P. M. Lewis II. 1970. Deterministic Left Corner parsing. In
Conference Record of 1970 Eleventh Annual Meeting on Switching and Automata
Theory, pages 139–152. IEEE, Santa Monica, CA, USA.

Sampson, G. 1994. The Susanne corpus, release 3.

Schabes, Yves. 1994. Left to right parsing of lexicalized tree-adjoining grammars.
Computational Intelligence10(4):506–515.

Schabes, Yves and Aravind K. Joshi. 1991. Parsing with lexicalized tree adjoining
grammar. In M. Tomita, ed.,Current Issues in Parsing Technologies, chap. 3, pages
25–47. Norwell, MA, USA: Kluwer Academic Publishers. ISBN 0-7923-9131-4.

Schoorl, J. J. and S. Belder. 1990. Computational linguistics at Delft: A status report,
Report WTM/TT 90–09.

R / 101

Shieber, Stuart M., Yves Schabes, and Fernando C. N. Pereira. 1995. Principles and
implementation of deductive parsing.Journal of Logic Programming24(1–2):3–
36.

Sikkel, Klaas. 1997.Parsing Schemata — A Framework for Specification and Anal-
ysis of Parsing Algorithms. Texts in Theoretical Computer Science — An EATCS
Series. Berlin/Heidelberg/New York: Springer-Verlag. ISBN 3-540-61650-0.

Vijay-Shanker, K. and Aravind K. Joshi. 1985. Some computational properties of tree
adjoining grammars. In23rd Annual Meeting of the Association for Computational
Linguistics, pages 82–93. ACL, Chicago, IL, USA.

XTAG Research Group. 2001. A lexicalized tree adjoining grammar for English.
Tech. Rep. IRCS-01-03, IRCS, University of Pennsylvania.

Younger, D. H. 1967. Recognition and parsing of context-free languages in timen3.
Information and Control10(2):189–208.

8

Properties of binary transitive closure
logics over trees
S K

Abstract
Binary transitive closure logic (FO∗ for short) is the extension of first-order predicate

logic by a transitive closure operator of binary relations.Deterministic binary transitive
closure logic (FOD∗) is the restriction of FO∗ to deterministic transitive closures. It is
known that these logics are more powerful than FO on arbitrary structures and on finite
ordered trees. It is also known that they are at most as powerful as monadic second-order
logic (MSO) on arbitrary structures and on finite trees. We will study the expressive
power of FO∗ and FOD∗ on trees to show that several MSO properties can be expressed
in FOD∗ (and hence FO∗).

The following results will be shown.
. A linear order can be defined on the nodes of a tree.. The class EVEN of trees with an even number of nodes can be defined.. On arbitrary structures with a tree signature, the classes of trees and finite trees can be

defined.. There is a tree language definable in FOD∗ that cannot be recognized by any tree
walking automaton.. FO∗ is strictly more powerful than tree walking automata.

These results imply that FOD∗ and FO∗ are neither compact nor do they have the
Löwenheim-Skolem-Upward property.

Keywords B   

8.1 Introduction

The question about the best suited logic for describing treeproperties or defin-
ing tree languages is an important one for model theoretic syntax as well
as for querying treebanks. Model theoretic syntax is a research program in
mathematical linguistics concerned with studying the descriptive complex-

103

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

104 / S K

ity of grammar formalisms for natural languages by defining their derivation
trees in suitable logical formalisms. Since the very influential book by Rogers
(1998) it is monadic second-order logic (MSO) or even more powerful logics
that are used to describe linguistic structures.

With the advent of XML and query languages for XML documents,in par-
ticular XPath, the interest in logics for querying treebanks rose dramatically.
There is now a large interest in this topic in computer science. Independent of
that, but temporarily parallel, large syntactically annotated treebanks became
available in linguistics. They provide nowadays a rich and important source
for the study of language. But in order to access this source,suitable query
languages for treebanks are required.

One of the simplest properties that are known to be inexpressible in first-
order predicate logic (FO henceforth) is the transitive closure of a binary rela-
tion. It is therefore a natural move to extend FO by a binary transitive closure
operator. And this move has been done before in the definitionof query lan-
guages for relational databases, in particular for the SQL3standard. But it
seems that the expressive power of FO plus binary transitiveclosures (FO∗

for short) to define tree properties is not much studied yet. This is somewhat
surprising, because there is reason to believe that FO∗ is more user friendly
than MSO. Most users of query languages, in particular linguists, understand
the concept of a transitive closure very well and know how to use it. It is a lot
more difficult to use set variables to describe tree properties. An example for
this claim is the fact MSO is capable of defining binary transitive closures, as
shown by Moschovakis (1974). A formula expressing the transitive closure
in MSO is given at the end of the next section. It is questionable that ordi-
nary users (without profound knowledge of MSO) would be ableto find this
formula.

There exists a more restricted version of transitive closure, namely de-
terministic transitive closure (FOD∗). The deterministic transitive closure of
a binary relation is the transitive closure of the functional or deterministic
part of the relation. We propose to seriously consider FOD∗ as a language for
defining tree properties. We do so by showing that several important MSO
definable properties can be defined in FOD∗. One such example is the ability
to define a linear order on the nodes of a tree. The order resembles depth-first
left-to-right traversal of a tree. A linear order is a powerful concept that can
be used defining additional properties. For example, it is used to count the
number of nodes in a tree modulo a given natural number. An instance is the
definition of the class EVEN of all trees with an even number ofnodes in
FOD∗.

Arguably an important reason for Rogers’ choice of MSO is itsability
to axiomatize trees. I.e., there exists a set of axioms such that an arbitrary
structure (of a suitable signature) is a tree – finite or infinite – iff it is a model

P        / 105

of the axioms. It is known that this characterization of trees cannot be done
using FO. But the full expressive power of MSO may not really be needed
for the axiomatization, because we show that arbitrary trees and finite trees
can be axiomatized in FOD∗. This capability of axiomatizing finite and infinite
trees implies that FOD∗ (and hence also FO∗) is neither compact nor does it
possess the Löwenheim-Skolem-Upward property.

There exists a tree automaton concept that defines serial instead of parallel
processing of nodes in a tree, namely tree walking automata (TWA). As the
name implies, a tree is processed by walking up and down in it and inspect-
ing nodes serially. One may therefore believe that these automata could be
the automaton-theoretic correspondent of FO∗. But we show here that FO∗

is more powerful. Every tree language that is recognized by aTWA can be
defined in FO∗. The relationship towards FOD∗ is less clear. There are FOD∗-
definable tree languages that cannot be recognized by any TWA.

8.2 Preliminaries
Let M be a set. We write℘(M) for the power set ofM. Let R ⊆ M × M be a
binary relation overM. Thetransitive closure TC(R) of R is the smallest set
containingRand for allx, y, z ∈ M such that (x, y) ∈ TC(R) and (y, z) ∈ TC(R)
we have (x, z) ∈ TC(R). I.e.,

TC(R) :=
⋂
{W | R⊆W ⊆ M × M,∀x, y, z∈ M :

(x, y), (y, z) ∈W =⇒ (x, z) ∈W}.

Deterministictransitive closure is the transitive closure of a determinis-
tic, i.e., functional relation. For an arbitrary binary relation R we define its
deterministic reductby

RD := {(x, y) ∈ R | ∀z : (x, z) ∈ R =⇒ y = z}.

Now
DTC(R) := TC(RD).

We consider labeled ordered unranked trees. A tree is ordered if the set of
child nodes of every node is linearly ordered. A tree is unranked if there is no
relationship between the label of a node and the number of itschildren. For
brevity we just writetree for labeled ordered unranked tree. In Sections 8.3
and 8.5 we only consider finite trees, in Section 8.4 we also consider infinite
trees.

Definition 1 A tree domainis a non-empty subsetT ⊆ N∗ such that for all
u, v ∈ N∗ : uv ∈ T =⇒ u ∈ T (closure under prefixes) and for allu ∈ N∗ and
i ∈ N : ui ∈ T =⇒ u j ∈ T for all j < i (closure under left sisters).

LetL be a set of labels. Atree is a pair (T, Lab) whereT is a tree domain
andLab : T → L is a node labeling function.

A tree isfinite iff its tree domain is finite.

106 / S K

We remark that a tree domain is at most countable, since it is asubset of a
countable union of countable sets.

The languages to talk about trees will be extensions of first-order logic.
Their syntaxes is as follows. LetX = {x, y, z,w, u, x1, x2, x3, . . . } be a denu-
merable infinite set of variables. The atomic formulae areL(x) for each label
L ∈ L, x → y, x ↓ y, andx = y. Complex formulae are constructed from
simpler ones by means of the boolean connectives, existential and univer-
sal quantification, and transitive closure. I.e., ifφ andψ are formulae, then
¬φ, φ ∧ ψ, φ ∨ ψ,∃x:φ,∀x:φ, and [TCx1,x2 φ](x, y), [DTCx1,x2 φ](x, y), respec-
tively, are formulae.

The semantics of the first-order part of the language is standard. Let
(T, Lab) be a tree. A variable assignmenta : X → T assigns variables to
nodes in the tree. The root node has the empty addressǫ. Now [[L(x)]]a = T
iff Lab(a(x)) = L. [[x ↓ y]]a = T iff a(y) = a(x)i for somei ∈ N, i.e., ↓ is
the parent relation. [[x → y]]a = T iff there is au ∈ T and i ∈ N such that
a(x) = ui anda(y) = ui + 1, i.e.,→ is the immediate sister relation.

Boolean connectives and quantification have their standardinterpretation.
Now, [[[TCx1,x2 φ](x, y)]]a = T iff

(a(x), a(y)) ∈ TC({(b, d) | [[φ]]ab/x1d/x2 = T})

whereab/x1d/x2 is the variable assignment that is identical toa except that
x1 is assigned tob andx2 to d. If φ is a formula with free variablesx1, x2, it
can be regarded as a binary relationφ(x1, x2). Then [TCx1,x2 φ] is the transitive
closure of this binary relation. This language is abbreviated FO∗.

And [[[DTCx1,x2 φ](x, y)]]a = T iff

(a(x), a(y)) ∈ DTC({(b, d) | [[φ]]ab/x1d/x2 = T}).

This language is abbreviated FOD∗. It is simple to see that everything express-
ible in FOD∗ can also be expressed in FO∗, because

[DTCx1,x2 φ(x1, x2)](x, y) ↔

[TCx1,x2 φ(x1, x2) ∧ ∀zφ(x1, z)→ z= x2](x, y).

It is an open question whether there are tree languages definable in FO∗ that
cannot be defined in FOD∗.

FO∗ is amongst the smallest extension of first-order logic. It isknown that
the transitive closure of a binary relation isnot first-order definable (Fagin,
1975). But when talking about trees, people frequently wantto talk about
paths in a tree. And a path is the transitive closure of certain base steps. FOD∗

and FO∗ have at most the expressive power of monadic second-order logic
(MSO). It is an old result, which goes back at least to Moschovakis (1974,
p. 20), that the transitive closure of every MSO-definable binary relation is
also MSO-definable. The following formula is due to Courcelle (1990). Let

P        / 107

Rbe an MSO-definable binary relation. Then

∀X (∀z,w(z ∈ X ∧ R(z,w) =⇒ w ∈ X) ∧ ∀z(R(x, z) =⇒ z ∈ X))
=⇒ y ∈ X

is a formula with free variablesx andy that defines the transitive closure ofR.
It follows that every tree language definable in FO∗ can be defined in MSO.
Whether the two logics are equivalent, seems an open question. For FOD∗,
the question is settled. Recently, Bojanczyk et al. (2006) have shown that the
expressive power of MSO for defining tree languages properlyextends the
expressive power of FOD∗.

8.3 Definability of Order
One of the abstract insights from descriptive complexity theory is that or-
der is a very important property of structures. The relationship between cer-
tain logics and classical complexity classes is frequentlyrestricted toordered
structures, i.e., structures where the carrier is linearlyordered. The reason for
this restriction is to be found in the fact that computation is an ordered pro-
cess. Definability and non-definability results for certainlogics over ordered
structures frequently do not extend to unordered structures. It is therefore an
important property of a logic, if the logic itself is capableof expressing order
without recourse to an extended signature. The probably best known logic
with this property isΣ1

1, the extension of first-order logic by arbitrary relation
variables that are existentially quantified. It is obviously possible to define
order inΣ1

1, because we can say there is a binary relation that has all theprop-
erties of a linear order. These properties are known to be first-order properties.
It is hence the ability to say “there is a binary relation” that is the key.

There is no way that FOD∗ or FO∗ could define order on arbitrary finite
structures. But if we only consider ordered trees as models,FOD∗ can define
order. Indeed it is possible to give a definition of the depth-first left-to-right
order of nodes in a tree (and some variants).

Proposition 9 There is an explicit definition of a linear order of the nodes in
a tree inFOD∗.

Proof. Define the proper dominance relation of treesDom(x, y) as [DTCy,x x ↓
y](y, x). The idea of how to define dominance deterministically by walking
upwards from the descendants to the ancestors goes back to Etessami and
Immerman (1995). Similarly but simpler, define the sister relation S is(x, y)
as [DTCx,y x→ y](x, y). Now definex < y as

Dom(x, y) ∨ (∃w, v : S is(w, v) ∧
(w = x∨ Dom(w, x)) ∧ (v = y∨ Dom(v, y))).

The first disjunct expresses the “depth-first” part of the order. The more com-
plicated second disjunct formalizes the “left-to-right” part. It expresses that

108 / S K

there is a common ancestor of nodesx andy and nodex is to be found on a
left branch whiley is to be found on a right branch. Care is taken that mu-
tual domination is excluded. Hence the two disjuncts are mutually exclusive.
Since the dominance and the sisterhood steps are both irreflexive, the whole
relation< is irreflexive. Furthermore for each pair of distinct nodes in a tree,
either one dominates the other, or there is a common ancestorsuch that one
node is on a left branch while the other is on a right branch. Hence the rela-
tion is total. Transitivity can easily be checked by considering the four cases
involved in expandingx < y andy < z. ⊔⊓

The proposition basically states that ordered trees are ordered structures in
any logic at least as powerful as FOD∗. Note that the root node is the smallest
element of the order. If the tree is finite, the largest element is the leaf of the
rightmost branch of the tree. The root node is FO-definable via¬∃y : y ↓ x.
The largest elementMax of the order is FOD∗-definable by∃x¬∃y : x < y.
The successory of a nodex in the linear order (S ucc(x, y)) is also FOD∗-
definable:x < y ∧ ¬∃z : x < z∧ z < y. Using a linear order it is possible
to count modulo some natural number on trees. That is forn, k ∈ N we can
define the class of finite trees such that each tree in the classhasd × n + k
nodes (for somed ∈ N). As an example, we define the class EVEN of trees
with an even number of nodes (i.e,n = 2, k = 0).

Proposition 10 The class of finite trees with an even number of nodes is
FOD∗-definable.

Proof. We only consider the case where a tree has more than two nodes. The
formula

∃w : S ucc(Root,w) ∧ [DTCx,y∃z : S ucc(x, z) ∧ S ucc(z, y)](w,Max)

expresses that we go in one step from the root to its successorw. From w
we can reach the last element of the order by an arbitrary number of two
successor steps. If we take the two-successors-step path through the linear
order from the root to the maximum, we have an odd number of nodes, since
a path ofn double-successor-steps hasn+ 1 nodes. ⊔⊓

Corollary 11 FOD∗ has no normal form of the type[DTCx,y φ(x, y)](r, r)
whereφ(x, y) is an FO formula and r the root. The same is true mutatis mu-
tandis forFO∗.

Proof. With a single application of a DTC-operator we can define trees with
a linear order. If FO with a single DTC-operator is interpreted over finite
successor structures, then it is equivalent to FO with order. But over finite
orderings, EVEN is not definable in FO. ⊔⊓

The above corollary is stated here because it contrasts witha fundamental
result in descriptive complexity theory. Let FO(TC) be the extension of FO by

P        / 109

transitive closure operators of arbitrary width, that is the transitive closure of
binary relations on tuples of arbitrary width. Let FO(DTC) be its deterministic
counterpart. Immerman (1999) showed that both FO(TC) and FO(DTC) on
ordered structures have a normal form consisting of a singleouter application
of the (deterministic) transitive closure operator on an otherwise FO formula.

8.4 Definability of Tree Structures
In previous and all following sections we assume that we onlyconsider tree
models as defined in the Preliminaries section. But in this section we take a
more general view, a view that has its origin in model theoretic syntax. The
aim is to find whether it is possible to give an axiomatizationof those struc-
tures linguists are interested in. This task has two subparts. The first consists
of defining trees, or more precisely finite trees, as the intended models. The
second part consists of axiomatizing linguistic principles such as the Binding
theory in the given logic. We will only be concerned with the first part here.
This section is inspired by the book by Rogers (1998). More specifically we
show that the main results of Chapter 3 carry over to FOD∗. We will frequently
cite this chapter in the current section.

The language of this section is deterministic binary transitive closure logic
with equality over the following base relations:
⊳ parent relation
⊳∗ dominance relation
⊳+ proper dominance relation
≺ left-of relation

We also assume there to be a setL of unary predicate symbols representing
linguistic labels. We write FOD∗⊳ for this language to indicate that the base
relations differ from the ones in the other sections of this paper.

A model for FOD∗⊳ is a tuple (U,P,D, L, Lab) whereU is a non-empty
domain,P,D andL are binary relations overU interpreting⊳, ⊳∗ and≺. And
Lab : L → ℘(U) interprets each label as a subset ofU.

Since the intended models of this language are trees, we haveto restrict
the class of models by giving axioms of trees. Many properties of trees can
be defined by first-order axioms. The following 12 axioms are cited from
(Rogers, 1998, p. 15f.).

A1 ∃x∀y : x ⊳∗ y
(Connectivity . dominance)

A2 ∀x, y : (x ⊳∗ y∧ y ⊳∗ x)→ x = y
(Antisymmetry of dominance)

A3 ∀x, y, z : (x ⊳∗ y∧ y ⊳∗ z)→ x ⊳∗ z
(Transitivity of dominance)

A4 ∀x, y : x ⊳+ y↔ (x ⊳∗ y∧ x , y)

110 / S K

(Definition of proper dominance)
A5 ∀x, y : x ⊳ y↔ (x ⊳+ y∧ ∀z : (x ⊳∗ z∧ z ⊳∗ y)→ (z ⊳∗ x∨ y ⊳∗ z))

(Definition of immediate dominance)
A6 ∀x, z : x ⊳+ z→ ((∃y : x ⊳ y∧ y ⊳∗ z) ∧ (∃y : y ⊳ z))

(Discreteness of dominance)
A7 ∀x, y : (x ⊳∗ y∧ y ⊳∗ x)↔ (x 6≺ y∧ y 6≺ x)

(Exhaustiveness and exclusiveness)
A8 ∀w, x, y, z : (x ≺ y∧ x ⊳∗ w∧ y ⊳∗ z)→ w ≺ z

(Inheritance of Left-of wrt. dominance)
A9 ∀x, y, z : (x ≺ y∧ y ≺ z)→ x ≺ z

(Transitivity of left-of)
A10 ∀x, y : x ≺ y→ y 6≺ x

(Asymmetry of left-of)
A11 ∀x(∃y : x ⊳ y)→ (∃y : x ⊳ y∧ ∀z : x ⊳ z→ z 6≺ y)

(Existence of a minimum child)
A12 ∀x, z : x ≺ z→ (∃y : x ≺ y∧ ∀w : x ≺ w→ w 6≺ y) ∧

(∃y : y ≺ z∧ ∀w : w ≺ z→ y 6≺ w)
(Discreteness of left-of)

A discussion of these axioms can be found in (Rogers, 1998, p.16f.). Ev-
ery tree (finite or infinite) obeys to these axioms. But there are non-standard
models, i.e., structures that are models of theses axioms but would not be con-
sidered as trees. Actually, it isnotpossible to give a first-order axiomatization
of trees, as was shown by Backofen et al. (1995). The simplestexample of a
non-standard model can be gained by adapting the well-knownexample of
a non-standard model of FO arithmetics to tree structures. This model is de-
picted in Figure 1. The carrier is the disjoint union of the natural numbers and
the integers. The dominance relation is defined by taking thenatural order
on natural numbers and integers plus every natural number dominates every
integer. Formally:U = N⊎Z, P = {(n, n+1) | n ∈ N∪Z}, D = {(n,m) | n,m ∈
N, n ≤ m} ∪ {(n,m) | n,m∈ Z, n ≤ m} ∪ {(n, z) | n ∈ N, z ∈ Z}, andL = ∅. This
model is not a tree because the integers are infinitely far away from the root.

The FO axioms demand that the proper dominance relation doesnot only
contain the immediate dominance relation but also the transitive closure of the
immediate dominance. In the non-standard model, proper dominance truly
extends the transitive closure of immediate dominance. Allnatural numbers
properly dominate all integers. But this part of the dominance relation is not
contained in the transitive closure of immediate dominance. In a proper tree
model, the proper dominance is always identical to the transitive closure of
immediate dominance. This insight can be expressed in FOD∗⊳ as an axiom.

AT1 ∀x, y : x ⊳+ y→ [DTCw,zz ⊳ w](y, x)
(Proper dominance is the transitive closure of immediate dominance)

P        / 111

0

1

2

3

−2

−1

0

1

2

FIGURE 1 A non-standard model of the first-order tree axioms.

r

iiiiiiiiiiiiiiiiiiiiii

nnnnnnnnnnnnnnn

ggggggggggggggggggggggggggggg

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

C
C

C
C

C
C

C
C

QQQQQQQQQQQQQQQQ

VVVVVVVVVVVVVVVVVVVVVVVV

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

0 1 2

−2 −1 0 1 2 . . .

FIGURE 2 Another non-standard model of the first-order tree axioms.

Another way of reading this axiom is to say that the path from an arbitrary
node back to the root is finite.

AT1 together with the first-order axioms does still not suffice to axiomatize
proper trees. An example of a non-standard model for which AT1 holds true
is given in Figure 2. Formally, we setU = {r}⊎N⊎Z, P = {(r, z) | z ∈ N∪Z},
D = P∪ {(i, i) | i ∈ {r} ∪N∪ Z}, andL = {(n,m) | n,m∈ N, n < m} ∪ {(n,m) |
n,m∈ Z, n < m} ∪ {(n, z) | n ∈ N, z ∈ Z}. Consider the sisters of a node. They
are ordered by≺, and there is a left-most sister. Now, in a proper tree, the
number of sisters to the left is finite for every node. In the model in Figure 2 all
integers have infinitely many left sisters. This configuration has to be avoided
by means of one more axiom as follows. We can easily define thatone node
is the immediate sister of another node. The relationIS(x, y) is defined as
∃z : z ⊳ x∧ z ⊳ y∧ x ≺ y∧ ¬∃w : x ≺ w ≺ y. Now we can spell out an axiom
analog to AT1.

112 / S K

AT2 ∀x, y, z : (x ⊳ y∧ x ⊳ z∧ y ≺ z)→ [DTCv,wIS(v,w)](y, z)
(Finitely many left sisters)

Theorem 12 Axioms A1–A12, AT1, and AT2 define the class of tree models.

The proof is analogous to the proof of Theorem 3.9 in (Rogers,1998).
Consider in particular Footnote 8 on page 23.
Proof. Rogers showed that every tree (in the sense of Definition 1) is a model
of axioms A1–A12 and for each nodex ∈ U the setsAx = {(y, x) ∈ D} of
ancestors ofx andLx = {y | ∃z : (z, x), (z, y) ∈ D and (y, x) ∈ L} of left sisters
of x are finite (Lemma 3.5). And every tree obviously satisfies axioms AT1
and AT2.

Furthermore, each model of axioms A1–A12 whereAx andLx are finite
for each nodex ∈ U is isomorphic to a tree (Lemma 3.6).

Now suppose a model of A1–A12 satisfies AT1. Then for each nodex ∈ U
the setAx is finite, because it contains the root (A1) and is constructed of
parent-child steps (AT1), and a transitive closure of single steps cannot reach
a limit ordinal. An analogous argument can be made with respect to models
of A1–A12 and AT2. Hence for every model of of A1–A12, AT1, andAT2
and all nodesx ∈ U we see that the setsAx andLx are finite. By the above
quoted Lemma 3.6, these models are isomorphic to trees. ⊔⊓

The tree models of Axioms A1–A2, AT1, and AT2 can be finite as well as
infinite. But since they are all tree models, they are at most countable. This
is because every tree domain is at most countable (see remarkafter Defini-
tion 1). And every tree model is isomorphic to a tree. As an immediate con-
sequence we get that FOD∗ doesnot have the Löwenheim-Skolem-Upward
property. This property states that if a theory (i.e., potentially infinite set of
sentences) has a model of sizeω it has models of arbitrary infinite cardinali-
ties. It is a typical property of FO logic.

Corollary 13 The logicsFOD∗ andFO∗ donothave the Löwenheim-Skolem-
Upward property.

Linguists are mostly (if not exclusively) concerned with finite trees. Hence
it would be nice if we could restrict the class of models further down to finite
trees. This can indeed be done. Rogers (1998) defines a linearorder on the
nodes of a tree as follows. Nodex < y iff x ⊳+ y∨ x ≺ y. By Axiom A7, each
pair of nodes is either a member of the dominance relation or amember of
the left-of relation. Hence this defines indeed a linear order. Actually, the or-
der is the same as the one in the previous section: depth-firstleft-to-right tree
traversal. As in the previous section we useS ucc(x, y) for y being the imme-
diate successor ofx in the order. Finiteness can now be defined in two steps.
Firstly we demand the linear order to be the deterministic transitive closure
of the immediate successor relation. The consequence of this demand is that

P        / 113

for every element in the order there is only a finite number of nodes that are
smaller than this element. Secondly we demand the order to have a maximal
element. If the maximal element has only a finite number of elements smaller
than it, the tree is obviously finite.

AF ∀x, y : x < y =⇒ [DTCx,y S ucc(x, y)](x, y) ∧
∃x∀y : y < x∨ y = x.
(Finiteness of the order<)

Theorem 14 Axioms A1–A12, AT1, AT2, and AF define the class offinite
tree models.

Proof. By Theorem 12, every model of the Axioms A1–A12, AT1, and AT2
is isomorphic to a tree model. If a model is finite, then AF is certainly true.
For the converse, assume that∀x, y : x < y =⇒ [DTCx,y S ucc(x, y)](x, y).
By definition of the DTC-operator, the set{y | y < x} of elements smaller than
x is finite for every nodex. If the order has additionally a maximal element
m, then it is finite. ⊔⊓

This theorem implies that another property of FO, namely compactness,
does not extend to FOD∗.

Corollary 15 The logicsFOD∗ andFO∗ are notcompact.

FO, on the other hand, is not capable of defining the class of finite trees.
It is well known that compactness and definability of finiteness of models
mutually exclude each other.

8.5 Transitive Closure Logics and Tree Walking Automata

Tree walking automata were introduced by Aho and Ullman (1971) as se-
quential automata on trees. At every moment of its run, a TWA is in a single
node of the tree and in one of a finite number of states. It walksaround the
tree choosing a neighboring node based on the current state,the label of the
current node, and the child number of the current node.

More formally, we consider trees of maximal branching degreek. The fol-
lowing definition is mainly cited from (Bojanczyk and Colcombet, 2005). Ev-
ery nodev has a type. The possible values are Types= {r, 1, 2, . . . , k} × {l, i}
wherer stands for the root,j ∈ {1, . . . , k} states thatv is the j-th child, l
states thatv is a leaf,i thatv is an internal node. A direction is an element of
Dir = {↑, ↓1, . . . , ↓k, stay} where↑ stands for ‘move to the parent’,↓ j ‘move
to the j-th child, andstayto ‘stay at the current node’. A TWA is a quintuple
(S,Σ, δ, s0, F) whereS is a finite set of states,Σ is the alphabet of node labels,
s0 ∈ S is the initial state andF ⊆ S is the set of final states. The transition
relationδ is of the form

δ ⊆ (S × Types× Σ) × (S × Dir).

114 / S K

A configuration is a pair of a node and a state. A run is a sequence of config-
urations where every two consecutive configurations are consistent with the
transition relation. A run is accepting iff it starts and ends at the root of the
tree, the first state iss0 and the last state is a member ofF. The TWA accepts
a tree iff there is an accepting run. The set ofΣ-trees recognized by a TWA is
the set of trees for which there is an accepting run.

Bojanczyk and Colcombet (2005) showed that TWA cannot recognize all
regular tree languages. This means that MSO and tree automata are strictly
more powerful than TWA. In an extension of their proof we willshow that
even FO∗ is more powerful than TWA.

Theorem 16 The classes of tree languages definable inFO∗ strictly extend
the classes of tree languages recognizable by TWA.

Proof. The proof consists of two parts. We will first show that everyTWA-
recognizable tree language is FO∗-definable. Secondly we will show that
there is an FOD∗-definable tree language that cannot be recognized by any
TWA.

The first part of the proof is based on recent results by Neven and Schwen-
tick (2003). They showed that a tree language is recognizable by a TWA if and
only if it is definable by a formula of the following type: [TCx,y φ(x, y)](r, r)
wherer is a constant for the root of a tree,φ is an FO formula with additional
unarydepthm predicates. Apart from thedepthm predicates, these formulae
are obviously in FO∗. Now, depthm(x) is true iff x is a multiple ofm steps
away from the root. For everym, the predicatedepthm can be defined by an
FO∗-formula: [TCx0,xm ∃x1, . . . xm−1 : x0 ↓ x1 ∧ · · · ∧ xm−1 ↓ xm](r, x) is a
predicate that is true on a nodex just in case there is ak ∈ N such thatx is at
depthk×m. Thus every TWA-recognizable tree language is FO∗-definable.

To show the second half of the theorem, we will indicate that the separat-
ing languageL given by Bojanczyk and Colcombet (2005) can be defined in
FOD∗. The authors consider binary trees. They show (in Fact 1) that L can be
defined in first-order logic with the following three basic relations: left and
right child, and ancestor relation. Now, left and right child are obviously FO∗-
definable relations. And the ancestor relation is – as in the previous sections
– FOD∗-definable by [DTCy,x x ↓ y](y, x). ⊔⊓

Corollary 17 There exists anFOD∗-definable tree language that isnotTWA-
recognizable.

Please note that there exists an alternative proof of Theorem 16. Engelfriet
and Hoogeboom (2006) have recently shown that transitive closure logics cor-
respond to certain pebble automata. (A pebble automaton is aTWA enhanced
by a finite sets of pebbles.) More precisely, the deterministic pebble automata
have exactly the same expressive power as deterministic binary transitive clo-

P        / 115

sure logic. And non-deterministic pebble automata have thesame expressive
power as binary transitive closure logic where each transitive closure operator
is under the scope of an even number of negations. Since a TWA is a pebble
automaton with 0 pebbles, the first half of above theorem follows from the
equivalence results of (Engelfriet and Hoogeboom, 2006). The second half of
the theorem follows from new results by Bojanczyk et al. (2006) who show
that each additional pebble extends the expressive power ofa pebble automa-
ton. Bojanczyk et al. (2006) also provide an alternative proof of Corollary 17.
As a result, either TWA and DPA are incomparable, or TWA are less powerful
than DPA.

8.6 Conclusion

We showed a range of properties of FOD∗ and FO∗ to indicate that they should
seriously be considered as logics for defining tree languages. Although the
addition of binary transitive closure to first-order logic can be seen as a small
one, FOD∗ is capable of expressing important second-order properties over
trees. It is possible to define a linear order over the nodes ina tree. And using
this order one can count modulo any natural number. On arbitrary structures
with appropriate signature one can axiomatize the classes of trees and finite
trees. These axiomatizations showed that FOD∗ is neither compact nor does
it have the Löwenheim-Skolem-Upward property. Furthermore although tree
walking automata look like they might serve as an automaton model for FO∗,
it turns out that FO∗ is more powerful than TWA.

A word about complexity issues may be in place. FOD∗ and FO∗ have quite
a good data complexity. By translating FO∗ formulae into MSO formulae and
using the equivalence between MSO and tree automata one can see that FO∗

has a linear time data complexity. And since FO∗ is a sub-logic of FO(TC), it
also has NLOGSPACE data complexity whereas FOD∗ has LOGSPACE data
complexity. A straight-forward implementation of transitive closure yields a
PTIME query complexity. It is unclear to the author whether this result can
be improved upon.

The main open question is of course whether FO∗ is strictly less powerful
than MSO. It is also interesting to study the relationship ofFO∗ to modal lan-
guages for trees like PDLTree (Kracht, 1995). Marx (2004) basically showed
that PDLTree is at most as powerful as FO∗3, where FO∗3 is the restriction of
FO∗ where every formula has at most 3 different variables. ten Cate (2006)
recently showed that queries in XPath with Kleene star and loop predicate
have the same expressive power as FO∗

3.
One may also ask what happens if we introduce the transitive closure

of arbitrary relations, not just binary ones. This logic (abbreviated FO(TC))
was introduced by Immerman (see Immerman, 1999) to logically describe

116 / S K

the complexity class NLOGSPACE. Tiede and Kepser (2006) have recently
shown that FO(TC) is more expressive than MSO over trees. Thestatement
remains true even if one only considersdeterministictransitive closures.

Acknowledgments

The author wishes to thank four anonymous referees whose comments helped
improving the quality of the paper. This research was fundedby a grant of the
German Research Foundation (DFG SFB-441).

Stephan Kepser
Collaborative Research Centre 441
University of Tübingen
Germany

References
Aho, Alfred V. and Jeffrey D. Ullman. 1971. Translations on a context-free grammar.

Information and Control19:439–475.

Backofen, Rolf, James Rogers, and Krishnamurti Vijay-Shanker. 1995. A first-order
axiomatization of the theory of finite trees.Journal of Logic, Language, and Infor-
mation4:5–39.

Bojanczyk, Mikolaj and Thomas Colcombet. 2005. Tree-walking automata do not
recognize all regular languages. In H. N. Gabow and R. Fagin,eds.,The 37th ACM
Symposium on Theory of Computing (STOC 2005), pages 234–243. ACM.

Bojanczyk, Mikołaj, Mathias Samuelides, Thomas Schwentick, and Luc Segoufin.
2006. Expressive power of pebble automata. In M. Bugliesi, B. Preneel, V. Sassone,
and I. Wegener, eds.,Automata, Languages and Programming, ICALP 2006, LNCS
4051, pages 157–168. Springer.

Courcelle, Bruno. 1990. Graph rewriting: An algebraic and logic approach. In J. van
Leeuwen, ed.,Handbook of Theoretical Computer Science, vol. B, chap. 5, pages
193–242. Elsevier.

Engelfriet, Joost and Hendrik Jan Hoogeboom. 2006. Nested pebbles and transitive
closure. In B. Durand and W. Thomas, eds.,STACS 2006, vol. LNCS 3884, pages
477–488. Springer.

Etessami, Kousha and Neil Immerman. 1995. Reachability andthe power of local
ordering.Theoretical Computer Science148(2):261–279.

Fagin, Ronald. 1975. Monadic generalized spectra.Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik21:89–96.

R / 117

Immerman, Neil. 1999.Descriptive Complexity. Springer.

Kracht, Marcus. 1995. Syntactic codes and grammar refinement. Journal of Logic,
Language, and Information4(1):41–60.

Marx, Maarten. 2004. XPath with conditional axis relations. In E. Bertino,
S. Christodoulakis, D. Plexousakis, V. Christophides, M. Koubarakis, K. Böhm,
and E. Ferrari, eds.,Advances in Database Technology – EDBT 2004, vol. LNCS
2992, pages 477–494. Springer.

Moschovakis, Yiannis. 1974.Elementary Induction on Abstract Structures. North-
Holland Publishing Company.

Neven, Frank and Thomas Schwentick. 2003. On the power of tree-walking automata.
Information and Computation183(1):86–103.

Rogers, James. 1998.A Descriptive Approach to Language-Theoretic Complexity.
CSLI Publications.

ten Cate, Balder. 2006. Expressivity of XPath with transitive closure. In J. van den
Bussche, ed.,Proceedings of PODS 2006, pages 328–337.

Tiede, Hans-Jörg and Stephan Kepser. 2006. Monadic second-order logic over trees
and transitive closure logics. In G. Mints, ed.,3th Workshop on Logic, Language,
Information, and Computation.

9

Pregroups with modalities
A K-M

Abstract
In this paper we concentrate mainly on the notion ofβ-pregroups, which are pregroups

(first introduced by Lambek Lambek (1999) in 1999) enriched with modality operators.
β-pregroups were first proposed by Fadda Fadda (2002) in 2001.The motivation to in-
troduce them was to (locally) limit the associativity in thecalculus considered. In this
paper we present this new calculus in the form of a rewriting system, and prove the very
important feature of this system: that in a given derivationthe non-expanding rules must
always precede non-contracting ones in order for the derivation to be minimal (normal-
ization theorem). We also propose a sequent system for this calculus and prove the cut
elimination theorem for it.

Keywords P, β-,  ,  

9.1 Introduction
Definition 2 A pregroup is a structure (G,≤, ·, l, r, 1) such that (G,≤, ·, 1) is
a partially ordered monoid, andl, r are unary operations onG, fulfilling the
following conditions:

ala ≤ 1 ≤ aal and aar ≤ 1 ≤ ara (9.1)

for all a ∈ G. Elemental (ar respectively) is called the left (right) adjoint of
a.

The notion of a pregroup, introduced by Lambek Lambek (1999), is con-
nected to the notion of a residuated monoid, known from the theory of par-
tially ordered algebraic systems.

Theorem 18 (Lambek (1999))In each pregroup the following equalities
and inequalities are valid:

1l = 1r = 1, alr = a = arl , (9.2)

119

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

120 / A K-M

(ab)l = blal , (ab)r = brar , (9.3)

a ≤ b iff bl ≤ al iff br ≤ ar . (9.4)

For any arbitrary elementa of a pregroup we define an elementa(n), for
n ∈ Z, in a following way:a0 = a, a(n+1) = (a(n))r , a(n−1) = (a(n))l . As a
consequence of (2) and (9.4) we obtain:

a(n)a(n+1) ≤ 1 ≤ a(n+1)a(n) (9.5)

i f a ≤ b then a(2n) ≤ b(2n) and b(2n+1) ≤ a(2n+1) (9.6)

for all n ∈ Z.
Let (P,≤) be a poset. Elements of the setP are treated as constants.Terms

are expressions of the formp(n), for p ∈ P, n ∈ Z; p(0) is equalp. Typesare
finite strings of terms, denoted byX,Y,Z,V,U etc. The basic rewriting rules
are as follows:

. (CON) - contraction:
X, p(n), p(n+1),Y→ X,Y;. (EXP) - expansion:
X,Y→ X, p(n+1), p(n),Y;. (IND) - induced step:
X, p(2n),Y→ X, q(2n),Y,
X, q(2n+1),Y→ X, p(2n+1),Y, for p ≤ q w (P,≤).

Furthermore, we consider derivationsX ⇒ Y in F(P) (free pregroup gener-
ated by (P,≤)). Following Lambek (2001), we distinguish two special cases:

. (GCON) - generalized contraction:
X, p(2n), q(2n+1),Y→ X,Y;
X, q(2n−1), p(2n),Y→ X,Y; wherep ≤ q in (P,≤).. (GEXP) - generalized expansion:
X,Y→ X, p(2n+1), q(2n),Y;
X,Y→ X, q(2n), p(2n−1),Y; wherep ≤ q in (P,≤).

The relation⇒ is a reflexive and transitive closure of the relation→.

Theorem 19 (Lambek switching lemma, Lambek (1999))If X ⇒ Y is in
F(P), then there exist types U, V such that we can go from type X to U (X⇒
U) using only generalized contractions, from type U to V (U⇒ V) using
only induced steps, and from type V to Y (V⇒ Y) using only generalized
expansions.

From the above mentioned lemma we obtain:

Corollary 20 (Buszkowski (2003)) If X ⇒ Y in F(P), and Y is a simple type
or an empty string, then X can be transformed into Y only by means of(CON)

P   / 121

and(IND). If X⇒ Y in F(P), and X is a simple type or an empty string, then
X can be transformed into Y only by means of(EXP) and(IND).

9.2 Pregroups with modalities

In this section we generalize some definitions and results concerning pre-
groups introduced in Lambek (1999). The definition of a pregroup with β-
operator was proposed by Fadda (2002). The motivation to introduce modal-
ity operators stems from the fact there was a need to (locally) limit associa-
tivity in the calculus considered.

Definition 3 A pregroup withβ-operator is a pregroupG enriched addition-
ally with a monotone mappingβ : G→ G.

Definition 4 A β-pregroup is a pregroup withβ-operator such thatβ-operator
has the right adjoint̂β (β̂-operator), i.e., there exists a monotone mapping
β̂ : P→ P with the property that for alla andb in P, β(a) ≤ b if and only if
a ≤ β̂(b).

It is easy to show that̂β-operators, if they exist, are uniquely defined and con-
nected toβ-operators with the following rules of expansion and contraction,
for all a ∈ P.

a ≤ β̂(β(a)) and β(β̂(a)) ≤ a. (9.7)

The basic rewriting rules are as follows:

1. Contracting rules.(CON) - contraction:
X, p(n), p(n+1),Y→ X,Y;.(B−CON) - B-contraction:
X, [B(Y)](n), [B(Y)](n+1),Z→ X,Z; whereB ∈ {β, β̂}..(β −CON) - β-contraction:
X, [β(β̂(Y))](2n),Z→ X,Y(2n),Z;
X, [β̂(β(Y))](2n+1),Z→ X,Y(2n+1),Z;.(B− INDc) - Bc induced step:
X, [B(Y1)](2n),Z→ X, [B(Y2)](2n),Z;
whereB ∈ {β, β̂}, andY1→ Y2 is a contracting rule.
X, [B(Y2)](2n+1),Z→ X, [B(Y1)](2n+1),Z;
whereB ∈ {β, β̂}, aY1→ Y2 is an expanding rule.

2. Expanding rules.(EXP) - expansion:
X,Y→ X, p(n+1), p(n),Y;.(B− EXP) - B-expansion:
X,Z→ X, [B(Y)](n+1), [B(Y)](n),Z; whereB ∈ {β, β̂}.

122 / A K-M

.(β − EXP) - β - expansion:
X,Y(2n),Z→ X, [β̂(β(Y))](2n),Z;
X,Y(2n+1),Z→ X, [β(β̂(Y))](2n+1),Z..(B− INDe) - Be induced step:
X, [B(Y1)](2n),Z→ X, [B(Y2)](2n),Z;
whereB ∈ {β, β̂}, aY1→ Y2 is an expanding rule.
X, [B(Y2)](2n+1),Z→ X, [B(Y1)](2n+1),Z;
whereB ∈ {β, β̂}, aY1→ Y2 is a contracting rule.

3. P-rules (neither expanding nor contracting).(IND) - induced step:
X, p(2n),Y→ X, q(2n),Y,
X, q(2n+1),Y→ X, p(2n+1),Y, for p ≤ q w (P,≤)..(B− INDp) - Bp induced step:
X, [B(Y1)](2n),Z→ X, [B(Y2)](2n),Z;
whereB ∈ {β, β̂}, andY1→ Y2 is a P-rule.
X, [B(Y2)](2n+1),Z→ X, [B(Y1)](2n+1),Z;
whereB ∈ {β, β̂}, andY1→ Y2 is a P-rule.

In the above mentioned rules we assume thatp, q are elements ofP, whereas
X,Y,Z,Y1,Y2 are elements ofP′. The relation⇒ is a reflexive and transitive
closure of the relation→.

Fadda (2002) gives some examples illustrating the usage ofβ - pre-
groups for natural language. Among others, he shows that assigning a type
[β(X)]rX[β(X)] l to the conjunctionand (whereX is an arbitrary type), will let
us see the structure of a sentence more clearly.

Consider the sentence:John and Mary left.Applying the calculus of pre-
groups without modalities we can show that the string of types assigned to
given words can be reduced to the type of a sentence. However,the order of
consecutive contraction is important here (npmeans a noun phrase):

(*) John and Mary left.
np npr np npl np npr s →

np npl np npr s →

np npr s → s
(**) John and Mary left.

np npr np npl np npr s →

np npl np npr s →

np npl s 9 s
In the second case (**) we do not get a types. Applying the calculus of

β-pregroups, we could handle the above mentioned sentence inthe following
way:

(**) John and Mary left.
β(np) [β(np)]rnp [β(np)] l β(np) npr s → s

P   / 123

In that case the structure of types ’induces’ the order of contractions.

Normalization theorem for β - pregroups

Further we consider derivations of a typeX⇒ Y.

Definition 5 A derivation is called non-expanding, if there are no expanding
rules present.

Definition 6 A derivation is called non-contracting, if there are no contract-
ing rules present.

Definition 7 Composition of derivationsd1(X ⇒ U) andd2(U ⇒ Y) is a
derivationY from X, which transforms firstX into U according tod1, and
thenU into Y according tod2.

Definition 8 A derivationd(X ⇒ Y) is called normal, if it is a composition
of some non-expanding derivationd1(X ⇒ U) and some non-contracting
derivationd2(U ⇒ Y).

On elements ofP′ we introduce a measure in the following way:

µ(ε) = 0,
µ(p(n)) = 1,
µ(B(Y)) = µ(Y) + 1, for B ∈ {β, β̂}
µ(Y1, ...,Yk) = µ(Y1) + ... + µ(Yk).

A measure on the rewriting rules is defined as follows:

µ(CON) = 2,
µ(EXP) = 2,
µ(β −CON) = 2,
µ(β − EXP) = 2,
µ(B−CON) = 2+ 2µ(Y),
µ(B− EXP) = 2+ 2µ(Y),
µ(IND) = 1,
µ(Bc − IND) = 1+ µ(d(Y1→ Y2)),
µ(Be− IND) = 1+ µ(d(Y1→ Y2)),
µ(Bp − IND) = 1+ µ(d(Y1→ Y2)),
µ(d(X0⇒ Xk)) = µ(d(X0→ X1)) + ... + µ(d(Xk−1→ Xk)),
whereX0⇒ Xk meansX0→ X1→ ...→ Xk.

Definition 9 A derivationd(X⇒ Y) is called minimal, if it has the least pos-
sible measure of all derivationsY from X, and the least possible complexity
(which is understood as a sum of measures of all rules used in the derivation).

Definition 10 The position of a given rule in the derivationX0 → X1 →

...→ Xn is numberi, such thatXi−1 → Xi is the occurrence of this rule in the
derivation.

124 / A K-M

Definition 11 A degree of non-normal derivationd(X ⇒ Y) is the minimal
position of a contracting rule which occurs (not necessarily directly) after an
expanding rule. A degree of normal derivation is number 0.

Theorem 21 (Normalization theorem forβ-pregroups) Every minimal deri-
vation is normal.

Proof. Let X0 → X1→ ...→ Xn be a minimal derivation. Leti be a degree of
this derivation. We will show thati = 0, and as a consequence our derivation
is normal. Assume thati > 0. Of course 1< i ≤ n from the definition of a
degree. Letj be the greatest number less thani, such thatX j−1 → X j is the
occurrence of an expanding rule.
Let R1 denote the rule used on the positionj, andR2 the rule used in the
positioni. The following cases are to be considered:

1.1. R1 = (EXP) R2 = (CON),
1.2. R1 = (EXP) R2 = (B−CON),
1.3. R1 = (EXP) R2 = (β −CON),
1.4. R1 = (EXP) R2 = (B− INDc),
2.1. R1 = (B− EXP) R2 = (CON),
2.2. R1 = (B− EXP) R2 = (B−CON),
2.3. R1 = (B− EXP) R2 = (β −CON),
2.4. R1 = (B− EXP) R2 = (B− INDc),
3.1. R1 = (β − EXP) R2 = (CON),
3.2. R1 = (β − EXP) R2 = (B−CON),
3.3. R1 = (β − EXP) R2 = (β −CON),
3.4. R1 = (β − EXP) R2 = (B− INDc),
4.1. R1 = (B− INDe) R2 = (CON),
4.2. R1 = (B− INDe) R2 = (B−CON),
4.3. R1 = (B− INDe) R2 = (β −CON),
4.4. R1 = (B− INDe) R2 = (B− INDc),

In the proof of this theorem the above mentioned cases are considered.
In all cases we assume that the ruleR1 occurs on the positionj, and the
rule R2 on the positioni. All steps X j → X j+1 → ... → Xi−1 consist of
application of non-expanding and non-contracting rules. These must be of the
form of either (IND) or (Bp− IND). None of this steps cannot be independent
from Xi−1 → Xi , as otherwise we could do the last of independent steps after
R2, getting the derivation with the same measure but the lower degree. We
can also assume that none of this steps is not independent from X j−1 → X j ;
otherwise it would transform our derivation performing thefirst step before
R1, increasing the numberj, and changing neitheri norµ(d(X⇒ Y)).

If the rulesR1 and R2 are adjacent (without intermediate P-rules), we
change the order in case they are independent from each other(getting the
derivation of smaller complexity); in case they are dependent from each other

P   / 125

we show that this part of derivation can be transformed usingrules of smaller
complexity - thus showing that the initial derivation was not normal.

Considering the sixteen cases mentioned above, we show thatnon-
expanding rules must always precede non-contracting ones.Otherwise our
derivation would not be minimal, which would be a contradiction to our as-
sumption. Thus every minimal derivation must be normal.

As the proof is long and technical, we show as an example only one of
above mentioned sixteen cases:

Case 1.1. R1 = (EXP) R2 = (CON),
X j−1 → X j is of the formS,T → S, p(n+1), p(n),T; Xi−1 → Xi is of the form
U, q(n), q(n+1),V → U,V. The derivationX j−1 → X j → ...→ Xi−1 → Xi could
be as follows:

S, p(2n)
0 ,T → S, p(2n)

0 , p(2n+1)
k , p(2n)

k ,T → S, p(2n)
0 , p(2n+1)

k−1 , p(2n)
k ,T → ...

→ S, p(2n)
0 , p(2n+1)

0 , p(2n)
k ,T → S, p(2n)

k ,T, (assumingp0 ≤ p1 ≤ ... ≤ pk), its
measure isµ(d(X j−1⇒ Xi)) = 2+ k+ 2 = k+ 4.

The above mentioned derivation can be changed by the derivation:
S, p(2n)

0 ,T → S, p(2n)
1 ,T → ...S, p(2n)

k−1,T → S, p(2n)
k ,T, (assumingp0 ≤

p1 ≤ ... ≤ pk). The measure of a new derivation isµ(d(X j−1 ⇒ Xi)) = k (k
times the rule (IND) was used). We reach a contradiction, as the measure of
the second derivation is smaller. We showed that the initialderivation was not
normal. ⊔⊓

Corollary 22 If X ⇒ Y in a freeβ-pregroup, and Y is a simple type or an
empty string, then Y can be derived from X only by means of non-expanding
rules.

If X ⇒ Y in a freeβ-pregroup, and X is a simple type or an empty string,
then Y can be derived from X only by means of non-contracting rules.

9.3 Axiom system for pregroups with modalities
The rewriting system given in the previous section can also be presented as
the calculus of sequents in a Gentzen style. Let (P,≤) be fixed. Atoms and
types are defined as before.Sequentsare of the formX ⇒ Y, whereX,Y are
types. The axiom and inference rules are as follows:

(Id) X⇒ X,

(LA) X,Y⇒ Z
X, p(n), p(n+1),Y⇒ Z

(RA) X⇒ Y,Z
X⇒ Y, p(n+1), p(n),Z

(LIND) X, q(2n),Y⇒ Z
X, p(2n),Y⇒ Z

(RIND) X⇒ Y, p(2n),Z
X⇒ Y, q(2n),Z

X, p(2n+1),Y⇒ Z
X, q(2n+1),Y⇒ Z

X⇒ Y, q(2n+1),Z
X⇒ Y, p(2n+1),Z

In rules (LIND) and (RIND) we assume thatp ≤ q in P. X,Y,Z are any

126 / A K-M

arbitrary types,p, q are arbitrary elements ofP, for n ∈ Z.

(BLA) X,T ⇒ Z
X, [B(Y)](n), [B(Y)](n+1),T ⇒ Z

(BRA) X⇒ T,Z
X⇒ T, [B(Y)](n+1), [B(Y)](n),Z

(β LA) X,Y(2n),T ⇒ Z
X, [β(β̂(Y))](2n),T ⇒ Z

(β RA) X⇒ T,Y(2n),Z
X⇒ T, [β̂(β(Y))](2n),Z

X,Y(2n+1),T ⇒ Z
X, [β̂(β(Y))](2n+1),T ⇒ Z

X⇒ T,Y(2n+1),Z
X⇒ T, [β(β̂(Y))](2n+1),Z

(BLIND) X, [B(Y2)]
(2n),Z⇒ T

X, [B(Y1)]
(2n),Z⇒ T

(BRIND) X⇒ T, [B(Y1)]
(2n),Z

X⇒ T, [B(Y2)]
(2n),Z

X, [B(Y1)]
(2n+1),Z⇒ T

X, [B(Y2)]
(2n+1),Z⇒ T

X⇒ T, [B(Y2)]
(2n+1),Z

X⇒ T, [B(Y1)]
(2n+1),Z

In rules (BLA), (BRA), (BLIND) and (BRIND),B ∈ {β, β̂}. Addition-
ally, in rules (BLIND) we assume thatY1 → Y2 arises as a result of a non-
expanding rule in an even case, and a non-contracting rules in an odd case, in
a rewriting system from a former section. In rules (BRIND) weassume that
Y1 → Y2 arises as a result of non-contracting rule in an even case, and non-
expanding rule in an odd case, in a rewriting system form a former section.

The cut rule is of the form
(CUT) X⇒ Y, Y⇒ Z

X⇒ Z .
Let MS denote the system axiomatized by (Id), (LA), (RA), (LIND),

(RIND), (BLA), (BRA), (β - LA), (β - RA), (BLIND) and (BRIND). LetMS′

denote the systemMS enriched additionally with a cut rule (CUT).

9.3.1 Cut elimination for the systems with modalities

We show that for above mentioned systems the following theorems hold:

Theorem 23 For all types X,Y, X ⇒ Y holds in the sense of a rewriting
system if and only if X⇒ Y is provable in MS′.

Proof. AssumeX⇒ Y holds in the sense of the rewriting system.Then, there
exist typesZ0, ...,Zn, n ≥ 0, such thatZ0 = X, Zn = Y, andZi−1 → Zi ,
1 ≤ i ≤ n. We show thatZi−1 ⇒ Zi is provable in MS’, for 1≤ i ≤ n. (Here
we show it only for a few chosen cases.)

1. If Zi−1→ Zi is the case of (CON), so it is of the formX, p(n), p(n+1),Y→

X,Y, we apply (LA) to axiomX,Y⇒ X,Y. We get X,Y⇒ X,Y
X, p(n), p(n+1),Y⇒ X,Y

.

7. If Zi−1→ Zi is the case of (IND), so it is of the form:
7.1.X, p(2n),Y→ X, q(2n),Y,for p ≤ q, we apply (LIND) to axiom

X, q(2n),Y ⇒ X, q(2n),Y. We get X, q(2n),Y⇒ X, q(2n),Y
X, p(2n),Y⇒ X, q(2n),Y

. We can also apply

(RIND) to axiomX, p(2n),Y⇒ X, p(2n),Y. We obtainX, p(2n),Y⇒ X, p(2n),Y
X, p(2n),Y⇒ X, q(2n),Y

.

P   / 127

7.2. X, q(2n+1),Y → X, p(2n+1),Y, for p ≤ q,we apply (LIND) to axiom

X, p(2n+1),Y ⇒ X, p(2n+1),Y. We get: X, p(2n+1),Y⇒ X, p(2n+1),Y
X, q(2n+1),Y⇒ X, p(2n+1),Y

. We can

also apply (RIND) to the axiomX, q(2n+1),Y ⇒ X, q(2n+1),Y. We get then:
X, q(2n+1),Y⇒ X, q(2n+1),Y
X, q(2n+1),Y⇒ X, p(2n+1),Y

.

So, ifn = 0, thenX⇒ Y is an axiom (Id), ifn > 0, thenX⇒ Y is provable
in MS’, using cut rule (CUT).

Assume thatX ⇒ Y is provable MS. We show thatX ⇒ Y holds in the
sense of the rewriting system.

If X ⇒ Y jest (Id), then the claim is true. For inference rules we show,
that if the premise (premises) holds (hold) in the rewritingsystem, then the
conclusion holds in this system. (Again, only a few chosen cases.)

1. For (LA), the antecedent of the conclusion can be transformed into the
antecedent of the premise by (CON).

7. For (βLA)the antecedent of the conclusion can be transformed intothe
antecedent of the premise by (β-CON).

11. For (CUT),if the premises hold in the rewriting system, then the con-
clusion also holds in this system, since⇒ is transitive. ⊔⊓

Theorem 24 (Cut elimination theorem) For all types X,Y, X⇒ Y is prov-
able in MS if and only if X⇒ Y is provable in MS’.

Proof. The ’only if’ part is obvious. If for all typesX,Y, X ⇒ Y is provable
in MS (without CUT), it is also provable in MS’.

Assume thatX⇒ Y is provable in MS’. By the theorem 23,X⇒ Y holds
in the rewriting system. From the theorem 21 there exists such typeU, that
X⇒ U holds only by using non-expanding rules, whereasU ⇒ Y holds only
by using non-contracting rules. Thus, there exist typesZ0, ...,Zm, (m ≥ 0),
such thatZ0 = X, Zm = U and for all 1 ≤ i ≤ m, Zi−1 → Zi is a result
of non-expanding rules. We show thatZi ⇒ U is provable in MS, for all
0 ≤ i ≤ m. Zm⇒ U is an axiom (Id). Assume thatZi ⇒ U is provable in MS,
i > 0. If Zi−1 → Zi is (CON), thenZi−1 ⇒ U is a result of applying (LA) to
Zi ⇒ U. If Zi−1 → Zi is (B− CON), thenZi−1 ⇒ U is a result of applying
(BLA) to Zi ⇒ U. If Zi−1 → Zi is (β − CON), thenZi−1 ⇒ U is a result of
applying (βLA) to Zi ⇒ U. If Zi−1 → Zi is (IND), thenZi−1 ⇒ U is a result
of application (LIND) toZi ⇒ U. If Zi−1 → Zi is (B− INDc), thenZi−1⇒ U
is a result of applying (BLIND) toZi ⇒ U. If Zi−1 → Zi is (B− INDp), then
Zi−1 ⇒ U is a result of applying (BLIND) toZi ⇒ U.

Now, there exist typesV0, ...,Vn, n ≥ 0, such thatV0 = U, Vn = Y, an for
all 1 ≤ i ≤ n, Vi−1 → Vi is a result of applying a non-contracting rule. We
show thatX ⇒ Vi is provable in MS, for all 0≤ i ≤ n. X ⇒ V0 is provable
in MS from the first part of the proof. Assume thatX ⇒ Vi−1 is provable in

128 / A K-M

MS, 1 ≤ i. If Vi−1 → Vi is (EXP), thenX ⇒ Vi is a result of applying (RA)
to X ⇒ Vi−1. If Vi−1 → Vi is (B− EXP), thenX ⇒ Vi is a result of applying
(BRA) to X ⇒ Vi−1. If Vi−1 → Vi is (β − EXP), thenX ⇒ Vi is a result of
applying (βRA) to X ⇒ Vi−1. If Vi−1 → Vi is (IND), thenX ⇒ Vi is a result
of applying (RIND) doX⇒ Vi−1. If Vi−1→ Vi is (B− INDe), thenX⇒ Vi is
a result of applying (BRIND) toX⇒ Vi−1. If Vi−1 → Vi is (B− INDp), then
X⇒ Vi is a result of applying (BRIND) toX⇒ Vi−1.

Thus, we showed thatX⇒ Y is provable in MS. ⊔⊓

9.4 Conclusion
In this paper we presented pregroups with modalities. First, we presented
them in the form of a rewriting system, then we proposed the sequent system
for them and finally showed the connections between those twopresentations.
Using those connections we were able to prove the cut elimination theorem.

References
Buszkowski, Wojciech. 2003. Sequent systems for compact bilinear logic.Mathemat-

ical Logic Quarterly49:467–474.

Fadda, Mario. 2002. Towards flexible pregroup grammars. InNew Perspectives in
Logic and Formal Linguistics, pages 95–112. Roma: Bulzoni Editore.

Lambek, Joachim. 1999. Type grammars revisited. InLogical Aspects of Computa-
tional Linguistics, pages 1–27. Berlin: LNAI 1582, Springer.

Lambek, Joachim. 2001. Type grammars as pregroups.Grammars4:21–39.

10

Simpler TAG semantics through
synchronization
R N  S S

Abstract
In recent years Laura Kallmeyer, Maribel Romero, and their collaborators have led

research on TAG semantics through a series of papers refininga system of TAG seman-
tics computation. Kallmeyer and Romero bring together the lessons of these attempts
with a set of desirable properties that such a system should have. First, computation of
the semantics of a sentence should rely only on the relationships expressed in the TAG
derivation tree. Second, the generated semantics should compactly represent all valid in-
terpretations of the input sentence, in particular with respect to quantifier scope. Third,
the formalism should not, if possible, increase the expressivity of the TAG formalism.
We revive the proposal of using synchronous TAG (STAG) to simultaneously generate
syntactic and semantic representations for an input sentence. Although STAG meets the
three requirements above, no serious attempt had previously been made to determine
whether it can model the semantic constructions that have proved difficult for other ap-
proaches. In this paper we begin exploration of this question by proposing STAG analy-
ses of many of the hard cases that have spurred the research inthis area. We reframe the
TAG semantics problem in the context of the STAG formalism and in the process present
a simple, intuitive base for further exploration of TAG semantics. We provide analyses
that demonstrate how STAG can handle quantifier scope, long-distance WH-movement,
interaction of raising verbs and adverbs, attitude verbs and quantifiers, relative clauses,
and quantifiers within prepositional phrases.

Keywords S T- , STAG

10.1 Introduction

In recent years Laura Kallmeyer, Maribel Romero, and their collaborators
have led research on TAG semantics through a series of papersrefining a
system of TAG semantics computation using evolving techniques including
enriched derivation tree structure (Kallmeyer, 2002a,b),flexible composition

129

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

130 / R N  S S

of feature-based TAG with a semantic representation associated with each
elementary tree (Kallmeyer and Joshi, 2003, Joshi et al., 2003, Kallmeyer,
2003), semantic features in a more expressive extension of feature-based TAG
(Gardent and Kallmeyer, 2003), and, most recently, semantic features on the
derivation tree itself (Kallmeyer and Romero, 2004, Romeroet al., 2004).
Kallmeyer and Romero (2004) bring together the lessons of these attempts
with a set of desirable properties that such a system should have. First, com-
putation of the semantics of a sentence should rely only on the relationships
expressed in the TAG derivation tree. Because TAG elementary trees rep-
resent minimal semantic units, the only information necessary for semantic
computation should be the information encoded in the derivation tree: which
elementary trees have combined and the address at which the combining op-
eration took place. Second, the generated semantics shouldcompactly repre-
sent all valid interpretations of the input sentence, in particular with respect
to quantifier scope. Third, the formalism should not, if possible, increase the
expressivity of the TAG formalism.

We revive the proposal of using synchronous TAG (STAG) to simultane-
ously generate syntactic and semantic representations foran input sentence
(Shieber and Schabes, 1990). Although STAG meets the three requirements
above, no serious attempt had previously been made to determine whether
it can model the semantic constructions that have proved difficult for other
approaches. In this paper we begin exploration of this question by proposing
STAG analyses of many of the hard cases that have spurred the research in
this area. We reframe the TAG semantics problem in the context of the STAG
formalism and in the process present a simple, intuitive base for further ex-
ploration of TAG semantics.

After reviewing STAG in Section 10.2, we provide analyses inSections
10.3.1 through 10.3.4 for sentences that exemplify severalhard cases for
TAG semantics that have been raised by Kallmeyer and others in recent pa-
pers: quantifier scope (as exemplified by sentences (17) and (21), presented
below along with the desired semantic interpretations), long-distance WH-
movement (18), interaction of raising verbs and adverbs, attitude verbs and
quantifiers (19,20,21), relative clauses (22), and quantifiers within preposi-
tional phrases (23) (Kallmeyer and Romero, 2004, Romero et al., 2004, Joshi
et al., 2003, Kallmeyer, 2003, Kallmeyer and Joshi, 2003).1

(17) Everyone likes someone.
every(x, person(x), some(z, person(z), like(x, z)))
some(z, person(z), every(x, person(x), like(x, z)))

(18) Who does Bill think Paul said John likes?
who(y, think(bill , say(paul, like(john, y))))

1We notate curried two-place relationsP(x)(y) asP(y, x) for readability.

S TAG    / 131

(19) Bill thinks John apparently likes Mary.
think(bill , apparently(like(john,mary)))

(20) John sometimes likes everyone.
every(x, person(x), sometimes(like(john, x)))
sometimes(every(x, person(x), like(john, x)))

(21) Bill thinks everyone likes someone.
think(bill , every(x, person(x), some(z, person(z), likes(x, z))))
think(bill , some(z, person(z), every(x, person(x), likes(x, z))))

(22) A problem whose solution is difficult stumped Bill.
a(x, and(problem(x),

the(y, and(solution(y), poss(x, y)), isDifficult(y))),
stumped(bill , x))

(23) Two politicians spy on someone from every city.
two(x, politician(x),

every(z, city(z),
some(y, person(y)∧ f rom(z, y),
spyOn(x, y))))

every(z, city(z),
some(y, person(y) ∧ f rom(z, y),

two(x, politcian(x), spyOn(x, y))))
two(x, politician(x),

some(y, every(z, city(z), person(y) ∧ f rom(z, y))
spyOn(x, y)))

some(y, every(z, city(z), person(y) ∧ f rom(z, y))
two(x, politician(x), spyOn(x, y)))

10.2 Introduction to Synchronous TAG
A tree-adjoining grammar (TAG) consists of a set of elementary tree struc-

tures and two operations, substitution and adjunction, used to combine these
structures. The elementary trees can be of arbitrary depth.Each internal node
is labeled with a nonterminal symbol. Frontier nodes may be labeled with ei-
ther terminal symbols or nonterminal symbols and one of the diacritics↓ or
∗. Use of the diacritic↓ on a frontier node indicates that it is asubstitution
node. Thesubstitutionoperation occurs when an elementary tree rooted in the
nonterminal symbolA is substituted for a substitution node labeled with the
nonterminal symbolA. Auxiliary trees are elementary trees in which the root
and a frontier node, called thefoot nodeand distinguished by the diacritic
∗, are labeled with the same nonterminal. Theadjunctionoperation involves
splicing an auxiliary tree with root and designated foot node labeled with a
nonterminalA at a node in an elementary tree also labeled with nonterminal

132 / R N  S S

S

NP↓
V P

NP↓V

likes

NP

John

S

V P

NP↓V

likes

NP

John

V P

Adv V P∗

S

NP↓
V P

NP↓V

likesapparently

V P

Adv

S

NP↓

V P

NP↓V

likes

apparently

=⇒

=⇒

FIGURE 1 Example TAG substitution and adjuction operations.

mary

john

apparently likes

1 2

3

4

1

23

4

NP

NP

e

e

V P

Adv V P∗

t

t∗

S

NP↓
V P

NP↓
V

t

e↓

e↓

likes

〈t, t〉

apparently

John

Mary

〈e, t〉

likes

john

apparently

mary
2

3 4

V P

V

likes

V P

Adv

apparently

NP

NP

John Mary

S

likes

t

〈e, t〉apparently

t

〈t, t〉

mary

e john

e

(a)

(b) (c)

FIGURE 2 An English syntax/semantics STAG fragment (a), derived tree pair (b), and
derivation tree (c) for the sentence “John apparently likesMary.”

A. Examples of the substitution and adjunction operations onsample elemen-
tary trees are shown in Figure 1.

Synchronous TAG (STAG) extends TAG by taking the elementarystruc-
tures to be pairs of TAG trees with links between particular nodes in those
trees. An STAG is a set of triples,〈tL, tR,⌣〉 wheretL andtR are elementary
TAG trees and⌣ is a linking relation between nodes intL and nodes intR
(Shieber, 1994, Shieber and Schabes, 1990). Derivation proceeds as in TAG
except that all operations must be paired. That is, a tree canonly be substi-

S TAG    / 133

tuted or adjoined at a node if its pair is simultaneously substituted or adjoined
at a linked node. We notate the links by using boxed indicesi marking linked
nodes.

Figure 2 contains a sample English syntax/semantics grammar fragment
that can be used to parse the sentence “John apparently likesMary”. The
node labels we use in the semantics correspond to the semantic types of the
phrases they dominate.2 Variables such asx in the semantic tree in Figure 3
are taken to be bound in the obvious way, so that in multiple uses of the tree
they can be presumed to be renamed apart.

Figure 2(c) shows the derivation tree for the sentence. Substitutions are
notated with a solid line and adjunctions are notated with a dashed line. Note
that each link in the derivation tree specifies a link number in the elementary
tree pair. The links provide the location of the operations in the syntax tree
and in the semantics tree. These operations must occur at linked nodes in the
target elementary tree pair. In this case, the noun phrasesJohnandMary sub-
stitute intolikes at links 3 and 4 respectively. The wordapparentlyadjoins
at link 2 . The resulting semantic representation can be read off the derived
tree by treating the leftmost child of a node as a functor and its siblings as its
arguments. Our sample sentence thus results in the semanticrepresentation
apparently(likes(john,mary)).

10.3 STAG Analyses of the Phenomena
10.3.1 Quantifier Scope and Wh-Words

For sentence (17), we would like to generate a scope-neutralsemantic rep-
resentation that allows both the reading wheresometakes scope overevery
and the reading whereeverytakes scope oversome. We propose a solution
in which a derivation tree with multiple adjunction nondeterministically de-
termines multiple derived trees each manifesting explicitscope (Schabes and
Shieber, 1993); the derivation treeitself is therefore the scope neutral repre-
sentation.

The multi-component quantifier approach followed by Joshi et al. (2003)
suggests a natural implementation of quantifiers in STAG.3 In this approach
the syntactic tree for quantifiers has two parts, one that corresponds to the
scope of the quantifier and attaches at the point where the quantifier takes
scope, and the other that contains the quantifier itself and its restriction and
attaches where syntactically expected at a noun phrase. In their work, a single-

2This representation is for the sake of readability. The labels could be replaced using any
well-chosen finite set of nonterminal symbols.

3The multi-component approach to quantifiers in STAG was firstsuggested by Shieber and
Schabes (1990) under the rewriting definition of STAG derivation where the order of rewrit-
ing produced the scope ambiguity. Williford (1993) explored the use of multiple adjunction to
achieve scope ambiguity.

134 / R N  S S

NP

Det N↓

tevery x

x

t

t∗

e

x

1
1

every

〈e, t〉↓

NP

Det N↓

t

t

t∗

e1
1

〈e, t〉↓

some

some

y

y

y

1

23

4

S

NP↓
V P

NP↓V

likes

likes

1 2

4

t

e↓

e↓〈e, t〉 3

3 4

personone

〈e, t〉N

NP

Det

every

S

V P

V

likes

NP

Det N

some

N t

person

〈e, t〉

ysome

y

t

ttevery x

x

t

person

〈e, t〉

one one likes

〈e, t〉 e

xe

y

t

person

〈e, t〉

t

tt

t

person

〈e, t〉

likes

〈e, t〉 e

xe

y

every

some

x

y

y

x

likes

every some

personperson

3

1 1

4

(a)

(b)

(c)

FIGURE 3 The elementary tree pairs (a), derivation tree (b), and derived syntactic and
semantic trees (c) for the sentence “Everyone likes someone”. Note that the

derivation tree is a scope neutral representation: depending on whethereveryor some
adjoins higher, different semantic derived trees and scope orderings are obtained.

node auxiliary tree is used for the scope part of the syntax inorder to get the
desired relationship between the quantifier and the quantified expression in
features threaded through the derivation tree and hence in the semantics. Us-
ing STAG, we do not need the single-node auxiliary tree in thesyntax because
we can pair the usual syntactic representation for quantified NPs with a multi-
component semantic representation that expresses the sameidea (Figure 3).
In order to use these quantifiers, we change the links in the elementary trees
for verbs to allow a single link to indicate two positions in the semantics
where a tree pair can adjoin, as shown in Figure 3.4

Given this representation of quantifiers we get the derivation tree shown
in Figure 3 for sentence (17).5 Note that the resulting derivation tree neces-

4We have chosen here to add the three-way links in addition to the existing links in the tree
for unquantified noun phrases such as proper nouns (though wesuppress the two-way NP links
in the figures for readability). Another possibility would be to remove the two-way links. In this
case, all noun phrases would be “lifted” à la Montague. Thatis, even unquantified noun phrases
would have a scope part, which could be a single-node auxiliary tree.

5We notate multi-component insertions that involve both a substitution and an adjunction
with a combination dashed and dotted line.

S TAG    / 135

WH

e

y

who y

t

t∗

who

WH↓

V

NP↓

e↓

e↓

11

V P3
3

NP

ǫ

t 2S

tS
′

2

likes

〈e, t〉

34

4

4

johnwho say

thinkspaul

bill

13

3

25

4

1 2

3

1

23

S

NP↓
V P

V

t

e↓

thinksS∗ t∗

3

think

〈e, t〉

likeswh

likeswh

FIGURE 4 Selection of elementary trees and full derivation tree for the sentence “Who
does Bill think Paul said John likes?”.

sarily incorporatesmultiple adjunction(Schabes and Shieber, 1993), that is,
multiple auxiliary trees are adjoined at the same node in an auxiliary tree. In
particular, the scope parts of botheveryand someattach at the root of the
semantic tree oflikes. Such cases of multiple adjunction induce ambiguity;
the derivation tree represents multiple derived trees. In the case at hand, the
derivation is ambiguous as to which quantifier scopes higherthan the other.
This ambiguity in the derivation tree thus models the set of valid scopings
for the sentence. In essence, this method uses multiple adjunction to model
scope-neutrality.

This same method can be used to obtain the correct scope relations for
sentences with long-distance WH-movement such as sentence(18) using the
multi-component elementary tree pair forwhoand the elementary tree pairs
for thinks(the tree pair forsaysis similar) andlikes in the WH context given
in Figure 4. Kallmeyer and Romero (2004) highlight this caseas difficult be-
cause in the usual syntactic analysis there is no link in the derivation tree
betweenwho and thinksor betweenthinksand likes, but in the desired se-
manticswhotakes scope over thethinksproposition and thelikesproposition
is an argument tothinks.

In our analysis, by contrast, the semantics follows quite naturally from the
standard syntactic analysis of the structure of thelikeselementary tree in the
WH context and the elementary tree pair forthinksgiven in Figure 4. The
derivation of this sentence is also given in Figure 4. Note that it is required by
the structure of the trees thatwho take scope overthinks.

136 / R N  S S

likes

john maryapparentlythinks

bill

3

1

23
4

likes

john

2
3 4

sometimes every

person

1

likes

4

thinks

bill

1

3

3

1

every some

person person

1

(a) (b) (c)
FIGURE 5 Derivation trees for (a) “Bill thinks John apparently likesMary”, (b) “John

sometimes likes everyone”, and (c) “Bill thinks everyone likes someone.”

10.3.2 The Interaction Between Attitude Verbs, Raising Verbs,
Adverbs and Quantifiers

The interaction between attitude verbs and raising verbs oradverbs as in
sentences (19), (20), and (21) has been problematic for TAG semantics
(Kallmeyer and Romero, 2004). A successful analysis must beflexible enough
to produce the correct semantics for sentence (19) even though there is no link
betweenthinksandapparentlyin the derivation tree. It must also be flexible
enough to allow all scope orderings between VP modifiers and quantifiers as
in sentence (20). In fact, given the elementary trees we havealready presented
and the ones for attitude verbs demonstrated by Figure 4, ouranalysis already
allows for scope interactions among all these elements. Indeed, because the
semantic components of attitude verbs, VP modifiers, and quantifiers all ad-
join at the same node in the semantic tree of the verb, our analysis allows all
scope orderings among them. This is clearly too permissive,because it allows
quantifiers to scope out of the finite clause in which they appear and would
allow a reading of sentence (19) in whichapparentlyscopes overthinks. To
prevent quantifiers from scoping out of the finite clause in which they appear,
as in sentences (19) and (21), we can add an additional adjunction site to the
semantic trees for verbs above the current root node. This isshown in Fig-
ure 6 in thelikes2 tree pair. The link configuration ensures that attitude verbs
(adjoining at link 1) will now scope higher than all VP modifiers (adjoining
at 2) and quantifiers (adjoining at links3 and 4). VP modifiers and quantifiers
will still be able to take all scope orderings relative to each other. Using the
modified verb trees, STAG produces the correct semantics forsentences (19),
(20), and (21) with the derivations given in Figure 5.

10.3.3 Relative Clauses

Relative clauses provide another putatively difficult case for TAG seman-
tics because both the main verb and the relative clause need access to the
variable introduced by the determiner as in sentence (22) (Kallmeyer, 2003).
We overcome this difficulty and compute the desired semantics by intro-
ducing higher-order functions into the semantic trees using lambda-calculus
notation. This modification allows us to maintain tree-locality. The syntac-

S TAG    / 137

1

23

4

S

NP↓ V P

NP↓V

likes

1

2

4

t

e↓

e↓〈e, t〉 3

3 4

t

likes2

FIGURE 6 Modified tree forlikesthat enforces a restriction on quantifiers scoping
outside of the finite clause.

1

2

stumped

a bill

problem

who

se

solution

y
z

ǫ

S/NP

S

tNP

Det N↓

a

a t t∗

〈e, t〉↓ y e

y

1

1

1

1

N

〈e, t〉↓N∗ N
′

who N↓

〈e, t〉

〈e, t〉∗and

N

N
′

S/NP↓

se N↓

NP V P

is difficult

〈e, t〉

λ t

〈e, t〉 z

3 4

1

1

1

1 2

N 〈e, t〉

problem/

solution

problem/

solution

1 1

isDifficult

isDifficult

〈e, t〉↓

〈e, t〉

se 〈e, t〉↓ 1 2

FIGURE 7 Key elementary trees and derivation for “A problem whose solution is
difficult stumped Bill.”

tic analysis we use is similar to that of Kallmeyer (2003) in that it main-
tains theCondition on Elementary Tree Minimality(Frank, 1992) and uses
the relative pronoun to introduce the relative clause. However, it treats the
relative pronoun as a noun modifier rather than a noun phrase modifier.
We also posit the existence of “lifted” versions of the elementary trees for
verbs in which their argument positions have been abstracted over. We use a
higher-order conjunctionand that relates two properties:λPQx.P(x) ∧ Q(x),
and a higher-orderse function that relates two properties and makes use
of the higher-order conjunction:λPQx.the(y, and(P, λz.poss(x, z))(y),Q(y)).
The elementary tree pairs and resulting derivation tree forsentence (22)
are given in Figure 7. The derived tree is given in Figure 8. When re-
duced, the resulting semantics isa(z, λx.(problem(x) ∧ the(y, solution(y) ∧
poss(x, y),isDifficult(y))), stumped(bill , z)).

138 / R N  S S

t

〈e, t〉

t

stumped

bill

e

y

t

a t

y e

y〈e, t〉

problem

〈e, t〉

and 〈e, t〉

se

solution

〈e, t〉

z

〈e, t〉

λ t

〈e, t〉 z

isDifficult

FIGURE 8 Derived tree for “A problem whose solution is difficult stumped Bill.”

10.3.4 Nested Quantifiers and Inverse Linking

Quantifiers in prepositional phrases such as in sentence (23) pose another
challenge for TAG semantics (Joshi et al., 2003). Although anested quanti-
fier may take scope over the quantifier within which it is nested (so-called “in-
verse linking”) not all permutations of scope orderings of the quantifiers are
available (Joshi et al., 2003). In particular, readings in which a quantifier in-
tervenes between a nesting quantifier and its nested quantifier are not valid. In
our example sentence (23), this predicts that the readingssome> two> every
andevery> two > someshould not be valid. Joshi et al. (2003) introduce a
special device allowing nesting and nested quantifiers to form an indivisi-
ble quantifier set during the derivation, which prevents other quantifiers from
intervening between them. In our solution, because the nested quantifier is
introduced through the prepositional phrase, which in turnmodifies the noun
phrase containing the nesting quantifier, the two quantifiers already naturally
form a set that operates as a unit with respect to the rest of the derivation.6 The
elementary tree pairs and derivation trees for our analysisof (23) are shown
in Figure 9.

One notable feature of this analysis is that the four different scope read-
ings that result are not the product of a single derivation tree. The alternate
scope orderings for the nested and nesting quantifier exist because there are
two available adjunction sites for the scope of quantifiers in the prepositional

6We make use of tree-set-local TAG in the semantics where the tree set foreveryadjoins into
the tree set forf rom. Although tree-set-local TAG is more powerful than TAG, this particular
use is benign because it cannot be iterated. More concretely, we could conventionally make the
grammar tree-local by including all combinations of prepositions with quantifiers as elementary
trees in the grammar.

S TAG    / 139

2

2
2 3

3

3

1

1

y

tNP

Det N↓ t t∗

〈e, t〉↓

y

e

y

1

1

〈e, t〉

two/

some/

every
two/

some/

every

N

N∗ PP

P NP↓

from

〈e, t〉

〈e, t〉∗and

t∗

〈e, t〉

from e↓

spyOn

two

politicians

some

person from

every

3 4

1 1

1

city

1

1

2 ∨ 3

FIGURE 9 Key elementary trees and derivations for “Two politicians spy on someone
from every city.”

phrase to attach. This results in two distinct derivation trees. The alternate
scope orderings for this quantifier set and the remaining quantifier are ob-
tained by multiple adjunction at the root of the verb tree. The set of valid
derivation trees for a sentence thus constitutes the scope neutral representa-
tion. This set of trees may be compactly represented, for instance as a shared
forest.7

10.4 Comparison to the Kallmeyer and Romero Approach

As mentioned above, research on TAG semantics has been led byLaura
Kallmeyer, Maribel Romero, and their collaborators through a series of pa-
pers refining a system of TAG semantics computation using feature unifica-
tion and other formal devices (Kallmeyer and Romero, 2004, Romero et al.,
2004, Kallmeyer, 2003, Kallmeyer and Joshi, 2003, Joshi et al., 2003, Gar-
dent and Kallmeyer, 2003). Although their approach has evolved over time,
the underlying principles of using the relationships expressed in the derivation
tree as the basis for the computation and generating underspecified semantic
representations have been constant. In its current formulation, they perform
semantic computation by attaching semantic feature structures directly to the
nodes in the derivation tree. When carefully chosen, these features unify to
produce an underspecified representation of the semantics of a sentence that,
when further disambiguated, generates the set of valid interpretations. In one
or another of their recent papers they have provided successful analyses of
each of the hard cases that we have addressed here, though some of their
analyses might have to be restated to bring them up to date with the newest
formulation of their method.

7This analysis, like that of Joshi et al. (2003), makes several predictions about quantifier scope
that might be disputed. First, some argue that more than fourscope orderings should be available
for sentences like sentence (23) (VanLehn, 1978, Hobbs and Shieber, 1987). This analysis cannot
generate additional scope orderings without breaking treeset locality. Second, the scope readings
in which the nesting quantifier takes scope over the nested quantifier result in the nested quantifier
having scope over the restriction of the nesting quantifier but not over its scope. Donkey sentence
constructions such as “Every man with two books loves them” call this prediction into question.

140 / R N  S S

Our work owes much to theirs both for the clear formulation ofthe prob-
lems and the progress in formulating analyses for some of thehard cases.
The primary advantage of our approach is its conceptual simplicity. The clear
separation of syntax and semantics, the directness of the link interface, and
the familiarity of the TAG operations used in our approach make it very sim-
ple. The semantic-feature-unification-basedapproach hasbecome cleaner and
easier to understand as Kallmeyer and others have refined it over the years.
Nonetheless, it is safe to say that the amount of formal machinery—including
propositional labels, separate individual and propositional variables, semantic
representations consisting of a set of formulas and a set of scope constraints,
features on the derived tree and the derivation tree, each semantic feature
structure containing a nested feature structure for each address in the elemen-
tary syntax tree, each of these feature structures containing features to handle
binding of propositional and individual variables, feature unification, flexible
composition, and quantifier sets—necessary to solve the range of problems
that we have addressed here, is qualitatively more complex.In fact, we use
no formal machinery that had not been introduced by 1994 in the TAG litera-
ture.

An additional advantage of our approach is that it does not increase the
expressivity of the TAG formalism. One might think that the inclusion of
multiple adjunction would lead to an increase in expressivity (Dras, 1999).
However, because links can only be used once in an STAG derivation, only
a finite number of multiple adjunctions may occur at a single adjunction
site. This rules out problematic uses of multiple adjunction. Kallmeyer and
Romero maintain the semantic features on the derivation tree rather than in
the feature structures already used in the feature-based TAGs (FTAG) of their
syntax in part because the set of semantic feature structures is not finite, po-
tentially increasing the expressivity of the FTAG formalism (Kallmeyer and
Romero, 2004). Although moving the features to the derivation tree avoids in-
creasing the expressivity of the formalism used for syntax when taken alone,
the additional expressivity in the features of the semantics could be used to
block operations in the syntax thereby filtering the syntax to produce non-
tree-adjoining languages. It remains to be seen whether this additional ex-
pressivity will be required for TAG semantics.

Advantages and disadvantages of the different methods aside, in this still
nascent area of research it is desirable to have several quite different ap-
proaches at our disposal as we explore the hard problems presented by gen-
erating natural language semantics in the TAG framework. Our approach re-
vives an old idea with the aim of opening a new avenue for research into
semantics in the TAG framework.

R / 141

10.5 Conclusion

We have presented the synchronous TAG formalism as a method for comput-
ing semantics in the TAG framework, and have shown that it enables simple,
natural analyses for all of the cases that have exercised recent attempts at for-
mulating formal semantics for TAG. It satisfies each of the desiderata laid out
at the beginning of this paper. First, it does not require anyadditional informa-
tion other than that available in the derivation tree to generate the semantics.
Because the syntax and semantic representations are built up synchronously,
the derivation tree set is a complete specification of the relationship between
them. Nothing other than the set of elementary tree pairs andthe synchronous
TAG operations are required to generate a semantic representation. Second,
the derivation tree set provides a compact representation for all valid seman-
tic interpretations of the given sentence. Using multiply-adjoined quantifiers
we take advantage of the ambiguity in the interpretation of the derivation tree
that is introduced by multiple adjunction. We take each possible ordering of
multiply-adjoined trees to be valid. We leave open the possibility of using an
additional method to prefer certain scope orders and disprefer or eliminate
others. Third, the STAG system, as used, does not increase the expressivity of
the TAG formalism (Shieber, 1994). Finally, our analysis isa straightforward
expression of a simple idea: we use TAG for both syntax and semantics and
use the derivation tree and the links between trees in elementary tree pairs as
the interface between them.

10.6 Acknowledgments

This work was supported in part by grant IIS-0329089 from theNational
Science Foundation. We wish to thank Rani Nelken and the three anonymous
reviewers for valuable comments on earlier drafts.

References
Dras, Mark. 1999. A meta-level grammar: Redefining synchronous TAG for transla-

tion and paraphrase. InProceedings of the Thirty-Seventh Annual Meeting of the
Association for Computational Linguistics, pages 80–87. Maryland, USA.

Frank, Robert. 1992. Syntactic locality and Tree AdjoiningGrammar: Grammatical,
acquisition and processing perspectives. Ph.D. Thesis, University of Pennsylvania.

Gardent, Claire and Laura Kallmeyer. 2003. Semantic construction in feature-based
TAG. In Proceedings of the 10th Meeting of the European Chapter of the Associa-
tion for Computational Linguistics. Budapest, Hungary.

Hobbs, Jerry and Stuart M. Shieber. 1987. An algorithm for generating quantifier
scopings.Computational Linguistics13(1-2):47–63.

142 / R N  S S

Joshi, Aravind K., Laura Kallmeyer, and Maribel Romero. 2003. Flexible composi-
tion in LTAG: Quantifier scope and inverse linking. In I. v. d.S. Harry Bunt and
R. Morante, eds.,Proceedings of the Fifth International Workshop on Computa-
tional Semantics IWCS-5, pages 179–194. Tilburg.

Kallmeyer, Laura. 2002a. Enriching the TAG derivation treefor semantics. In S. Buse-
mann, ed.,KONVENS 2002. 6. Konferenz zur Verarbeitung natürlicher Sprache.,
pages 67–74. Saarbrücken.

Kallmeyer, Laura. 2002b. Using an enriched tag derivation structure as basis for se-
mantics. InProceedings of the Sixth International Workshop on Tree Adjoining
Grammar and Related Frameworks (TAG+6), pages 127–136. Venice.

Kallmeyer, Laura. 2003. LTAG semantics for relative clauses. In I. v. d. S. Harry Bunt
and R. Morante, eds.,Proceedings of the Fifth International Workshop on Compu-
tational Semantics IWCS-5, pages 195–210. Tilburg.

Kallmeyer, Laura and Aravind K. Joshi. 2003. Factoring predicate argument and scope
semantics: Underspecified semantics with LTAG.Research on Language and Com-
putation1:3–58.

Kallmeyer, Laura and Maribel Romero. 2004. LTAG semantics with semantic unifi-
cation. InProceedings of TAG+7, pages 155–162. Vancouver.

Romero, Maribel, Laura Kallmeyer, and Olga Babko-Malaya. 2004. LTAG semantics
for questions. InProceedings of TAG+7, pages 186–193. Vancouver.

Schabes, Yves and Stuart M. Shieber. 1993. An alternative conception of tree-
adjoining derivation.Computational Linguistics20(1):91–124.

Shieber, Stuart M. 1994. Restricting the weak-generative capacity of synchronous
tree-adjoining grammars.Computational Intelligence10(4):371–385.

Shieber, Stuart M. and Yves Schabes. 1990. Synchronous tree-adjoining grammars.
In Proceedings of the 13th International Conference on Computational Linguistics,
vol. 3, pages 253–258. Helsinki.

VanLehn, Kurt. 1978. Determining the scope of English quantifiers. Tech. Rep. 483,
MIT Artificial Intelligence Laboratory, Cambridge, MA.

Williford, Sean. 1993. Application of synchronous tree-adjoining grammar to quanti-
fier scoping phenomena in English. Undergraduate Thesis, Harvard College.

11

Encoding second order string ACG with
deterministic tree walking transducers
S S

Abstract
In this paper we study the class of string languages represented by second order Ab-

stract Categorial Grammar. We prove that this class is the same as the class of output
languages of determistic tree walking automata. Together with the result of de Groote
and Pogodalla (2004) this shows that the higher-order operations involved in the defi-
nition of second order ACGs can always be represented by operations that are at most
fourth order.

Keywords A  ,λ-,   -
 ,    

11.1 Introduction

Abstract Categorial Grammars (ACGs) (de Groote (2001)) arebased on the
linear logic (Girard (1987)) and on the linearλ-calculus. They describe the
surface structures by using for syntax the ideas Montague (1974) devoted to
semantics. ACGs describe parse structures with higher-order linearλ-terms
and syntax as a higher-order linear homomorphism (lexicon)on parse struc-
tures. Intuitively, the higher the order of the parse structures is, the richer
should the languages of analysis be and the higher the order of the lexicons
is, the richer should the class of languages be. On the one hand, de Groote
and Pogodalla (2004) have shown how to encode of several context free for-
malisms by using second order parse structures (i.e.sets of trees). They have
encoded Context Free Grammars using second order lexicons,Linear Con-
text Free Tree Grammars using third order lexicons and Linear Context Free
Rewriting Systems (Weir (1988)) with fourth order lexicons. On the other

143

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

144 / S S

hand Yoshinaka and Kanazawa (2005) have explored the expressivity of lex-
icalized ACGs. They have exhibited a non-semilinear stringlanguage with
third order parse structures and an NP-complete string language with fourth
order parse structures. (Salvati (2005) gave an example of an NP-complete
language with third order parse structures and a first order lexicon).

The present work addresses the problem of the expressivity of ACGs in
a particular case. We show that the class of languages definedby second or-
der string ACGs is the same as the class of languages defined asoutputs of
Deterministic Tree Walking Transducers (DTWT) (Aho and Ullman (1971)).
Together with the results of de Groote and Pogodalla (2004) and Weir (1992),
this result proves that the generative power of second orderstring ACGs is ex-
actly the same as the generative power of Linear Context FreeRewriting Sys-
tems. This furthermore shows that second order string ACGs can always be
described with fourth order lexicons. We may nevertheless conjecture that the
use of lexicons of order greater than four may give more compact grammars.

The paper is organized as follows: we first briefly define the linearλ-
calculus and ACGs in section 11.2. In section 11.3, we use thecorrespon-
dence between proofs of linear logic and linearλ-terms to relate sub-formulae
of a typeα with sub-terms of terms of typeα. Section 11.4 introducesh-
reduction, the reduction used by the DTWTs which encode second order
string ACGs. Section 11.5 presents the encoding of second order string ACGs
with DTWTs. Finally we conclude and outline future work in section 11.6.

11.2 Definitions

Given a finite set of atomic typesA, we define,TA, the set of linear applica-
tive types built onA with the following grammar:

TA ::= A | (TA ⊸ TA)

If α1, . . . ,αn are elements ofTA andα ∈ A we will write (α1, . . . , αn) ⊸ α

the type (α1 ⊸ (· · · (αn ⊸ α) · · ·)). The order of the typeα, ord(α), is 1 if α
is atomic (i.e.α ∈ A), and ord(α⊸ β) = max(ord(α) + 1, ord(β)).

Higher-order signatures are triples (C,A, τ) whereC is a finite set of con-
stants,A is a finite set of atomic types andτ is a function fromC toTA. The
order of a signature (C,A, τ) is max{ord(τ(a))|a ∈ C}. Given a higher-order
signatureΣ = (C,A, τ) we will denoteA byAΣ, C byCΣ, τ by τΣ andTA by
TΣ; if τΣ(a) = (α1, . . . , αn)⊸ α, then the arity ofa ∈ CΣ is n, it will be noted
ρΣa or ρa (whenΣ is clear from the context).

A higher-order signatureΣ is said to be astring signatureif AΣ = {∗},
∈ CΣ, τΣ(#) = ∗ and for alla ∈ CΣ\{#}, τΣ(a) = (∗⊸ ∗).

We are now going to define the set of linearλ-terms built on a signature

E    ACG / 145

Σ. We assume that the notions of free variables1, capture-avoiding substitu-
tions,α-conversion,β-reduction,η-reduction. . . are familiar to the reader. If
necessary, one may consult Barendregt (1984).

Given a higher-order signatureΣ andα ∈ TΣ, we assume that we are given
an infinite enumerable set of variablesxα, yα, zα. . . , Λα

Σ
the set of linearλ-

terms of typeα built onΣ is the smallest set verifying:

1. if a ∈ CΣ andτΣ(a) = α thena ∈ Λα
Σ

2. xα ∈ Λα
Σ

3. if t1 ∈ Λ
(β⊸α)
Σ

, t2 ∈ Λ
β

Σ
andFV(t1) ∩ FV(t2) = ∅ then (t1t2) ∈ Λα

Σ

4. if t ∈ Λβ
Σ
, xα ∈ FV(t) thenλxα.t ∈ Λ(α⊸β)

Σ

The setΛΣ denotes
⋃
α∈TΣ Λ

α
Σ
. Linearλ-terms arelinear because variables

may occur free at most once in them and that wheneverλxα.t is a linearλ-
term,xα has exactly one free occurrence int. Moreover, whenevert ∈ Λα

Σ
∩Λ

β

Σ

thenα = β, i.e.every linearλ-term has a unique type in a given signatureΣ.
We may, when it is not relevant, strip the typing annotation from the vari-

ables. We will writeλx1 . . . xn.t for the termλx1. . . . λxn.t and t0t1 . . . tn for
(. . . (t0t1) . . . tn). Given a list of indicesS = [i1, . . . , in], we will write λ−→xS.t
the termλxi1 . . . xin.t, t0

−→
tS the termt0ti1 . . . tin and−→cSt the termci1(. . . cin(t) . . .)

when for all j ∈ [1, n], ci j has type∗ ⊸ ∗. In particular,λ−→xn.t, t0
−→tn and−→cnt

may be used whenS = [1, . . . , n].
Given a string signatureΣ, strings will be represented by the closed terms

of type∗. For example, the termc1(. . . (cn#) . . .) represents the stringc1 . . . cn;
given w, a string built onCΣ, /w/ will denote the term ofΛ∗

Σ
which is in

normal form and representsw.
To define the sub-terms oft ∈ ΛΣ, we follow Huet (1997) and consider

them as pairs (C[] , t′) (whereC[] is a context,i.e. a term with a hole) such
that t = C[t′]. The set of sub-terms oft is denoted bySt. In particular, we
defineSαt to be {(C[] , v) ∈ St|v ∈ ΛαΣ}. If x is free in t, we noteCt,x[] the
context such thatCt,x[x] = t andx is not free inCt,x[]. Remark that sincet is
linearCt,x[] is always defined.

We say that a termt is in long from if for all (C[] , t′) ∈ Sα⊸βt eithert′ =
λx.t′′ or C[] = C′[[] t′′]. Every term can be put in long form byη-expansion,

therefore ift is the long form oft′, thent
∗
→η t′. When a term is in long form,

all its possible arguments are abstracted by aλ-abstraction. For example, the
term x∗⊸∗, which is not in long form, can be applied to an argument of type
∗; in long form, this term becomesλy∗.x∗⊸∗y∗, the possibility of applying it
to a term of type∗ is syntactically represented by theλ-abstraction. A term is
in long normal form (lnf for short) if it is both inβ-normal form and in long
form. The set lnfαΣ (resp.clnfαΣ) represents the set of terms ofΛα

Σ
in lnf (resp.

1Given aλ-term t, we will write FV(t) to denote the set of its free variables.

146 / S S

the closed terms ofΛα
Σ

in lnf). In the sequel of the paper we only deal with

terms in long form; thus each time we will writeλ−→xS.t, x
−→
tS or a

−→
tS, we will

implicitly make the assumption thatt, x
−→
tS or a

−→
tS has an atomic type.

We define homomorphisms between the higher-order signaturesΣ1 andΣ2

to be pairs (f , g) such thatf is a mapping fromTΣ1 toTΣ2, andg is a mapping
fromΛΣ1 toΛΣ2, and verifying:

1. if α ∈ AΣ1 then f (α) ∈ TΣ2, otherwise,f (α⊸ β) = f (α)⊸ f (β)

2. for all a ∈ CΣ1 such thatτΣ1(a) = α, g(a) ∈ clnf f (α)
Σ2

3. g(xα) = xf (α)

4. g(t1t2) = g(t1)g(t2)
5. g(λxα.t) = λxf (α).g(t)

One can easily check that whenevert ∈ Λα
Σ1

, g(t) ∈ Λ f (α)
Σ2

. In general, given a
homomorphismL = (f , g), we will write indistinctlyL(α) for f (α) andL(t)
for g(t). Theorderof L is max{ord(L(α))|α ∈ AΣ1}.

An ACG (de Groote (2001)) is a 4-tuple (Σ1,Σ2,L,S) such that:

1. Σ1 is a higher-order signature,the abstract vocabulary
2. Σ2 is a higher-order signature,the object vocabulary
3. L is a homomorphism fromΣ1 to Σ2, the lexicon
4. S ∈ AΣ1

An abstract constant(resp. object constant) is an element ofCΣ1 (resp.CΣ2),
anabstract type(resp. object type) is an element ofTΣ1 (resp.TΣ2). Given an
abstract constanta,L(a) is called therealizationof a.

An ACGG = (Σ1,Σ2,L,S) defines two languages:

1. the abstract language:A(G) = clnfS
Σ1

2. the object language:O(G) = {v ∈ clnfΣ2 |∃t ∈ A(G).v =βη L(t)}

An ACGG = (Σ1,Σ2,L,S) is said to be astring ACGif Σ2 is a string signa-
ture andL(S) = ∗. Theorder of an ACGis the order of its abstract signature.

11.3 Path in types, active subs-terms and active variables
We assume that we are given a signatureΣ and that all the types and all the
terms used in this section are built on that signature.

A linear λ-term t ∈ lnfαΣ represents, via the Curry-Howard isomorphism,
a cut-free proof ofα in the Intuitionistic Implicative and Exponential Linear
Logic. This correspondence leads to a natural relation between sub-formulae
of α and sub-terms oft. This section presents this relation which will play a
central role in our encoding.

The sub-formulae of a type will be designated by means of paths. A path
π = i1 · i2 · · · in−1 · in is a possibly empty sequence of strictly positive integers;

E    ACG / 147

n is the length ofπ and whenn = 0, π will be denoted by•. Given a set of
pathsP, i · P denotes the set{i · π|π ∈ P}. The set of paths in the typeα, Pα is
defined as follows:

P(α1,...,αn)⊸α0 = {•} ∪

n⋃

i=1

i · Pαi (recall thatα0 is atomic)

The setPα is split within two parts: the positive paths, denoted byP+α and the
negative paths denoted byP−α. Positive (resp.negative) paths are the path of
Pα which have an even (resp.odd) length.

Given a pathπ, we definep+ π as:p+ π =

{
• if π = •
(p+ k) · π′ if π = k · π′

Givent ∈ lnfαΣ, we define two particular subsets ofSt, the set ofactive sub-
terms,AT t, and the set ofactive variables,AVt. The setsAT t andAVt are
defined as the smallest sets satisfying:

1. ([], t) ∈ AT t

2. if (C[] , λ−→xn.t′) ∈ AT t then for alli ∈ [1, n],

(C[λ−→xn.Ct′ ,xi []] , xi) ∈ AVt

3. if (C[[] t1 . . . tn], x) ∈ AVt then for alli ∈ [1, n],

(C[xt1 . . . ti−1[] . . . tn], ti) ∈ AT t

If a term t can be applied ton arguments, then, givent1, . . . , tn terms in
lnf, during theβ-reduction oftt1 . . . tn the active variables oft will eventually
substituted by a term duringβ-reduction and the residuals of the active sub-
terms oft will eventually become the argument of a redex. On the other hand,
the variables oft which are not active will never be substituted and the sub-
terms oft which are not active will never be the argument of a redex.

We can now define two mutually recursive functionsAT t andAV t respec-
tively fromAT t ontoP+α and fromAVt ontoP−α:

1. AT t([] , t) = •
2. if AT t(C[] , λ−→xn.t′) = π then for alli ∈ [1, n],

AV t(C[λ−→xn.Ct′ ,xi []] , xi) = π · i

3. if AV t(C[[] t1 . . . tn], x) = π then for alli ∈ [1, n],

AT t(C[xt1 . . . ti−1[] . . . tn], ti) = π · i

One can easily check thatAT t(C[] , v) = π (resp.AV t(C[] , x) = π) implies that
the type ofv (resp. x) is the type designated (in the obvious way) byπ in α.

The functionsAT t andAV t are bijections whose converse isPt:

1. Pt(•) = ([] , t)

2. Pt(π · i) =

{
(C[λ−→xn.Ct′ ,xi [] , xi) if Pt(π) = (C[] , λ−→xn.t′)
(C[xt1 . . . ti−1[] . . . tn, ti) if Pt(π) = (C[[] t1 . . . tn], x)

148 / S S

For all (C[] , t′) ∈ AT t (resp.(C[] , x) ∈ AVt) it is straightforward that
Pt(AT t(C[] , t′)) = (C[] , t′) (resp.Pt(AV t(C[] , x)) = (C[] , x)); and that for all
π ∈ P+α (resp.π ∈ P−α), AT t(Pt(π)) = π (resp.AV t(Pt(π)) = π).

11.4 h-reduction

The DTWTs which encode second order string ACGs perform the normal-
ization of the realization of abstract terms. They use a particular reduction
strategy,h-reduction, which is related tohead linear reduction(Danos and
Regnier (2004)).

This reduction strategy is only defined for a particular class of λ-terms.
Firstly, theseλ-terms have to be built on a string signatureΣ; secondly, they
have a particular form. To describe this form, we need first defineNα

Σ
⊆ Λα

Σ

(NΣ =
⋃
α∈TΣ N

α
Σ
) as:

Nα
Σ ::= lnfαΣ | (N

β⊸α

Σ
N

β

Σ
)

Then, the set of terms we are interested in are theHT-terms defined by the
following grammar:

HT ::= N∗Σ | cHT | (λxα1
1 . . . xαn

n .HT)Nα1
Σ
. . .Nαn

Σ

wherec ∈ CΣ. EveryHT-term is inΛ∗
Σ

and is of the form:

(λ−−→xS1.
−→cT1(. . . (λ

−−→xSn.
−→cTn(x j

−→tQ))−−→vSn . . .))
−−→vS1

so thatSi ∩ S j , ∅ implies thati = j, vk (with k ∈
⋃

i∈[1,n] Si) andtq (with
q ∈ Q) are elements ofNΣ.

Given aHT-term,

t = (λ−−→xS1.
−→cT1(. . . (λ

−−→xSn.
−→cTn(x j

−→
tQ))−−→vSn . . .))

−−→vS1

we say thatt h-contracts tot′ (notedt →h t′) if

t′ = (λ−−→xS′1
.−→cT1(. . . (λ

−−→xS′n.
−→cTn(v j

−→
tQ))−−→vS′n . . .))

−−→vS′1

whereS′k = Sk\{ j}. It is a routine to check thatt =β t′, that t′ is also a
HT-term and that the normal form oft can be obtained in a finite number of
h-contractions. The reflexive and transitive closure of→h, h-reduction, will
be written

∗
→h.

GivenG = (Σ1,Σ2,S,L) a second order string ACG, andu ∈ clnfSΣ , we
are going to see howh-contraction normalizesL(u). The determinism of→h

allows one to predict statically (i.e. without performing the reduction) which
sub-term ofL(u) will be substituted to a given bound variable inL(u) during
h-reduction. This prediction is based on the notions ofreplaceable variables
andunsafe termsintroduced by Böhm and Dezani-Ciancaglini (1975). Re-
placeable variables and unsafe terms ofu belong toSL(u) and will be respec-
tively denoted byRVu andUT u.

E    ACG / 149

If (C[] , a) ∈ Su and (C′[] , x) ∈ AVL(a), then (L(C)[C′[]] , x) ∈ RVu;UT u

is the smallest set verifying:

1. if (C[] , a−→vρa) ∈ Su andC[] , [] then (L(C)[] ,L(a−→vρa)) ∈ UT u

2. if (C[] , a) ∈ Su and (C′[] , v) ∈ ATL(a) then (L(C)[C′[]] , v) ∈ UT u

The prediction will be given byφu, a bijection betweenRVu andUT u.
The definition ofφu relies on few more technical definitions.

Given (Ca[] , a) ∈ Su such thatCa[] = C[[] v1 . . . vρa], then

(C[av1 . . . vi−1[] . . .vρa], vi)

is the ith argumentof (Ca[] , a). Given (Ca[] , a), (Cb[] , b) ∈ Su, we say that
(Ca[] , a) is thehead of the ith argumentof (Cb[] , b) if

Cb[] = C[[] v1 . . . vi−1(a−−→wρa) . . .vρb] andCa[] = C[bv1 . . . vi−1([]−−→wρa) . . .vρb]

Given (C[] , x) ∈ RVu, we now defineφu(C[] , x). As (C[] , x) ∈ RVu,
we have (Ca[] , a) ∈ Su andCx[] such that (Cx[] , x) ∈ AVL(a) andC[] =
L(Ca)[Cx[]]. Let π = AVL(a)(Cx[] , x), sinceπ ∈ P−

L(τΣ1 (a)), π is of odd length,
andπ = i.π′. Then we have three cases:

1. if i ≤ ρa andπ′ = •, thenφu(C[] , x) = (L(C′)[] ,L(t)) where (C′[] , t) is
the ith argument of (Ca[] , a)

2. if i ≤ ρa andπ′ , •, thenφu(C[] , x) = (L(Cb)[C′[]] , t) where (Cb[] , b)
is the head of theith argument of (Ca[] , a) and (C′[] , t) = PL(b)(ρb + π

′)
3. if i > ρa thenφu(C[] , x) = (L(Cb)[C′[]] , t) where (Ca[] , a) is the head

of thekth argument of (Cb[] , b) and (C′[] , t) = PL(b)(k · (i − ρa) · π′).

Computingφu(C[] , x) only requires to know about the immediate sur-
rounding ofa. This is the reason why the normalization ofL(u) can be per-
formed by a DTWT. To prove the correctness of the prediction of φu we need

the notion ofstrict residual: given t and t′ such thatt
∗
→h t′, (C[] , v) ∈ St

and (C′[] , v) ∈ St′ , we say that (C′[] , v) is the strict residualof (C[] , v) when-

everC[xy1 . . . yn]
∗
→h C′[xy1 . . . yn] with FV(v) = {y1, . . . , yn} andx is a fresh

variable.
Given t such thatL(u)

∗
→h t, we say thatt is predicted byφu if the two

following properties hold:

1. for all (C[] , (λ−→xnλ
−→yq.v)−→vn) ∈ St andi ∈ [1, n], the fact that

(C[(λ−→xnλ
−→yq.Cv,xi [])

−→vn], xi)

is the strict residual of (Cxi [] , xi) ∈ RVL(u) implies that

(C[(λ−→xnλ
−→yq.v)v1 . . . vi−1[] . . .vn], vi)

is the strict residual ofφu(Cxi [] , xi).
2. for all (C[[]−→vq], x) ∈ St, (C[[]−→vq], x) is the strict residual of some

(C′[[]−→vq], x) ∈ RVu.

150 / S S

We are now going to show thath-reduction preserves the predictions ofφu.
This will be achieved by using the following technical lemma:

Lemma 25 Given (C[[]−→vq], x) ∈ RVu if we haveφu(C[[]−→vq], x) = (C′[] , t′)
then t′ = (λ−→xp

−→yq.w)−→wp and we have

φu(C′[(λ−→xp
−→yq.Cw,yk[])

−→wp], yk) = (C[xv1 . . . vk−1[] . . .vq], vk)

Proof.
This proof only consists in unfolding the definitions. Since(C[[]−→vq], x) ∈

RVu, we must have (Ca[] , a) ∈ Su andCx[] such that:

1. C[[]−→vq] = L(Ca)[Cx[[]
−→vq]]

2. (Cx[[]
−→vq], x) ∈ AVL(a)

3. AVL(a)(Cx[[]
−→vq], x) = i · π for somei andπ

There are three different cases depending oni andπ.

Case 1:i ≤ ρa andπ = •: this case is very similar to the following one and is
thus left to the reader. It is the only case wherep may be different from 0.

Case 2: i ≤ ρa and π , •: by definition if (Cb[] , b) is the head of the
ith argument of (Ca[] , a), and if PL(b)(ρb + π) = (C′′[] , λ−→yq.w) thenC′[] =
L(Cb)[C′′[]] and t′ = λ−→yq.w. Let’s now suppose thatπ = m · π′, then we have
that AVL(b)(λ

−→yq.Cw,yk[] , yk) = (ρb + π) · k = (ρb + m) · π′ · k. Therefore, as
ρb + m > ρb and as (Cb[] , b) is the head of theith argument of (Ca[] , a), we
have thatφu((λ−→yq.Cw,yk[]) , yk) = (L(Ca)[Ck[]] , uk) where

(Ck[] , uk) = PL(a)(i · (ρb +m− ρb) · π′ · k) = PL(a)(i · π · k)

But we have thatAVL(a)(Cx[[]
−→vq], x) = i · π which implies that

(Ck[] , uk) = PL(a)(i · π · k) = (Cx[xv1 . . . vk−1[] . . .vr], vk).

Finally asC[] = L(Ca)[Cx[]] we get the result.

Case 3:i > ρa: this case is similar to the previous one. ⊔⊓

Proposition 26 If L(u)
∗
→h t, then t is predicted byφu.

Proof. This proof is done by induction on the number ofh-contraction steps
of the reduction. The case where this is zero is a simple application of the

definitions. Now let’s suppose thatL(u)
∗
→h t →h t′, then, by induction

hypothesis,t is predicted byφu; furthermore,t is aHT-term, thus

t = (λ−−→xS1.
−→cT1(. . . (λ

−−→xSn.
−→c Tn(x j

−→
tQ))−−→vSn . . .))

−−→vS1

and
t′ = (λ−−→xS′1

.−→cT1(. . . (λ
−−→xS′n.
−→c Tn(v j

−→
tQ))−−→vS′n . . .))

−−→vS′1

with S′i = Si\{ j}.

E    ACG / 151

Within the two conditions required to obtain thatt′ is predicted byφu, only
the first one requires more than a straightforward application of the induction
hypothesis. There is actually only one subterm oft′ which is problematic:
v j
−→
tQ. From the induction hypothesis we know that the subterm corresponding

to x j in t is the strict residual of (C[[]−→tQ], x j) ∈ RVu and that the subterm

corresponding tov j in t is the strict residual ofφu(C[[]−→tQ], x j). Finally the

previous lemma allows us to conclude thatv j
−→
tQ fullfills the first condition.⊔⊓

11.5 Encoding second order string ACGs with DTWT
We are now going to show how to encode second order string ACGsinto
DTWT. We do not follow the standard definition of DTWT as givenin Aho
and Ullman (1971). Indeed, instead of walking on the parse trees of a context
free grammar, the transducers we use walk on linearλ-terms built on a second
order signature. But, as these sets ofλ-terms are isomorphic to regular sets of
trees, the string languages output by our transducers are the same as those of
usual DTWT. By abuse, we call our transducers DTWT.

A DTWT is defined as a 6-tuple

A = (Σ,D,Q,T, δ, q0, q f)

whereΣ is a second order signature;D ∈ AΣ; Q is a finite set of states;T is
a finite set of terminals;δ , the transition function, is a partial function from
CΣ×(Q\{q f }) to ({up; stay}∪(down×N+))×Q×T∗ whereN+ denotes the set of
strictly positive natural numbers andT∗ denotes the monoid freely generated
by T; q0 ∈ Q is the initial state; andq f ∈ Q is the final state. Aconfiguration
of A is given by (C[] , a, q, s) whereC[a] ∈ clnfDΣ , a ∈ CΣ, q ∈ Q ands ∈ T∗;
initial configurationsare of the form ([]−→vρa, a, q0, ǫ) (ǫ being the empty string)
wherea−→vρa ∈ clnfDΣ . The automatonA defines a move relation,⊢A (⊢∗A is the
reflexive transitive closure of⊢A), between configurations: (C[] , a, q, s) ⊢A
(C′[] , b, q′, sw) if δ(a, q) = (q′,m,w) and one of the following holds:

1. m= upand (C[] , a) is the head of one of the arguments of (C′[] , b)
2. m= stayand (C′[] , b) = (C[] , a)
3. m= (down, i) and (C′[] , b) is the head of theith argument of (C[] , a)

Givena−→vρa ∈ clnfDΣ , a−→vρa generatesswith A if

([]−→vρa, a, q0, ǫ) ⊢
∗
A (C[] , b, q f , s).

The language ofA, LA , is {s|∃v ∈ clnfDΣ .v generatess}.
Given a second order string ACGG = (Σ1,Σ2,L,S) we are going to build

an automatonAG = (Σ,D,Q,T, δ, q0, q f) such thatO(G) = {/w/|w ∈ LAG}.
Let kG = max{ρa|a ∈ CΣ1}, we then defineΣ as:

1. AΣ = AΣ1 × [1, kG]

152 / S S

2. CΣ = CΣ1 × [1, kG]

3. if τΣ1(a) = (α1, . . . , αn)⊸ α then

τΣ((a, k)) = ((α1, 1), . . . , (αn, n))⊸ (α, k).

Remark that ifv ∈ clnf(α,k)
Σ

, then for all (C[] , (a, j)) ∈ Sv, C[] , []−→vρa implies
that (C[] , (a, j)) is the head of thejth argument of (C′[] , (b, l)) ∈ Sv. Further-
more, givenv = (a, k)−→vρa ∈ clnf(α,k)

Σ
we notẽv the term of clnfαΣ1

such that

ṽ = a
−→
ṽρa.

ThenD = (S, 1), Q = ([0, kG] × P) ∪ {q f } whereP =
⋃
α∈CΣ1

PL(α), q0 =

(0, •); buildingδ requires some more definitions.
Given (a, k) and (i, π), theselection pathof (a, k) and (i, π) is:

π′ =

{
i · π if i > 0
ρa + π if i = 0

If the selection path of (a, k) and (i, π) is in P+
L(τΣ1 (a)) then we say that (a, k)

and (i, π) arecoherent; δ will be only defined on coherent pairs of (a, k) and
(i, π). A configurationK = (C[] , (a, k), (i, π),w) is said to becoherentif (a, k)
and (i, π) are coherent.

If (a, k) and (i, π) are coherent and ifπ′ is their selection path, then
we define thefocused termof (a, k) and (i, π) asPL(a)(π′). Furthermore, if
(C[] , t) is the focused term of (a, k) and (i, π) and if t = λ−→xp.

−→cn(x−→vq), then
(C[λ−→xp.

−→cn([]−→vq)], x)) is called thefocused variableof (a, k) and (i, π).
If (a, k) and (i, π) are coherent thenδ((a, k), (i, π)) = (q,move,w) depends

on the focused term of (a, k) and (i, π), (noted (C[] , t)):

1. if t = −→cn# thenq = q f , move= stayandw = c1 . . . cn

2. if t = λ−→xp.
−→cn(x−→vq), AVL(a)(C[λ−→xp.

−→cn([]
−→vq)], x) = l · π′′ and l > ρa then

q = (k, (l − ρa) · π′′), move= upandw = c1 . . . cn

3. if t = λ−→xp.
−→cn(x−→vq), AVL(a)(C[λ−→xp.

−→cn([]
−→vq)], x) = l · π′′ and l ≤ ρa then

q = (0, π′′), move= (down, l) andw = c1 . . . cn

We now relate the walk ofAG onv ∈ clnf(S,1)
Σ

with theh-reduction ofL(̃v).
To establish this relation we need to show that the transducer computesφṽ.
Given a coherent configurationK = (C[] , (a, k), (i, π),w), theactivated term

of K is (L(C′)[] ,L(a
−→
ṽρa)) if (i, π) = (0, •) andC̃[] = C′[[]

−→
ṽρa], otherwise it is

(L(C̃)[C′[]] , t) if (C′[] , t) is the focused term of (a, k) and (i, π); theactivated
variableof K is (L(C̃)[C′[]] , x) if the focused variable of (a, k) and (i, π) is
(C′[] , x). We will show that givenK1 andK2 such thatK1 ⊢AG K2, if (C[] , x)
is the activated variable ofK1 thenφṽ(C[] , x) is the activated term ofK2. This
property shows thatAG performs theh-reduction ofL(̃v) and that ifL(̃v)
normalizes to/w/ then, walking onv, AG ends in the final state and outputs
w.

E    ACG / 153

Lemma 27 Given v= (a, 1)−→vρa ∈ clnf(S,1)
Σ

and two coherent configurations
K1 and K2 such that([]−→vρa, (a, 1), (0, •), ǫ) ⊢∗AG K1 ⊢AG K2, if (C[] , x) is the
activated variable of K1 thenφṽ(C[] , x) is the activated term of K2.

Proof. As for the proof of lemma 25, this proof is mainly based on theunfold-
ing of the definitions. We simply computeφṽ(C[] , x) and the activated term of
K2 and then show that they are the same.

We assume thatKr = (Cr [] , (ar , kr), (ir , πr),wr) with r ∈ [1, 2], thatπ′r is
the selection path ofKr . If PL(a1)(π′1) = (C′1[] , λ−→xp.

−→cn(x−→vq)), then letπ′′1 =
AVL(a1)(C′1[λ−→xp.

−→cn([]
−→vq), x); asπ′′1 ∈ P

−
L(τΣ1(a1)), we know thatπ′′1 = i · π′′. We

then have three cases:

Case 1: if i ≤ ρa1 and π′′ = •, then φṽ(C[] , x) = (L(C′)[] ,L(t)) if
(C′[] , t) is theith argument of (C1[] , a1). But in that case, we have that
δ((a1, k1), (i1, π1)) = ((0, •), (down, i), c1 . . . cn); thus (a2, k2) is the head
of the ith argument of (a1, k1) and as (i2, π2) = (0, •), we obtain, by
definition, that the activated term ofK2 is indeed (L(C′)[] ,L(t)).

Case 2: if i ≤ ρa1 andπ′′ , •, thenφṽ(C[] , x) = (L(Cb)[C′[]] , t) if (Cb[] , b)
is theith argument of (C1[] , a1) and if (C′[] , t) = PL(b)(ρb + π

′′). In that
case, we haveδ((a1, k1), (i1, π1)) = ((0, π′′), (down, i), c1 . . . cn); there-
fore, (a2, k2) is the head ofith argument of (a1, k1) which implies that
(C2[] , a2) = (Cb[] , b); finally by definition we have that the activated
term ofK2 is (L(Cb)[C′[]] , t) = φṽ(C[] , x).

Case 3: if i > ρa1 thenφṽ(C[] , x) = (L(Cb)[C′[]] , t) if (Ca1[] , a1) is the head
of thek1

th argument of (Cb[] , b) and (C′[] , t) = PL(b)(k1 · (i − ρa1) · π
′′).

In that case, we haveδ((a1, k1), (i, π)) = ((k1, (i−ρa1) ·π
′′), up, c1 . . . cn),

and the definition leads to the fact that the activated term ofK2 is
(L(Cb)[C′[]] , t) = φṽ(C[] , x).

⊔⊓

Proposition 28 Given u∈ clnfS
Σ1

, there is a unique v= (a, 1)−→vρa ∈ clnf(S,1)
Σ

such that̃v = u, and([]−→vρa, (a, 1), (0, •), ǫ) ⊢∗AG (C[] , b, qf ,w) iffL(u) =βη /w/.

Proof. The existence and the uniqueness ofv are obvious from the definition
of Σ. To prove the proposition it suffices to study the walk ofAG on v and
the h-reduction ofL(u) in parallel: assume thatK1 = ([]−→vρa, (a, 1), (0, •), ǫ),

t1 = L(u), K1 ⊢
k
AG

Kk and t1
k
→h tk (where⊢kAG corresponds tok steps of

AG and
k
→h to k steps ofh-reduction). The use of the previous lemma and an

induction onk prove thattk is of the form

tk = (λ−−→xS1.
−→cT1(. . . (λ

−−→xSk.
−→cTk(x j

−→
tQ))−→vSk . . .))

−−→vS1

if and only if Kk = (Ck[] , (ak, lk), (ik, πk),wk) so thatwk =
−→cT1 . . .

−−−→cTk−1, if

154 / S S

(C′k[] , λ
−−→xSk.
−→cTk(x j

−→
tQ)) ∈ Stk (with the obviousC′k[]) is the strict residual of

(C′′k [] , λ−−→xSk.
−→cTk(x j

−→
tQ)) ∈ St1 then (C′′k [] , λ−−→xSk.

−→cTk(x j
−→
tQ)) is the activated term of

Kk and (C′′k [λ−−→xSk.
−→cTk([]

−→
tQ)], x j) is the activated variable ofKk. This allows us

to conclude that the walk ends in the configuration (C[] , b, qf ,w) iff L(u) =βη
/w/. ⊔⊓

This finally shows thatO(G) is indeed equal to{/w/|w ∈ LAG}.

11.6 Conclusions and future work
In this paper, we have proved that the languages defined by second order
string ACGs were the same as the output languages of DTWT. From the re-
sults of Weir (1992) and de Groote and Pogodalla (2004), we obtain as a
corollary that the languages defined by second order string ACGs are exactly
the languages defined by LCFRS. Furthermore as, according tode Groote and
Pogodalla (2004), LCFRS can be encoded by second order string ACGs with
a fourth order lexicons, we obtain that every second order string ACG can be
encoded by another one whose lexicon has at most fourth order.

In our next work, we would like to exhibit a direct translation of a second
order string ACG into another one with a fourth order lexicon. This would
help understanding how relevant the order of the lexicon is.We conjecture
that using lexicons of order greater than four may lead to more compact gram-
mars. The problem is to know how compact those grammars can beand if the
compaction is important whether it can be used do design large grammars for
natural languages.

As the tools we used are general, we think it is possible to prove that
any second order ACG can be represented as a second order ACG whose
lexicon is at most fourth order. Indeed, the notion of paths and the relations
they establish with active sub-terms and active variables do not depend on
the problem. The only definition which is dependent of the fact we deal with
strings is the definition ofh-reduction. We nevertheless think that, provided
we define a generalized notion of DTWT which would output linearλ-terms
instead of strings, we can show that second order ACGs can be encoded with
these generalized DTWTs. It would remain to encode those DTWTs with
second order ACGs with a fourth order lexicon to generalize our result. But
this last part does not seem too difficult.

The first part seems also feasible since it should be possibleto generalize
h-reduction. Indeed, instead of having a unique variable on which we could
make the substitution, the fact that the constants in the term introduce some
branching may lead to have several such variables. This would correspond
on the generalized DTWTs to the fact that when it would outputa branching
constant the transducer should duplicate its head in order to have one head to
generate each argument of that constant.

R / 155

Finally this work may lead to the definition of an abstract machine for sec-
ond order ACGs. Such a machine would be valuable to study the problem of
parsing second order ACGs and give insights on the strategies that can be im-
plemented for those grammars. Furthermore, as such a machine would have a
language made of linearλ-terms, it would be a first step towards the definition
of an abstract machine whose language is a set ofλ-terms. In Montague style
semantics, the problem of generation mainly consists in parsing languages
of λ-terms. We would then obtain a valuable tool to study the problem of
generation in that setting.

References
Aho, A. V. and J. D. Ullman. 1971. Translations on a context free grammar.Informa-

tion and Control19(5):439–475.

Barendregt, Henk P. 1984.The Lambda Calculus: Its Syntax and Semantics, vol. 103.
Studies in Logic and the Foundations of Mathematics, North-Holland Amsterdam.
revised edition.

Böhm, Corrado and Mariangiola Dezani-Ciancaglini. 1975.Lambda-terms as total or
partial functions on normal forms. In C. Böhm, ed.,Lambda-Calculus and Com-
puter Science Theory, vol. 37 ofLecture Notes in Computer Science, pages 96–121.
Springer. ISBN 3-540-07416-3.

Danos, Vincent and Laurent Regnier. 2004. How abstract machines implement head
linear reduction. Preprint of the Institut de Mathématiques de Luminy.

de Groote, Philippe. 2001. Towards abstract categorial grammars. In A. for Compu-
tational Linguistic, ed.,Proceedings 39th Annual Meeting and 10th Conference of
the European Chapter, pages 148–155. Morgan Kaufmann Publishers.

de Groote, Philippe and Sylvain Pogodalla. 2004. On the expressive power of abstract
categorial grammars: Representing context-free formalisms.Journal of Logic, Lan-
guage and Information13(4):421–438.

Girard, Jean-Yves. 1987. Linear logic.Theoretical Computer Science50:1–102.

Huet, Gérard. 1997. The zipper.Journal of Functional Programming7(5):549–554.

Montague, Richard. 1974.Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, CT.

Salvati, Sylvain. 2005.Problèmes de filtrage et problèmes d’analyse pour les gram-
maires catégorielles abstraites. Ph.D. thesis, Institut National Polytechnique de
Lorraine.

Weir, David Jeremy. 1988.Characterizing mildly context-sensitive grammar for-
malisms. Ph.D. thesis, University of Pennsylvania, Philadephia, PA. Supervisor-
Aravind K. Joshi.

156 / S S

Weir, David J. 1992. Linear context-free rewriting systemsand deterministic tree-
walking transducers. InACL, pages 136–143.

Yoshinaka, Ryo and Makoto Kanazawa. 2005. The complexity and generative capac-
ity of lexicalized abstract categorial grammars. InLACL, pages 330–346.

12

Sidewards without copying
E P. S

Abstract
A traditional movement step relates a single source position to a single c-commanding

target position, and never moves an argument to another argument position. But head
movement involves non-c-command relations, and control relates two argument posi-
tions that are not always in a c-command relation. Special mechanisms could be invoked
for these things, but a different strategy slightly generalizes movement and enforcescer-
tain fundamental symmetries observed by all movements to block over-generation. This
paper defines a class of ‘sideward movement grammars’ (s) with such symmetries,
with example applications to adjunct control and head movement. These grammars allow
copying, but the question of whether to copy is completely independent of the question
of whether to allow sideward movement. Furthermore, since these grammars distinguish
complement attachments from others, a simple CED-like constraint can block extractions
from specifiers and adjuncts except in the exceptional circumstance of adjunct control.
 definable languages are all definable, and hence are efficiently recognizable.

Keywords P, , 

12.1 Introduction
One of the most basic properties of human language is its simple, recursive,
layered character in which similar structure is iterated, sometimes with spe-
cial variations at the top, matrix level and at the deepest levels:

Does Alice know that
3

Bob thinks that
2

Carol says
1

you like her?
0

Certain kinds of recursive symmetry in languages allow the ‘pumping lem-
mas’ which have been valuable diagnostics of the availability of certain kinds
of grammars. A regular grammar for a language is only possible when the

157

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

158 / E P. S

language has a simple symmetry of this kind; context free grammars have a
weaker requirement, and so on through the hierarchy of multiple context free
languages (Seki et al., 1991), etc.

Many descriptions of human languages involve rearranging constituents.
In grammars with movements, how is the structure of each ‘layer’ affected?
This fundamental question is a topic of active study. In early transformational
grammars, a set of base structures is generated and then transformed into
surface structures, as in the following example (witheandt unpronounced):

[I [know [e [I [e [saw [who]]]]]]] −→ [I [know [who [I [t [saw [t]]]]]].

The sequences of positions related by movement in these accounts are not
random. Among other things, landing sites of movement do notdisrupt layer
structure too much (‘structure preservation’, ‘shape conservation’), and when
an element moves through several clauses, it never moves from a high po-
sition in a lower clause to a lower position in a higher clause(cf. the ‘ban
on improper movement’ ‘chain uniformity’, ‘level embedding’). So in effect,
the hierarchy of each layer of phrase structure is respectedin sequences of
movements too, another reflection of the basic invariants mentioned at the
outset.

Some recent grammars compose generation and transformation steps,1 so
transformations are, in effect, executed as soon as requisite structure is built,
reducing the need for revising completed structure:

1. [saw]+[who]
merge
−→ [saw [who]]

2. [saw [who]]+[I]
merge
−→ [I [saw [who]]]

3. [I [saw [who]]]
move
−→ [who [I [saw [who]]]

4. [know]+[who [I [saw [who]]]
merge
−→ [know [who [I [saw [who]]]]

5. [know [who [I [saw [who]]]] +[I]
merge
−→ [I [know [who [I [saw [who]]]]]

But step 3 showswho being copied and deleted, revising the structure built
by step 2. One response is to say that the syntax simply copiesthe earlier
structure (perhaps only adding a link, a pointer to the embeddedwho), and
then a post-syntax “spellout” process determines which copies to pronounce.
This pushes the changes to completed structure out of the syntax, by invoking
a “spellout” process that is sensitive to much of the same structure that syn-
tactic operations are sensitive to. When two processes seemto be sensitive
to the same structure it is a natural hunch that they are really thesamepro-
cess. Adopting this perspective instead, we could then say that the depiction
of the derivation 1-5 is slightly misleading: whenwho is introduced in step 1,
it satisfies a requirement of the verb but is not actually placed in complement
position. Rather, it is held out to be placed at the left edge of the embedded

1Tree transducer composition, ‘deforestation’, is a commonstep for reducing program com-
plexity (Kühnemann, 1999, Reuther, 2003, Maneth, 2004).

S   / 159

clause. This strategy for (not postponing but) eliminatinga kind of structural
revision is formalized ins (Stabler and Keenan, 2003, Frey and Gärtner,
2002, Michaelis, 2001, Harkema, 2001, Lecomte and Retoré,1999), buts
do not ban improper movements.

Now consider the co-indexed elements in sentences like these:

Hei tries [ei to succeed]
Hei laughs [beforeei eating]

These ‘obligatory control’ (OC) relations have enough in common with
movement to suggest a uniform treatment (Hornstein, 2006, 2001, 1999,
Polinsky and Potsdam, 2002, Bowers, 1973). If we generalizetraditional
movement so that a subject can move to another subject position even out
of an adjunct as in the latter example, the rest of the phrasalconstruction
can remain completely standard. But such movements betweenunconnected
structures must be restricted to avoid unwanted movements,like these for
example:

*Johni likes ti
*The cook theyi like tried [ti to make them]
*Johni persuaded Mary [ti to make them]
*Johni ’s friends prefer [ti to behave himself]

One critique of movement analyses of control wonders, if sideways move-
ment is allowed, what rules out sideward movement from complements gener-
ally (Landau, 2003, p.477). In the present account, the status and restrictions
on sideward movement will be clear: sideward movement from complements
is impossible.

Another kind of problem is posed by head movements like this:

[-an]+[ustedes [habl- [español]]]→ [[habl-an] [ustedes [habl-[español]]]]

If we sayxc-commandsy in a tree iff a sister ofxdominatesy, thenhabl-does
not c-command its original position. Adapting a proposal from Nunes (2001)
and Hornstein (2001), in analogy to phrasal movement, we cancompute this
result without surgery by keeping the headhabl-out of its projection so that is
available for attachment to the appropriate affix. But the indicated assembly of
the head and affix with the rest of the projection is more complicated than any
of the other (merge,move) rules, looking suspiciouslyad hoc. An alternative
is to, in effect, allow the head to move before it projects its structure.This
yields essentially the same result, but by allowing the headto simply move to
another projection, allows the construction of the phrase and the selection of
that phrase to be completely standard. But obviously this step needs to bring
some analog of the traditional head movement constraint (HMC):

*be -s he have be-en making tortillas

160 / E P. S

Conventional movements relate source constituents with targets that c-
command them. Ins, the same effect is achieved by keeping the sources
separate from the target while they wait for their final licensed positions. In
this setting, the needed generalization simply allows new,‘disconnected’ el-
ements to beinsertedinto an expression. With this generalization of expres-
sions, we need only one feature-checking operation,merge. We define ‘side-
ward movement grammars’ (s) in this way. To avoid overgeneralization,
we impose a specifier island constraint (SpIC) and also impose a generalized
ban on improper movements. Since all phrases other than the matrix clause
are either complements or specifiers, SpIC allows extractedphrases to enter
a derivation only through complements, though as explainedbelow this con-
straint is weaker than usual because a complement can be remnant-moved to
a specifier without freezing any of its moving elements.

Formal antecedents include tree adjoining grammar (Joshi and Schabes,
1997) and especially the variants proposed for scrambling (Rambow et al.,
2001, Rambow, 1994, Kallmeyer, 1999), certain elaborations of pregroup
grammars (Stabler, 2004a, Casadio and Lambek, 2002, Buszkowski, 2001),
and the minimalist grammars (s) already mentioned. The derivations in
these formalisms all extend and simplify complexes of possibly discontinu-
ous constituents. But none of them enforces the ban on improper movements,
and none of them defines the same class of languages ass.  lan-
guages are not all definable, but they are all-definable (Seki et al.,
1991) and hence are polynomially parsable. We conjecture that all  lan-
guages are definable too.

12.2 Sideward movement grammars

LetΣ be a finite vocabulary, associated with phonetic and semantic properties.
The empty sequence isǫ. Head movement will be triggered by a morpholog-
ical property that we indicate with hyphens: a preceding hyphen -s indicates
that a lexical head is a suffix; a following hyphen s- indicates a prefix; and the
affix s can be empty.

A set of syntactic featuresF is partitioned into 2 basic kinds: properties -F
and requirements+F. Properties -F are either persistent -f or not -f. Require-
ments+F: some simply require agreement+f, others trigger overt movement
+f, and others trigger overt movement and also leave a copy+f. As in s,
we use the typesT = {::, :} to indicate lexical and derived expressions, re-
spectively. TheprojectionsP = Σ∗ × T × F∗. TheexpressionsE = P × ℘(P).
Consider, e.g., the expression

(loves:-v,{Mary:-focus, who:-case -wh}).

To reduce clutter, we often omit some braces and parentheses,

S   / 161

loves:-v, Mary:-focus, who:-case -wh.

With this simpler notation, remember that the head of an expression comes
first, and the order of remaining elements (if any) is irrelevant.

A lexicon is a finite subset ofΣ∗ × {::} × (+F∗ × -F+) × {∅} with a des-
ignated ‘start’ category f. A lexical item hascategoryf iff its first property
is -f or -f. f comp-selectsg iff there as a lexical item with category f whose
first requirement is+g or +g or +g. A cycle is a sequence f0. . .fn such that

f0 is the start category, fi−1 comp-selects fi (all 0 < i ≤ n), and no feature
appears twice. fcycle-selectsg iff f precedes g in a cycle. A lexicon isproper
iff whenever -f precedes -g in any lexical item, some lexical item containing
-f has category c and some lexical item containing -g has category d, where d
cycle-selects c. With this constraint on lexicons, (Proper), we can remain neu-
tral about whether human languages have a universal, fixed clausal structure.
A grammar is given by a proper lexicon, generating the structures in the clo-
sure of lexicon with respect to the fixed structure building rules. A completed
structure is one containing only one syntactic feature, thestart category f. The
string language is the set of yields of those completed structures.

There are two structure building relations, ins and merge. The partial bi-
nary functionins applies to pairs of expressions ((p,S), (q,T)) only if (i) ei-
ther (q,T) is lexical orS = ∅, and (ii) match(p, q) is defined. Its value is given
by ins((p,S), (q,T)) = (p,S ∪ {q} ∪ T). Condition (i) is our version of SpIC,
mentioned above.

The relation merge⊂ E × E applies to (p,S) only if there is a unique
q ∈ S such that match(p, q) is defined. Then it takes as value merge(p,S ∪
{q}) = (r, (S−q)∪T) for each match(p, q) = (r,T). The uniqueness condition
on application of this function is our version of the shortest move constraint
(SMC).

The relation match⊂ P× P × E is given as follows, wheres, t ∈ Σ∗ are not
marked with an initial or final hyphen to trigger head movement,α, β, γ ∈ F∗,
δ ∈ F+, and· ∈ T,

162 / E P. S

Overt movement:
p q match(p,q)

s::+fα t·-f st:α,∅ saturated complement (i)
s:+fα t·-f ts:α,∅ saturated specifier (ii)
s·+fα t·-fδ s:α,{t:δ} moving,unsaturated projection (iii)

s::+fα t·-f st:α,∅ final use of -f (iv)
s:+fα t·-f ts:α,∅ final use of -f (v)
s·+fα t·-fδ s:α,{t:δ} moving,unsaturated projection (vi)
s·+fα t·-fβ s:α,{t:-fβ} moving with -f (vii)

covert movement:
s·+fα t·-fδ s:α,{t:δ} check non-persistent -f (viii)
s·+fα t·-fδ s:α,{t:δ} final use of -f (ix)
s·+fα t·-fβ s:α,{t:-fβ} moving with -f (x)

copy movement:
s::+fα t·-f st:α,∅ saturated complement (xi)

s:+fα t·-f ts:α,∅ saturated specifier (xii)

s::+fα t·-fδ st:α,{t:δ} moving (xiii)

s:+fα t·-fδ ts:α,{t:δ} moving (xiv)

s::+fα t·-f st:α,∅ final move to complement (xv)

s:+fα t·-f ts:α,∅ final move to specifier (xvi)

s::+fα t·-f st:α,{t:-fβ} moving with -f (xvii)

s:+fα t·-f ts:α,{t:-fβ} moving with -f (xviii)

We present some examples to illustrate these mechanisms andset the stage
for introducing sideward movement.

Example 1: Basics.In the derivation tree on the left, the leaves are lexical
items; The binary branches represent applications of insert, and the unary
branches, applications of merge.

he laughs:-C

ǫ::+T -C,he laughs:-T

ǫ::+T -C he laughs:-T

laughs:+k -T,he:-k

ǫ::+v +k -T,laughs:-v,he:-k

ǫ::+v +k -T laughs:-v,he:-k

laughs:+D -v,he::-D -k

laughs:+D -v

laughs::+V +D -v,ǫ::-V

laughs::+V +D -v ǫ::-V

he::-D -k

CP

C’

C TP

DP(0)

D’

D

he

T’

T vP

DP

t(0)

v’

v

laughs

VP

V’

V

S   / 163

Note that since insert applies to introduce a projection that can be merged,
and the derivation greedily checks features at the earliestpossible moment,
there is a merge immediately above each insert step. The additional unary
branches represent ‘external merge’ steps: these are the steps that are tra-
ditionally called ‘movements’. The tree on the right shows the correspond-
ing conventional X-bar structure. It is not difficult to translate the derivations
shown here into more traditional depictions like this.2

Example 2: Obligatory control into a complement.One idea about oblig-
atory control is that there is a special unpronounced pronoun PRO which,
unlike other pronouns, either does not need case or else needs some special
kind of case that infinitival tense can assign. But Hornsteinargues that the
PRO positions can be the empty positions left by movement, asin:

he tries to succeed:-C

ǫ::+T -C,he tries to succeed:-T

ǫ::+T -C he tries to succeed:-T

tries to succeed:+k -T,he:-k

ǫ::+v +k -T,tries to succeed:-v,he:-k

ǫ::+v +k -T tries to succeed:-v,he:-k

tries to succeed:+D -v,he:-D -k

tries::+V +D -v,to succeed:-V,he:-D -k

tries::+V +D -v to succeed:-V,he:-D -k

ǫ::+T -V,to succeed:-T,he:-D -k

ǫ::+T -V to succeed:-T,he:-D -k

to::+v -T,succeed:-v,he:-D -k

to::+v -T succeed:-v,he:-D -k

succeed:+D -v,he::-D -k

succeed:+D -v

ǫ::+V +D -v,succeed::-V

ǫ::+V +D -v succeed::-V

he::-D -k

This derivation is checking the categorial D feature of [he]twice (and then
checking its case feature in a higher clausal position, in conformity with
Proper). Hornstein suggests that really it isθ-features getting checked twice
in constructions like this. (And there have been suggestions that categorial

2This translation can be done automatically. See the implementations at
http://www.linguistics.ucla.edu/people/stabler/epssw.htm.

164 / E P. S

features generally should be replaced by appropriate complexes of more ba-
sic features:θ-features etc.) For present purposes, the simple analysis above
provides a suitable starting point.

Example 3: Obligatory control into an adjunct. There are many interest-
ing questions about adjunction, but for present purposes itsuffices to adopt
a treatment that allows it to be category-preserving, iterable, optional, and
opaque to extraction. These properties can be obtained by introducing an
empty category to host the adjunct; for clausal adjuncts of noun phrases
we useǫ:+N+C+N-N, and for prepositional modifiers of v we can use:
ǫ::+v+P+v-v, as in:

he laughs before he eats:-C

ǫ::+T -C,he laughs before he eats:-T

ǫ::+T -C he laughs before he eats:-T

laughs before he eats:+k -T,he:-k

ǫ::+v +k -T,laughs before he eats:-v,he:-k

ǫ::+v +k -T laughs before he eats:-v,he:-k

before he eats:+v -v,laughs:-v,he:-k

ǫ:+P+v -v,laughs:-v,he:-k,before he eats:-P

ǫ:+P+v -v,laughs:-v,he:-k

ǫ::+v +P+v -v,laughs:-v,he:-k

ǫ::+v +P+v -v laughs:-v,he:-k

laughs:+D -v,he::-D -k

laughs:+D -v

laughs::+V +D -v,ǫ::-V

laughs::+V +D -v ǫ::-V

he::-D -k

before he eats:-P

before::+C -P,he eats:-C

before::+C -P he eats:-C

ǫ::+T -C,he eats:-T

ǫ::+T -C he eats:-T

eats:+k -T,he:-k

ǫ::+v +k -T,eats:-v,he:-k

ǫ::+v +k -T eats:-v,he:-k

eats:+D -v,he::-D -k

eats:+D -v

eats::+V +D -v,ǫ::-V

eats::+V +D -v ǫ::-V

he::-D -k

The fact that [before he eats] is a specifier is indicated by the non-lexical sta-
tus of the selector [ǫ:+P +v -v,laughs:-v,he:-k,before he eats:-P]. Since SpIC
blocks any extraction from specifiers, we do not need to separately stipulate
that adjuncts are islands. So if we introduce right and left X-adjuncts of Y
with lexical items of the formǫ::+X+Y+X-X, or ǫ::+X+Y-X, respectively (or
with any processes that yields similar structure), we get the desired properties

S   / 165

for adjuncts: optionality, iterability, and opacity to extraction. This sets the
stage for the special treatment of adjunct control.

Since the proposed treatment of adjuncts makes them opaque to extraction,
while the proposed treatment of control makes it an extraction relation, we
should not get control into adjuncts, but we do:

hei laughs beforeei eating

Hornstein notices that a slight tweak on our mechanisms can let this kind of
case through without allowing other kinds of adjunct extractions. Roughly, if
we derive the modifier [beforeei eating,{he}] which wants to attach to a v,
and then we derive a v that is looking for a D, we can allow [he] to ‘move
sideways’ onto the v before inserting it into the derivation. This step can be
presented in logicians’ style, as the inference from the expressions above the
line to the one below:

before eating : -P, {he : -D-k} ǫ : +v+P+v-v, ∅ laughs :+D-v, ∅
laughs before eating : -v, {he : -D-k}

We express this step more generally as follows. In a grammar that contains
left X-adjuncts of Y, that is, it has some

r = ǫ::+X+Y+X-X

we extend the (ins) relation so that it also applies to ((p, {a}), (q,S)) in the
exceptional case wherep and q can be chained together byr, usinga as
follows:

match(q, a) = (b,T),
match(r, b) = (c,U),
match(c, p) = (e,V), and
match(e, f) = (g,W) for f ∈ U.

Notice that the adjoining elementr is introduced in the second step to have
its 3 initial features checked in sequence. In this special case, let

ins((p,S), (q,T)) = (g,S ∪ T ∪ (U − { f }) ∪ V ∪W).

Control into right X-adjuncts of Y can be defined similarly, using the lexical
item ℓ = ǫ::+X+Y-X, checking its 2 initial features in sequence. With this
extension, we obtain:

166 / E P. S

he laughs before eating:-C

ǫ::+T -C,he laughs before eating:-T

ǫ::+T -C he laughs before eating:-T

laughs before eating:+k -T,he:-k

ǫ::+v +k -T,laughs before eating:-v,he:-k

ǫ::+v +k -T laughs before eating:-v,he:-D -k

laughs:+D -v

laughs::+V +D -v,ǫ::-V

laughs::+V +D -v ǫ::-V

before eating:-P,he:-D -k

before::+v -P,eating:-v,he:-D -k

before::+v -P eating:-v,he:-D -k

eating:+D -v,he::-D -k

eating:+D -v

eating::+V +D -v,ǫ::-V

eating::+V +D -v ǫ::-V

he::-D -k

Example 4: Head movementis similar to adjunct control in relating con-
stituents that do not c-command each other, but, unlike control, we want just
the phonetic parts of the heads to move while their projections are developed
in their original positions. Nevertheless, there is an application of the side-
ward movement idea that avoids splitting all phrases kept into triples so that
the head can be separate when the phrase is complete, as was done in Stabler
(2001).

We extend match so that, when the category of -s::α is comp-selected by
t::β and t-s is morphologically well-formed,

p q match(p,q)

-s::α t::β ǫ::α,{t-s::β} suffix left adjoins lower head
s-::α t::β ǫ::α,{s-t::β} prefix right adjoins lower head

And then, when match(q, p) is defined by one of (i-xviii) we bring the adjunc-
tion up:

p q match(p,q)

p q q,{p} higher head promoted

With these extensions, we get derivations like the following:

S   / 167

habl- -ǫ -an -ǫ ustedes espanol::-C

habl- -ǫ -an -ǫ::+T -C,ustedes espanol::-T

ustedes espanol::-T,habl- -ǫ -an -ǫ::+T -C

espanol::+k -T,ustedes::-k,habl- -ǫ -an -ǫ::+T -C

ǫ::+v +k -T,espanol::-v,ustedes::-k,habl- -ǫ -an -ǫ::+T -C

-ǫ::+T -C habl- -ǫ -an::+v +k -T,espanol::-v,ustedes::-k

espanol::-v,habl- -ǫ -an::+v +k -T,ustedes::-k

espanol::+D -v,habl- -ǫ -an::+v +k -T,ustedes::-D -k

espanol::+D -v,habl- -ǫ -an::+v +k -T

ǫ::+V +D -v,habl- -ǫ -an::+v +k -T,espanol:-V

-an::+v +k -T habl- -ǫ::+V +D -v,espanol:-V

espanol:-V,habl- -ǫ::+V +D -v

ǫ:+k -V,espanol::-k,habl- -ǫ::+V +D -v

ǫ:+D +k -V,espanol::-D -k,habl- -ǫ::+V +D -v

ǫ::+D +k -V,habl- -ǫ::+V +D -v

-ǫ::+V +D -v habl-::+D +k -V

espanol::-D -k

ustedes::-D -k

No revisions of completed structure are needed, and there isno need to treat
every phrase as a triple of strings.

12.3 Expressive power and recognition complexity
Previous studies have shown that head movement, though it may seem like
a small thing in informal presentations, allows the definition of non-context
free patterns even when there is no phrasal movement in the grammar. But the
translation froms tos defined by Michaelis (2001) is easily adapted
to show that grammars without copying all define definable lan-
guages. There are various theory-internal arguments for copying in grammar,
and various ways to implement them (Stabler, 2004b). See forexample Nunes
(2001) and Kobele (2006) for some empirical arguments in support of rather
powerful copy operations. The addition of copy features makes it easy to
define non-semilinear languages likea2n

, but a straightforward extension of
Michaelis’s translation to these cases shows that they are-definable, and
hence polynomially recognizable.

12.4 Conclusions
This paper does not attempt to resolve the controversy over whether move-
ment analyses of obligatory control are empirically well-motivated (Landau,
2003, Boeckx and Hornstein, 2004), but provides a formalization of some
parts of these ideas that can be rigorously studied.

168 / E P. S

Althoughs can be regarded as extendings, notice that they differ
in a number of significant respects: (1)s extend the domain of move-
ment just slightly to offer tightly constrained treatments of obligatory control
and head movement. Future work may find ways to make these constraints
more general and natural. And there are regularities in the definition ofmatch
that should allow a more elegant statement. (2)s are bound by SMC, while
s also are required to respect SpIC and Proper, and future work may pro-
vide further additions. (3) To handle head movement,s require either extra
rules for head movement (Michaelis, 2001) or else one of the approaches
mentioned in the introduction.s allow head movement with a simple
mechanism analogous to the sideward mechanisms used for control. (4) s
have no copy operation, and while none of the analyses above depend on
it, s allow copying. That is, we have presented a treatment of sideward
movement that does not rely in any way on the copy theory of movement for
its appeal. In the present setting, sideward movement is a natural option not
because we already have operations on copies, but because wealready have
operations on moving phrases (the original phonetic materials, not copies).
s are naturally extended to allow copying though, setting the stage for
studying proposals about overt copying (Boeckx et al., 2005, for example) –
unfortunately beyond the scope of this short report. All themechanisms pro-
posed here are obtained in the well-understood and feasiblespace of-
definable languages.

References
Boeckx, Cedric and Norbert Hornstein. 2004. Movement undercontrol. Linguistic

Inquiry 35(3):431–452.

Boeckx, Cedric, Norbert Hornstein, and Jairo Nunes. 2005. Overt copies in reflexive
and control structures: A movement analysis. InWorkshop on New Horizons in the
Grammar of Raising and Control, Harvard University.

Bowers, John S. 1973.Grammatical Relations. Ph.D. thesis, Cambridge, Mas-
sachusetts, Massachusetts Institute of Technology.

Buszkowski, Wojciech. 2001. Lambek grammars based on pregroups. In P. de Groote,
G. Morrill, and C. Retoré, eds.,Logical Aspects of Computational Linguistics, Lec-
ture Notes in Artificial Intelligence, No. 2099. NY: Springer.

Casadio, Claudia and Joachim Lambek. 2002. A tale of four grammars.Studia Logica
71(3):315–329.

Frey, Werner and Hans-Martin Gärtner. 2002. On the treatment of scrambling and
adjunction in minimalist grammars. InProceedings, Formal Grammar’02. Trento.

Harkema, Henk. 2001.Parsing Minimalist Languages. Ph.D. thesis, University of
California, Los Angeles.

R / 169

Hornstein, Norbert. 1999. Movement and control.Linguistic Inquiry30:69–96.

Hornstein, Norbert. 2001.Move! A Minimalist Theory of Construal. Oxford: Black-
well.

Hornstein, Norbert. 2006. On control. In R. Hendriks, ed.,Contemporary Grammati-
cal Theory. Oxford: Blackwell. Forthcoming.

Joshi, Aravind K. and Yves Schabes. 1997. Tree-adjoining grammars. In G. Rozen-
berg and A. Salomaa, eds.,Handbook of Formal Languages, Volume 3: Beyond
Words, pages 69–124. NY: Springer.

Kallmeyer, Laura. 1999.Tree Description Grammars and Underspecified Represen-
tations. Ph.D. thesis, Universität Tübingen.

Kobele, Gregory M. 2006. Deconstructing copying: Yoruba pred-
icate clefts and universal grammar. Presented at the LSA.
http://www.linguistics.ucla.edu/people/grads/kobele/papers.htm.

Kühnemann, Armin. 1999. Comparison of deforestation techniques for functional
programs and for tree transducers. InFuji International Symposium on Functional
and Logic Programming, pages 114–130.

Landau, Ido. 2003. Movement out of control.Linguistic Inquiry34(3):471–498.

Lecomte, Alain and Christian Retoré. 1999. Towards a minimal logic for minimalist
grammars. InProceedings, Formal Grammar’99. Utrecht.

Maneth, Sebastian. 2004.Models of Tree Translation. Ph.D. thesis, Universiteit Lei-
den.

Michaelis, Jens. 2001.On Formal Properties of Minimalist Grammars. Ph.D. thesis,
Universität Potsdam.Linguistics in Potsdam 13, Universitätsbibliothek, Potsdam,
Germany.

Nunes, Jairo. 2001. Sideward movement.Linguistic Inquiry32:303–344.

Polinsky, Maria and Eric Potsdam. 2002. Backward control.Linguistic Inquiry
33:245–282.

Rambow, Owen. 1994.Formal and computational aspects of natural language syn-
tax. Ph.D. thesis, University of Pennsylvania. Computer and Information Science
Technical report MS-CIS-94-52 (LINC LAB 278).

Rambow, Owen, K. Vijay-Shanker, and David Weir. 2001. D-tree substitution gram-
mars.Computational Linguistics27(1):87–121.

Reuther, Stefan. 2003. Implementing tree transducer composition for the Glasgow
Haskell compiler. Diplomarbeit, Technische UniversitätDresden.

170 / E P. S

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and TadaoKasami. 1991. On
multiple context-free grammars.Theoretical Computer Science88:191–229.

Stabler, Edward P. 2001. Recognizing head movement. In P. deGroote, G. Morrill,
and C. Retoré, eds.,Logical Aspects of Computational Linguistics, Lecture Notes
in Artificial Intelligence, No. 2099, pages 254–260. NY: Springer.

Stabler, Edward P. 2004a. Tupled pregroup grammars. UCLA. Available at
http://www.linguistics.ucla.edu/people/stabler/epspub.htm.

Stabler, Edward P. 2004b. Varieties of crossing dependencies: Structure dependence
and mild context sensitivity.Cognitive Science93(5):699–720.

Stabler, Edward P. and Edward L. Keenan. 2003. Structural similarity. Theoretical
Computer Science293:345–363.

13

English prepositional passives in HPSG
J T

Abstract
This paper provides a detailed syntactic description of English prepositional passives

(also known as “pseudopassives”) and discusses their formal treatment in HPSG. The
empirical overview includes a discussion of the familiar (but unformalizable) notion of
semantic cohesiveness, as well as new observations about the possibility of elements
intervening between V and P. Two formal approaches to the syntactic aspects of the
problem are then outlined and compared—one relying on lexical rules, the other taking
advantage of HPSG’s capacity to express constraints on constructions.

Keywords P, , , HPSG, , -


13.1 Empirical observations
English has an exceptionally rich variety of preposition stranding phenomena,
perhaps the most striking of which is the prepositional passive—the possibil-
ity of passivizing the object of a preposition instead of thedirect object of a
verb.

(24) a. You can rely [on David] to do get the job done.
b. Davidi can be relied onti to get the job done.

Here the NPDavid, initially the complement ofon, is realized as the subject
of the passive verbrelied, leaving the preposition behind.1

It is often suggested that the underlined verb and preposition in this con-
struction form a kind of “compound”, an intuitive notion that is open to many

1I will occasionally use the symbol “t” to mark the “deep” position of the passive subject, in
cases where there might be ambiguity. This is deliberately reminiscent of NP-trace in transforma-
tional analyses, but here it should be understood only as a expository device with no theoretical
strings attached.

171

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

172 / J T

formal interpretations. I will begin by presenting some attempts to character-
ize the phenomenon in semantic terms, before turning to the syntactic aspects
of the structure, which will be the main focus of the rest of the paper.

13.1.1 Semantic cohesion

One semantic approach that dates back at least to the classicdescriptions of
Poutsma and Jespersen is the idea that the prepositional passive is possible if
there is a high degree of “cohesion” between V and P. Variantsof this position
can be found in modern grammars (e.g., Quirk et al., 1985) andin theoreti-
cal work on preposition stranding phenomena (see Hornsteinand Weinberg
(1981), who propose that V and P must form a “natural predicate” or a “pos-
sible semantic word”). The most accessible indicator of semantic cohesion is
the possibility of replacing the V+P sequence by a single-word synonym:

(25) David can be relied on; trustedto get the job done.

But this criterion can easily be shown to be unreliable indicator of passiviz-
ability. In particular, many perfectly natural-sounding prepositional passives
have no appropriate corresponding one-word synonym (26). Conversely, re-
placing an ordinary passivized transitive verb by a synonymous V+P combi-
nation often produces a degraded result (27), although as discussed below, I
do not consider such prepositional passives to be syntactically ill-formed.

(26) That bridge is too low to be sailed under/*undersailed/*underpassed/
*undergone.

(27) a. I was approached(by a complete stranger).

b. ??I was moved/come/walked towards(by a stranger).

It has also been observed that V+P sequences with abstract, transferred, or
metaphorical meaning are more cohesive (i.e., they are morelikely to allow
the prepositional passive) than concrete, literal uses of the same sequence:

(28) a. An acceptable compromise was finally arrived at.

b. ??A picturesque mountain village was finally arrived at.

The difference in acceptability between these two examples must be due to
non-syntactic factors, since under normal assumptions they receive identical
syntactic analyses. Similarly, semantically non-compositional and idiomatic
V+P combinations should be expected to be more cohesive and give rise to
good prepositional passives, and this is generally the case. The usefulness of
these observations for the current study is limited, however, because preposi-
tional passives formed from fully compositional, concreteV+P sequences are
generally grammatical, too. They may have relatively degraded acceptability
as isolated examples, like (28b), or they can be completely unproblematic,
like (26).

E    HPSG/ 173

Other authors have attempted to approach the prepositionalpassive by
looking at the semantic properties of the targeted oblique NP. Bolinger (1977,
1978) proposes that this NP can become the passive subject ifit refers to a
strongly “affected” patient. As Riddle and Sheintuch (1983) note, no satisfac-
tory definition is provided for this “dangerously wide” notion, and it is easy
to find examples of grammatical prepositional passives where affectedness is
not involved. Their own functional account (relying on the notion of “role
prominence”) is equally vague.2

Cohesion and affectedness are of course gradient properties, and they can
no doubt be decomposed into more primitive, interacting factors. For exam-
ple, modality, tense, and negation have all been found to influence the accept-
ability of the prepositional passive. Furthermore, examples that are dubious
in isolation can always be improved with an enlarged context.

In this paper I make the simplifying assumption that any V+PP combina-
tion can give rise to asyntacticallywell-formed prepositional passive. The ac-
ceptability of the resulting structure, however, is conditioned by non-syntactic
restrictions that are not well enough understood to be incorporated into a for-
mal analysis. Existing semantic accounts may be intuitively appealing but
they lack a precise, empirical basis, especially if we take into account the pre-
dominant role of context. It is also clear that more or less idiosyncratic lexical
properties associated with specific V+P combinations are a major determin-
ing factor in the acceptability of the prepositional passive; I will abstract away
from such considerations in the following, primarily syntactic discussion.

13.1.2 Adjacency

A directly observable sign that V and P form a kind of “compound” in prepo-
sitional passive constructions is the fact that the insertion of adverbs and other
material between V and P is generally disallowed, whereas various kinds of
intervening elements are possible between V and PP in the corresponding
active structure:

(29) We rely increasingly[on David]; *David is relied increasinglyon.

This evidence suggests a constraint on syntactic structureand/or surface word
order.3 This restriction could be formalized by introducing a word order con-
straint requiring V and P to be adjacent in the passive case, but for various
reasons this approach would be inadequate.

2They themselves note that it is “impossible to offer an algorithm for determining what causes
some entity or concept to be viewed as role prominent.”

3Note that preposition stranding by extraction is much freerin this respect (although there are
restrictions, probably of a prosodic nature):

(i) We rely increasingly[on David] ; Who do we rely increasinglyon?

174 / J T

The specifierright, for instance, is possible with some spatial and temporal
Ps:4

(30) Mr. Cellophane may be looked rightthrough, walked rightby and never
acknowledged by those who have the audacity to suppose that they
cannot be looked rightthrough.

Similar examples can be found with other PP specifiers (straight, clear, etc.),
so this is not a lexical idiosyncrasy of the wordright. And in fact, in cases
like these, where the preposition has clear relational meaning, a wider variety
of modifiers can (quite marginally) appear between V and P in the passive:

(31) The bridge must be ??walked halfwayacross, ??sailed completelyun-
der, or ??driven quicklyover (for the point to be awarded).

Unlike PP specifiers, which must appear immediately the leftof P, the place-
ment of the modifiers in this example is clearly “non-optimal”, since they
could also appear after P instead, leaving V and P adjacent. There are obvi-
ously semantic factors at work here that need to be explored further. From a
syntactic point of view, adjacency of V and P is not a strict requirement; I
will assume in this paper, in particular, that P can combine with a specifier or
a modifier to its left.

Nominal elements can also separate V and P in the prepositional passive.
It is well known that passives can be formed from some fixed expressions and
light verb constructions containing a bare N or full NP:

(32) a. We were opened fireon, made foolsof, paid attentionto, taken
unfair advantageof.

b. ?That product can’t be made a profitfrom.

The commonly accepted assumption is that ordinary NP objects cannot ap-
pear between V and P, and the prepositional passive is indeedquite bad in
most examples of this type:5

(33) Samuel explained a complicated theoremto David.; ??David was ex-
plained a complicated theoremto.

A richer context can significantly improve such examples, however, and some
examples of the same structure [V NP P] are unexpectedly goodeven with
minimal context:

4This example is from a letter to the editor of theBradford Telegraph& Argus(5 June 2003),
referring to lyrics from a song: “Mr. Cellophane shoulda been my name, ’cause you can look
right though me, walk right by me, and never know I’m there.”

5Again, the contrast with extraction constructions is striking:

(i) Samuel explained a complicated theoremto David. ; Who did Samuel explain
a complicated theoremto?

E    HPSG/ 175

(34) ?[To be whispered such dirty innuendoes about] would beenough to
drive anyone crazy.

According to Bolinger (1977, 1978), the underlined direct object in this sen-
tence functions as part of the predicate, and the passive subject (left unex-
pressed here) is strongly “affected” by being whispered-dirty-innuendoes-
about. Another proposal by Ziv and Sheintuch (1981) requires such inter-
vening direct objects to be “non-referential”. This is a reasonable characteri-
zation of the idiomatic examples in (32), but in order to accommodate cases
like (34), the authors are forced to broaden the commonly understood notion
of non-referentiality considerably, and to admit that it is“not a discrete prop-
erty”. In the end, the acceptability of this kind of prepositional passive (and
of all prepositional passives, for that matter) depends primarily on context,
and on usage and frequency effects associated with specific lexical items (or
combinations of lexical items).

What is clear is that there can be no strict structural constraint against the
presence of a direct object in the prepositional passive construction (e.g., an
adjacency condition). We can also demonstrate that the ungrammaticality of
the prepositional passive in cases like (33) is not due to thelinear position
of the direct object (between V and P). Even if the object is realized in a
different position, making V and P adjacent, the prepositional passive does
not become more acceptable. On the contrary, the passive examples below,
with V adjacent to P, are worse than example (33) above, with intervening
NP:

(35) a. Samuel explained to David [a fantastically complicated theorem
about the price of cheese]. (heavy NP shift)

b. *Davidi was explained toti [a fantastically complicated theorem
about the price of cheese].

(36) a. the theorem that Samuel explained to David/ Which theorem did
Samuel explain to David? (extraction)

b. *the theorem that Davidi was explained toti / *Which theorem was
Davidi explained toti?

Furthermore, in cases like (32), where an intervening direct object is un-
problematic, there appears to be a sort of “anti-adjacency”condition on V and
P. Although the direct object can be realized in various positions in the active
voice, in the prepositional passive itmustappear between V and P:

(37) a. the unfair advantage that [they took of us]/ How much advantage
did they take of us? (extraction)

b. *the unfair advantage that [we were taken of]/ *How much advan-
tage were we taken of?

176 / J T

(38) a. We could make from this product [the kinds of profits that no one
has ever dreamed of] (heavy NP shift)

b. *This producti could be made fromti [the kinds of profits that no
one has ever dreamed of].

Based on these observations, I make the following assumptions for the re-
mainder of this paper:

. The prepositional passive is syntactically compatible with the presence of
a direct object.. The direct object must be realized in its canonical positionbetween V and
P.. The acceptability of the prepositional passive is ultimately determined by
non-syntactic factors that (for now) resist formalization.

To my knowledge, only one other kind of element can intervenebetween
V and P in the prepositional passive: When a phrasal verb is involved, its
particle must appear in this position:

(39) a. This situation will simply have to be put upwith t.

b. The loss in speed can be made upfor t by an increase in volume.

This is unsurprising, given the strong restrictions on particle placement in
English. In the active voice, the particle must be realized closest to the verb
(in the absence of a direct object); this constraint continues to apply in the
passive.6

13.1.3 Further observations

Most of the examples given so far involve passive subjects originating in com-
plement PPs, but it is clear that prepositional passives canalso be formed from
[V + adjunct PP] structures:

(40) a. This bed has not been slept in.

b. David always takes that seat in the corner because he hatesbeing
sat next to.

The most common sources are temporal and locative modifiers,but we also
find other PPs, like instrumentalwith-phrases. Again, I will not attempt to
identify or formalize the relevant semantic and lexical constraints. For the

6Examples of verbs selecting a particle, a direct object, anda PP at the same time show
that the relative order of the particle and the object remains the same in the active and in the
prepositional passive:

(i) a. They kept an eyeout for David.; David was kept an eyeout for.
b. *They kept outan eyefor David.; *David was kept outan eyefor.

E    HPSG/ 177

moment, I simply note that the possibility of passivizing out of adjuncts con-
stitutes a crucial difference between the prepositional passive and the ordinary
passive.7

We might also wonder if there is any difference between the two passives
in terms of their morphological effects, given that they target different (but
overlapping) sets of verbs. In particular, the prepositional passive applies to
intransitive verbs likesleepor go, and to prepositional verbs likerely, which
never undergo ordinary passivization. For verbs that do participate in both
types of passivization, we might ask if two distinct morphological operations
can be identified. In fact, there is no evidence for this. In every case, the same
participial form is used in both constructions:

(41) a. The pilot flew the airplane under the bridge.; The airplane was
flown t under the bridge. (ordinary passive)

b. The pilot flew under the bridge.; The bridge was flownundert.
(prepositional passive)

It is not the case that (say) a strong participleflown is used for the ordinary
passive, while a weak form *flied is used in the prepositional passive. Both
passives require a form of the verb identical to the past participle.8

Finally, I briefly discuss the formation of deverbal adjectives from passive
V+P sequences:

(42) a. our effective, relied-uponmarketing strategy

b. a first novel from an as yet unheard-ofauthor

This is sometimes taken as an additional argument for “cohesion” between
V and P in the prepositional passive. For example, Hornsteinand Weinberg
(1981) use it to motivate the semantic notion of “possible word”. It is unclear,
however, what these adjectives can tell us about the passivestructures they
derive from, since they are evidently subject to additionalconstraints. Not all
prepositional passives can be used to derive prenominal adjectives:

(43) a. ??a sailed-under bridge, *a sat-beside grouch

7NP adjuncts, for any number of reasons, cannot passivize like direct objects:

(i) The children slept three hours.; *Three hours were slept (by the children).

8One apparent counterexample is the following pair:

(i) a. They laid the sleeping child on the rug.; The child was laidt on the rug.
b. The child lay on the rug.; ?The rug was lain/laid on t by the child.

Here is looks as if a single verb can have a special participial form lain in the prepositional
passive. But in fact two distinct verbs are involved in theseexamples: transitivelay (with past
participlelaid) vs intransitivelie (past participle ?lain/laid). This pair causes confusion and hesi-
tation for most speakers in the past and perfect. It is safe tosay, however, that no speaker merges
the two into a single verb while maintaining distinct passive forms as in (41).

178 / J T

b. *a taken unfair advantage of partner, *an opened fire upon enemy
camp

c. ??a put-up-with situation, ??a made-up-for loss

Some of these examples could be improved with more context, but they all
clearly have a degraded status with respect to their fully acceptable verbal
counterparts. This is particularly true for the examples with an NP or parti-
cle intervening between V and P. The data suggest strongly that adjectival
derivation is not a truly productive process, but is more or less lexicalized on
a case by case basis. This could perhaps be accounted for witha usage-based
model, but I will not pursue this idea any further here.

13.2 Implications for an HPSG analysis
13.2.1 Modularity

The normal passive construction (with the direct object NP “promoted” to
subject) is standardly handled as a lexical phenomenon in HPSG, either using
a lexical rule deriving the passive participle from an active base verb (Pollard
and Sag, 1987), or by assuming an underspecified verbal lexeme that can be
resolved to either an active or a passive form with the appropriate linking
constraints (Davis and Koenig, 2000).

A number of other approaches can be imagined and technicallyimple-
mented within the framework, although they have never been seriously ex-
plored. For example, passive verbs could have the same syntactic valence as
active verbs, if new syntactic combination schemas were added that realized
their  element (direct object) in subject position and their element
as a coindexedby-phrase. This analysis assumes a different division of labor
between lexical information and syntactic operations, butit does not seem to
present any advantages in return for the additional complexity it introduces.

A more radical solution would be to approximate the old transformational
analysis within HPSG. A recent trend in the framework (most fully devel-
oped in Ginzburg and Sag (2001)) is the use of constructionalconstraints, a
departure from the original emphasis (perhaps over-emphasis) on lexical de-
scriptions as the driving force behind syntactic derivation. One characteristic
of the constructional approach is a reliance on nonbranching (“head-only”)
syntactic rules. Such rules can potentially be used to encode arbitrarily ab-
stract syntactic operations, from a simple change of bar level (e.g., X0 to XP),
to a coercion of one syntactic category into another (e.g., Sto NP), or in our
case, even the transformation of an active clause into a passive clause.

This last proposal would be soundly rejected by linguists working in
HPSG, for violating various well-motivated locality and modularity princi-
ples. In particular, a syntactic rule should not be able to refer to or arbitrarily
modify the phonological, morphological, or internal syntactic structure of the

E    HPSG/ 179

constituents it manipulates. The proposed non-branching passive transforma-
tion rule would have to do all of the above. The problem is thatthese locality
and modularity principles cannot be formally enforced in HPSG; they have
the status of conceptual guidelines that responsible practitioners of the theory
agree to follow by convention. Of course, this is a fundamental issue that
is relevant for all grammatical frameworks, and rarely addressed. But the
“all-in-one” sign-based architecture that constitutes the principal strength of
HPSG, also makes it particularly easy to fall afoul of these basic principles.
In the case of the passive, a constraint requiring non-branching rules to leave
the and values unchanged would be enough to inval-
idate the undesirable transformational analysis. But thisis nothing more than
an artificial stipulation, covering only a small subset of cases, and the more
general theoretical question remains.

13.2.2 Adjunct analyses

For the ordinary passive construction, a strictly lexical analysis is available,
because it only needs to refer to the subject and direct object, both of which
are present in the lexically defined “argument structure” (encoded in the-
 list). The fact that PP adjuncts can be involved in prepositional passives
(recall the examples in (40)), however, makes a lexical approach to the phe-
nomenon more problematic. This is because information about the identity
of eventual adjuncts is not normally available at the lexical level, at least not
according to the original assumptions of HPSG. A technical work-around to
this problem is possible, in the form of the list of Bouma et al.
(2001). This list, whose value is defined as the lexical- extended by
zero or more (underspecified) adjuncts, was introduced in order to allow a
uniformly head-driven analysis of extraction from complement and adjunct
positions.

This result is made possible basically by treating some adjuncts as com-
plements, from a syntactic point of view. This reverses the direction of se-
lection in adjunct structures: The head now selects these adjuncts, in com-
plete contrast to the treatment of adjuncts in Pollard and Sag (1994). This
move potentially introduces significant problems for semantic composition.
Levine (2003) discusses a problem involving adjuncts scoping over coordi-
nated structures, and argues for a return to the earlier HPSGapproach, with
adjuncts introduced at the appropriate places in the syntactic derivation (per-
haps as empty elements, if they are extracted). Sag (2005) offers a response,
requiring modifications to the proposal by Bouma et al. but maintaining the
treatment of certain adjuncts as elements selected lexically by the head (and
a traceless analysis of extraction).

180 / J T




[
 base

]


〈
NPi , 1 (Prt∨ NP[canon]), PP

〉
⊕ 2

 7→




[
 passive

]



〈
NPj , 1 , P

[


〈
NPj

〉]〉
⊕ 2 ⊕

〈
PPi [by]

〉



FIGURE 1 Prepositional Passive LR

13.2.3 Prepositional passive: lexical approach

In light of this active controversy, any phenomenon involving adjuncts can be
approached in two very different ways in HPSG. At first sight, the adjuncts-
as-complements approach seems more appropriate for the prepositional pas-
sive, precisely because it targets complement and adjunct PPs in the same
way. The lexical rule in Figure 1 takes as input a base form (active voice) verb
with a PP on its list and outputs a passive participle with a speci-
fication custom-built to generate the prepositional passive: The first element
on  is the subject, followed optionally by a particle or a directobject.9

The direct object, if present, is constrained to be canonical, to account for
the data in (37–38) above. (An extracted or extraposed/shifted phrases would
correspond instead to a non-canonical subtype ofsynsem.) The crucial oper-
ation in this lexical rule is the replacement of a saturated PP (complement
or adjunct) in the input by a-unsaturated P in the output description.
The unrealized complement of the preposition is coindexed with the passive
subject NP, and the original subject is optionally realizedin aby-phrase, as in
the ordinary passive construction.

The complexity and ad hoc nature of this rule is perhaps forgivable, given
the highly exceptional status of the phenomenon it models. On the other hand,
the proposal fails to capture what is common to the prepositional passive and
the ordinary passive. In fact, most aspects of the prepositional passive could
be handled by the existing rule for the ordinary passive, which already pro-
vides a mechanism for: promoting a non-subject NP to subjectposition, de-
moting the subject NP to an optionalby-phrase, and ensuring the appropriate
morphological effects (identical for both kinds of passive, as confirmed in
§13.1.3). For this to work, the NP complement of P must be made available
directly on the list of the base verb (by applying argument raising, famil-
iar from HPSG analyses of French and German non-finite constructions10) so

9This simplified formulation does not accommodate structures containing both a particle and
an object (recall fn. 6).

10E.g., Hinrichs and Nakazawa (1994) and Abeillé et al. (1998).

E    HPSG/ 181

it can be input to the general passive rule. But this means introducing a sys-
tematic ambiguity between the sublists〈PP〉 and〈P, NP〉 in the value of
the active form of the verb, giving rise to two structures:

(44) a. VP

V

rely
[ 〈NP, PP〉]

PP

on David

b. VP

V

rely
[ 〈NP, P, NP〉]

P

on

NP

David

The unwanted analysis (44b) should be blocked, although we need this
version of the verbrely in order to generate the prepositional passivewas
relied on. One straightforward way to achieve this would be to add the speci-
ficationnon-canonicalto the second NP element on the verb’s list. This
would make it impossible for it to be realized as a complement, as in (44b),
but we would still have spurious ambiguity in extraction constructions (where
the NP is in fact non-canonical). A more adequate solution would be to en-
rich the hierarchy ofsynsemsubtypes to encode the syntactic function of the
corresponding phrase. This would then allow us to state the appropriate con-
straint (e.g., “¬comps-synsem”).11

This analysis of the prepositional passive is still incomplete, because the
insertion of intervening modifiers between V and P must be restricted; recall
the discussion of example (29). The lexical operations proposed so far ma-
nipulate the list, a rather abstract level of representation that cannotbe
used to express constraints on surface word order. The required constraints
therefore have to be formulated separately.

13.2.4 Prepositional passive: syntactic approach

A more radical treatment can be developed for the prepositional passive by
combining the earlier HPSG approach to adjuncts (as unselected elements
introduced in the syntax) and the more recent trend of constructional analysis.

Figure 2 sketches a special head-adjunct rule that can be used to construct
the adjunct-based examples in (40). As in an ordinary head-adjunct phrase,
semantic composition is handled via selection. But this rule is extraor-
dinary in that it requires the adjunct to be-unsaturated, and it specifies
the coindexation of the unrealized complement of P and the as-yet-unrealized
subject of the resulting VP. The rule also imposes special constraints on the
head daughter. The sign typecore-vpis defined to be compatible with a bare
V, or a combination of V with a particle and/or a direct object. In other words,
as soon as a verb combines with a non-nominal complement or any kind of

11This can be thought of as a very weak kind of inside-out constraint (as used in LFG, and
reinterpreted for HPSG by Koenig (1999)).

182 / J T


 |  passive


〈
NPj

〉


-

1



core-vp
 list(¬ Prt∧ ¬ NP)


{}



-





prep
 1




〈
NPj

〉



FIGURE 2 Constructional rule for adjunct prepositional passives

modifier, the resulting phrase is no longer acore-vp. This constraint (which
constitutes a minor violation of locality principles) determines what can and
cannot intervene between V and P in the prepositional passive, as discussed
in §13.1.2 The negative constraint on the head daughter’s list and the
empty specification ensure that the particle and object (if any) are ac-
tually realized within thecore-vp.12 There is no particular constraint on the
internal structure of the adjunct daughter: It can be eithera bare preposition,
or a phrasal projection including a specifier or a modifier.

A number of additional details need to be worked out; in particular, some
aspects of passivization (e.g., morphological effects) must still be dealt with
at the lexical level. It should also be noted that a similar special version of
the head-complement rule is needed for prepositional passives involving PP
complements, although it is possible to factor out the shared aspects of the
two constructional rules; this is precisely the advantage of the hierarchical
approach to constructions in HPSG. These preliminary observations suggest
that the constructional treatment provides a more satisfactory account of the
phenomenon than the lexical approach. Additional questions for further work
include a comparison with the prepositional passive in Scandinavian, and a
search for similar phenomena anywhere outside of the Germanic family.

References
Abeillé, Anne, Danièle Godard, and Ivan A. Sag. 1998. Two kinds of composition

in French complex predicates. In E. Hinrichs, A. Kathol, andT. Nakazawa, eds.,
Complex Predicates in Nonderivational Syntax, vol. 30 of Syntax and Semantics,
pages 1–41. New York: Academic Press.

Baltin, Mark and Paul M. Postal. 1996. More on reanalysis hypotheses.Linguistic
Inquiry 27:127–145.

12This presupposes a return to syntactic amalgamation, as in the original HPSG Non-
local Feature Principle.

R / 183

Bolinger, Dwight. 1977. Transitivity and spatiality: The passive of prepositional verbs.
In A. Makkai, V. B. Makkai, and L. Heilmann, eds.,Linguistics at the Crossroads,
pages 57–78. Lake Bluff, IL: Jupiter Press.

Bolinger, Dwight. 1978. Passive and transitivity again.Forum Linguisticum3:25–28.

Bouma, Gosse, Rob Malouf, and Ivan A. Sag. 2001. Satisfying constraints on extrac-
tion and adjunction.Natural Language and Linguistic Theory19:1–65.

Davis, Anthony and Jean-Pierre Koenig. 2000. Linking as constraints on word classes
in a hierarchical lexicon.Language76:56–91.

Ginzburg, Jonathan and Ivan A. Sag. 2001.Interrogative Investigations: The Form,
Meaning and Use of English Interrogatives. Stanford, CA: CSLI Publications.

Hinrichs, Erhard and Tsuneko Nakazawa. 1994. Linearizing AUXs in German verbal
complexes. In J. Nerbonne, K. Netter, and C. Pollard, eds.,German in Head-Driven
Phrase Structure Grammar, vol. 46 ofCSLI Lecture Notes, pages 11–37. Stanford,
CA: CSLI Publications.

Hornstein, Norbert and Amy Weinberg. 1981. Case theory and preposition stranding.
Linguistic Inquiry12:55–91.

Koenig, Jean-Pierre. 1999. Inside-out constraints and description languages for
HPSG. In G. Webelhuth, J.-P. Koenig, and A. Kathol, eds.,Lexical and Con-
structional Aspects of Linguistic Explanation, pages 265–279. Stanford, CA: CSLI
Publications.

Levine, Robert D. 2003. Adjunct valents: cumulative scoping adverbial constructions
and impossible descriptions. In J.-B. Kim and S. Wechsler, eds.,Proceedings of the
9th International HPSG Conference, pages 209–232. Stanford, CA: CSLI Publica-
tions.

Pollard, Carl and Ivan A. Sag. 1987.Information-Based Syntax and Semantics, Vol-
ume 1: Fundamentals. Stanford, CA: CSLI Publications.

Pollard, Carl and Ivan A. Sag. 1994.Head-Driven Phrase Structure Grammar. Stan-
ford, CA: CSLI Publications. Distributed by University of Chicago Press.

Quirk, Randolph, Sidney Greenbaum, Geoffrey Leech, and Jan Svartik. 1985.A Com-
prehensive Grammar of the English Language. London: Longman.

Riddle, Elizabeth and Gloria Sheintuch. 1983. A functionalanalysis of pseudo-
passives.Linguistics and Philosophy6:527–563.

Sag, Ivan A. 2005. Adverb extraction and coordination: a reply to Levine. In S. Müller,
ed.,Proceedings of the 12th International Conference on HPSG, pages 322–342.
Stanford, CA: CSLI Publications.

Ziv, Yael and Gloria Sheintuch. 1981. Passives of obliques over direct objects.Lingua
54:1–17.

14

Linearization of affine abstract categorial
grammars
R Y

Abstract
The abstract categorial grammar (ACG) is a grammar formalism based on linear

lambda calculus. It is natural to ask how the expressive power of ACGs increases when
we relax the linearity constraint on the formalism. This paper introduces the notion of
affine ACGs by extending the definition of original ACGs, and presents a procedure for
converting a given affine ACG into a linear ACG whose language is exactly the set of
linearλ-terms generated by the original affine ACG.

Keywords A  ,  ,  -
, -  ,  -  , -
 - 

14.1 Introduction
De Groote (2001) has introducedabstract categorial grammars (ACGs), in
which both lexical entriesof the grammar as well asgrammatical combi-
nationsof them are represented by simply typed linearλ-terms. While the
linearity constraint on grammatical combinations is thought to be reasonable,
admitting non-linearλ-terms as lexical entries may allow ACGs to describe
linguistic phenomena in a more natural and concise fashion.

On the other hand, de Groote and Pogodalla (2003, 2004) have shown that
a variety of context-free formalisms, namely, context-free grammars, linear1

context-free tree grammars (linear CFTGs)2 and linear context-free rewrit-

1This paper lets the term “linearity” mean non-duplication and non-deletion. Thus “lin-
ear CFTGs” means non-duplicating non-deleting CFTGs here,though usually “linear CFTGs”
means non-duplicating CFTGs.

2See also Kanazawa and Yoshinaka (2005) for complete proof ofencodability of linear

185

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.

186 / R Y

ing systems (LCFRSs), is encoded by ACGs in straightforwardways. In this
sense, ACGs can be thought of as a generalization of those grammar for-
malisms. The linearity constraint in those formalisms matches that of the
ACG formalism.

Concerning those grammar formalisms, it is known that the expressive
power does not change when the linearity constraint is relaxed to just non-
duplication, allowing deleting operations. Seki et al. (1991) have shown the
equivalence between LCFRSs and multiple context-free grammars (MCFGs),
which correspond to the relaxed version of LCFRSs that may have deleting
operations. Fujiyoshi (2005) has established the equivalence between lin-
ear monadic CFTGs and non-duplicating monadic CFTGs. Fisher’s result
(Fisher, 1968a,b) is rather general. He has shown that the string IO-languages
generated by general CFTGs coincide with the string IO-languages generated
by non-deleting CFTGs.

Along this line, extending the definition of usual linear ACGs, this paper
introducesaffine ACGs, which have BCKλ-terms as their lexical entries, and
compares the generative power of linear ACGs and affine ACGs. We present
a procedure for converting a given affine ACG into a linear ACG whose lan-
guage is exactly the set of the linearλ-terms generated by the original ACG.
Therefore, affine ACGs are not essentially more expressive than linear ACGs,
since strings and trees are usually represented with linearλ-terms.

As linear ACGs encode linear CFTGs and LCFRSs, affine ACGs encode
non-duplicating CFTGs and MCFGs in straightforward ways. For such affine
ACGs, our linearization method constructs linear ACGs which have the form
corresponding to linear CFTGs or LCFRSs. Thus, our result isa generaliza-
tion of the results we have mentioned above with the exception of Fisher’s,
which covers CFTGs involving duplication.

14.2 Preliminaries

14.2.1 Lambda-Terms

Let A be a finite non-empty set ofatomic types. The setT (A) of typesbuilt
onA is defined as the smallest superset ofA such that

. if α, β ∈ T (A), then (α→ β) ∈ T (A).

Theorder of a type is given by the function ord :T (A)→ N,

. ord(p) = 1 for all p ∈ A ,. ord((α→ β)) = max{ord(α) + 1, ord(β)}.

A higher-order signatureΣ is a triple 〈A ,C , τ〉 whereA is a finite non-
empty set of atomic types,C is a finite set of constants, andτ is a func-

CFTGs by ACGs.

L      / 187

tion from C to T (A). Theorder of the higher-order signature is defined as
ord(Σ) = max{ord(τ(a)) | a ∈ C }.

Let X be a countably infinite set ofvariables. The setΛ(Σ) of λ-terms
(termsfor short) built uponΣ and the type ˆτ(M) of a termM ∈ Λ(Σ) are
defined inductively as follows:

. For everya ∈ C , a ∈ Λ(Σ) andτ̂(a) = τ(a).. For everyx ∈X andα ∈ T (A), xα ∈ Λ(Σ) andτ̂(xα) = α.. For M,N ∈ Λ(Σ), if τ̂(M) = (α → β), τ̂(N) = α, then (MN) ∈ Λ(Σ) and
τ̂((MN)) = β.. For x ∈ X , α ∈ T (A) andM ∈ Λ(Σ), (λxα.M) ∈ Λ(Σ) andτ̂((λxα.M)) =
(α→ τ̂(M)).

For convenience, we simply writeτ instead of ˆτ and often omit the superscript
on a variable if its type is clear from the context. The notions of free variables,
closed terms,β-normal form,βη-normal form, are defined as usual (see Hind-
ley (1997) for instance). A termM is acombinatoriff M is closed andM con-
tains no constants. A termM is said to beaffine if any variable occurs free at
most once in every sub-term ofM. An affine term is said to belinear if every
λ-abstraction binds exactly one occurrence of a variable. The sets of affine
and linear terms are respectively denoted byΛaff(Σ) andΛlin(Σ). As usual, let
։β,=β,=βη, ≡ denoteβ-reduction,β-equality,βη-equality, andα-equivalence
respectively.|M|β and |M|βη respectively represent theβ-normal form and
βη-normal form. We use upper case italic lettersM,N,P, . . . for terms, late
lower case italic lettersx, y, z, . . . for variables, middle lower case italic letters
o, p, . . . for atomic types, Greek lettersα, β, . . . for types, sanserifa,A, . . . for
constants. We writeα → β → γ → δ for (α → (β → (γ → δ))), α3 → δ for
α→ α→ α→ δ, MNPQ for (((MN)P)Q), λxyz.M for (λx.(λy.(λz.M))), and
so on.

14.2.2 Abstract Categorial Grammars

Definition 12 For two sets of atomic typesA0 andA1, a type substitutionσ
is a mapping fromA0 toT (A1), which can be extended homomorphically as

σ(α→ β) = σ(α)→ σ(β).

For two higher-order signaturesΣ0 andΣ1, a term substitutionθ is a mapping
from C0 toΛ(Σ1) such thatθ(a) is closed for alla ∈ C0. For two higher-order
signaturesΣ0 andΣ1, we say that a type substitutionσ : A0 → T (A1) and
a term substitutionθ : C0 → Λ(Σ1) arecompatibleiff σ(τ0(a)) = τ1(θ(a))
holds for alla ∈ C0. A lexiconfrom Σ0 to Σ1 is a compatible pair of a type
substitution and a term substitution. A lexiconL = 〈σ, θ〉 is affine (linear)
iff θ(a) is affine (linear) for alla ∈ C0. For a lexiconL = 〈σ, θ〉, we define
θ̂ as the homomorphic extension ofθ such that̂θ(xα) = xσ(α). Indeed,̂θ(M) is

188 / R Y

always a well-typedλ-term if so isM; if M has typeα, thenθ̂(M) has type
σ(α).

Hereafter we identify a lexiconL = 〈σ, θ〉 with the functionsσ and θ̂. A
lexiconL is n-th orderif ord(L) = max{ord(σ(p)) | p ∈ A0 } ≤ n.

Definition 13 An abstract categorial grammar (ACG)is a quadrupleG =
〈Σ0,Σ1,L , s〉, where

. Σ0 is a higher-order signature, called theabstract vocabulary,

. Σ1 is a higher-order signature, called theobject vocabulary,

. L is a linear lexicon fromΣ0 to Σ1,

. s ∈ A0 is called thedistinguished type.

We sometimes call the triple〈a, τ0(a),L (a)〉 for a ∈ C0 a lexical entry, and
specify an ACG by giving the set of lexical entries and the distinguished type.

Definition 14 An ACG G = 〈Σ0,Σ1,L , s〉 generates two languages, theab-
stract languageA(G) and theobject languageO(G), defined as

A(G) = {M | M ∈ Λlin(Σ0) is a closedβη-normal term of types},

O(G) = { |L (M)|βη | M ∈ A(G) }.

The abstract language can be thought of as a set of abstract grammatical
structures, and the object language is regarded as the set ofconcrete forms
obtained from these abstract structures and the lexicon. Thus, we simply say
the language generated by an ACG for its object language. Thetermabstract
categorial languages (ACLs)means the object languages of ACGs.

Though de Groote’s original definition of an ACG requires thelexicon
to be linear, this paper allows the lexicon to be non-linear.We call an ACG
whose lexicon is affine affine ACG, and denote the class of affine ACGs by
Gaff. We then distinguish affine ACGs whose lexicons are linear, i.e., original
ACGs, by calling themlinear ACGsand letGlin denote the class of linear
ACGs. Note that the abstract language always consists oflinear terms, though
an ACG is not necessarily linear. For eachG∗ ∈ {Glin ,Gaff}, G∗(m, n) denotes
the subclass of ACGs belonging toG∗ such that the order of the abstract
vocabulary is at mostm and the order of the lexicon is at mostn. An ACG is
m-th orderif it belongs toG∗(m, n) for somen.

Example 1 Let str = o→ o andM+N be an abbreviation ofλzo.M(Nz) if the
types ofM andN arestr. Let us consider the affine ACGG = 〈Σ0,Σ1,L , s〉

L      / 189

with the following lexical entries:

x ∈ C0 τ0(x) L (x)
C n λv.v/cat//cats/
M n λv.v/mouse//mice/
J np λy.y/John/P1

R np→ s λx.x(λuv.u+ v/runs//run/)
E np2→ s λx1x2.x2(λuv.u+ v/eats//eat/) + x1(λuv.u)
A n→ np λzy.y(/a/ + zP1)P1

L n→ np λzy.y(/all/ + zP2)P2

where each/xxx/ is a constant of typestr, Pi denotesλustr
1 ustr

2 .ui , L (n) =
(str2 → str) → str, L (np) = (str → (str2 → str) → str) → str, L (s) = str.
The object languageO(G) consists of terms representing some English sen-
tences such asJohn runs, all mice run, all cats eat a mouse, and so on.

14.3 Linearization of Affine ACGs

While linear ACGs can generate languages consisting of linear terms only,
affine ACGs can generate languages containing non-linear terms. Therefore,
affine ACGs define a strictly richer class of languages than linear ACGs. How-
ever, since terms representing strings or trees are linear3, affine terms in the
object languages are not very interesting. This paper showsthat for every
G ∈ Gaff(m, n), we can constructG ′ ∈ Glin(m,max{2, n}) such that

O(G ′) = {P ∈ O(G) | P is linear} (14.8)

Moreover, in case ofm= 2, we can findG ′ ∈ Glin(2, n) satisfying the equation
(14.8). Therefore extending the definition of an ACG to allowlexical entries
affine does not enrich the expressive power of ACGs in an essential way. Be-
fore proceeding with our construction, we mention a partially stronger result
on the special case of this problem on string-generating second-order ACGs,
obtained from Salvati’s work (Salvati, 2006). He presents an algorithm that
converts a linear ACGG ∈ Glin(2, n) generating a string language into an
equivalent LCFRS (via a deterministic tree-walking transducer). Even if an
input is an affine ACGG ∈ Gaff(2, n), his algorithm still outputs an equiv-
alent LCFRS. Since every LCFRS is encodable by a linear ACG belonging
to Glin(2, 4) (de Groote and Pogodalla, 2003, 2004), therefore this entails the
following corollary.

3A string a1 . . .an on an alphabetV is represented byλzo.a1(. . . (anz) . . .) ∈ Λlin(ΣV) where
ΣV = 〈{o},V, τV〉 with τV(a) = str for all a ∈ V as in Example 1. Trees are constructed on some
ranked alphabet. A ranked alphabet〈F, ρ〉, whereF is an alphabet andρ is a rank assignment on
F, can be identified with a higher-order signatureΣ〈F,ρ〉 = 〈{o}, F, τρ〉 such thatτρ(a) = ok → o if
ρ(a) = k for all a ∈ F, and a tree is identified with a variable-free (thus linear) term of the atomic
typeo in the obvious way.

190 / R Y

Corollary 29 For every string-generating affine ACGG ∈ Gaff(2, n), there is
a linear ACGG ′ ∈ Glin(2, 4) such thatO(G ′) = O(G).

14.3.1 Basic Idea

We explain our basic idea for the linearization method for affine ACGs
through a small example. Let us consider the affine ACG G consisting of
the following lexical entries:

x ∈ C0 τ0(x) L (x)

A p→ s λwo2→o.waobo

B p λxoyo.x

whereL (s) = o andL (p) = o2 → o. Corresponding toAB ∈ A(G), we
havea ∈ O(G) by

L (AB) ≡ (λwo→o→o.waobo)(λxoyo.x)→β (λxoyo.x)aobo
։β ao. (14.9)

The occurrences of vacuousλ-abstractionλyo causes the deletion ofb in
(14.9). Such deleting operation is what we want to eliminatein order to lin-

earize the affine ACGG . Let us retypeλyo with λyo and replacebo with b
o

to
indicate that they should be eliminated. Then (14.9) is decorated by bars as

(λwo→o→o.waob
o
)(λxoyo.x)→β (λxoyo.x)aob

o
։β ao, (14.10)

where we retypewo→o→o with wo→o→o, so that the whole term is well-typed.
In our setting, when a term has a barred type, it means that theterm should be
erased duringβ-reduction steps, and vice versa. By eliminating those barred
terms and types from (14.10), we get

(λwo→o.wao)(λxo.x)→β (λxo.x)ao→β ao, (14.11)

which solely consists of linear terms. Hence, the linear ACGG ′ with the
following lexical entries generates the same language as the original ACGG .

x ∈ C ′0 τ′0(x) L ′(x)
A′ [p, o→ o→ o] → [s, o] λwo→o.wao

B′ [p, o→ o→ o] λxo.x

where [p, o → o → o] and [s, o] are new atomic types that are mapped
to o → o ando, respectively, and [s, o] is the distinguished type. We have

L (AB) = L ′(A′B′). The termλwo→o→o.waob
o
, which is led toL ′(A′), is

just one possible bar-decoration forL (A). For instance,λwo→o→o.waobo and
λwo→o→o.waobo are also possible. Bars appearing inλwo→o→o.waobo predict
that the sub-terma will be erased, andλwo→o→o.waobo predicts that no sub-
term of it will disappear. Our linearization method also produces lexical en-
tries corresponding to those bar-decorations.

L      / 191

14.3.2 Formal Definition

We first give a formal definition of the set of possible bar-decorations on a
type and a term. Hereafter, we fix a given affine ACGG = 〈Σ0,Σ1,L , s〉.
DefineΣ1 = 〈A1,C1, τ1〉 by

A1 = { p | p ∈ A1 }, C1 = { c | c ∈ C1 }, τ1 = { c 7→ τ1(c) | c ∈ C1 },

whereα→ β = α→ β. LetΣ′1 = 〈A
′

1 ,C
′
1, τ
′
1〉 = 〈A1 ∪A1,C1 ∪ C1, τ1 ∪ τ1〉.

Here, we have the simple lexicoñ· from Σ′1 to Σ1 defined as

p̃ = p̃ = p for p ∈ A1, and̃c ≡ c̃ ≡ c for c ∈ C1.

The set̂T (A1) of possible bar-decorations on types is defined by

T̂ (A1) = {α ∈ T (A ′
1) | if β1 → · · · → βn → p is a subtype ofα

for somep ∈ A1, thenβ1, . . . , βn ∈ T (Σ1) }

Actually, terms inΛaff(Σ′1) that we are concerned with have types inT̂ (A1).

The reason why we ignore types inT (A ′
1) − T̂ (A1) is that if a term is bound

to be erased, then so is every sub-term of it. For instance, ifa variablex has
typeo→ o < T̂ ({o}), then the termxo→oyo has typeo, which, in our setting,
means that it should disappear. But ifxo→oyo disappears, so doesyo, which,
therefore, should have typeo to be consistent with our definition.

The setΛ̂aff(Σ1) of possible bar-decorations on terms is the subset of
Λaff(Σ′1) such thatQ ∈ Λ̂aff(Σ1) iff

. every variable appearing inQ has a type in̂T (A1), and. if λxα.Q′ is a sub-term ofQ and xα does not occur free inQ′, thenα ∈
T (A1).

We are not concerned with terms inΛaff(Σ′1) − Λ̂aff(Σ1).
The following properties are easily seen:

. If Q ∈ Λ̂aff(Σ1), thenτ′1(Q) ∈ T̂ (A1),

. If τ′1(Q) ∈ T (A1) for Q ∈ Λ̂aff(Σ1), every sub-term ofQ is inΛaff(Σ1),

. If Q ∈ Λ̂aff(Σ1) andQ։β Q′, thenQ′ ∈ Λ̂aff(Σ1).

For eachα ∈ T (A1) and P ∈ Λaff(Σ1), Φ gives the set of possible bar-
decorations on them:

Φ(α) = { β ∈ T̂ (A1) | β̃ = α },

Φ(P) = {Q ∈ Λ̂aff(Σ1) | Q̃ ≡ P }.

In other words,Φ and ·̃ are inverse of each other, if we disregard types in
T (A ′

1) − T̂ (A1) and terms inΛaff(Σ′1) − Λ̂aff(Σ1).

192 / R Y

Secondly, we eliminate barred subtypes fromα ∈ T̂ (A1) − T (A1) and
barred sub-terms fromQ ∈ Λ̂aff(Σ1)−Λaff(Σ1). Let us define (α)† and (Q)† as
follows:

(p)† = p for p ∈ A1,

(α→ β)† =


(α)† → (β)† if α < T (A1),

(β)† if α ∈ T (A1),

(xα)† ≡ x(α)† ,

(c)† ≡ c for c ∈ C1,

(λxα.Q)† ≡


λx(α)† .(Q)† if α < T (A1),

(Q)† if α ∈ T (A1),

(Q1Q2)† ≡


(Q1)†(Q2)† if τ′1(Q2) < T (A1),

(Q1)† if τ′1(Q2) ∈ T (A1).

The following properties are easily seen (α ∈ T̂ (A1) − T (A1) andQ,Q′ ∈
Λ̂aff(Σ1) − Λaff(Σ1)):

. (α)† ∈ T (A1) and (Q)† ∈ Λlin(Σ1),

. τ1((Q)†) = (τ′1(Q))†,

. If Q is β-normal, then so is (Q)†,

. Q =β Q′ implies (Q)† =β (Q′)†.

Lemma 30 For every closed term Q∈ Λ̂aff(Σ1), τ′1(Q) ∈ T (A1) iff (Q)† =β
Q =β Q̃.

Lemma 31 For every closed term P∈ Λaff(Σ1), |P|β is linear iff there is Q∈
Φ(P) whose type is inT (A1).

Second-Order Case

We say that an abstract atomic typep ∈ A0 is uselessif there is noM ∈ A(G)
that has a sub-term whose type containsp. An abstract constanta ∈ C0 is
uselessif there is noM ∈ A(G) containinga. If an ACG is second-order,
it is easy to check whether the abstract vocabulary containsuseless atomic
types or constants, and if so, we can eliminate useless abstract atomic types
and constants. This can be done in a way similar to the elimination of useless
nonterminal symbols and production rules from a context-free grammar.

Definition 15 LetG = 〈Σ0,Σ1,L , s〉 be a second-order ACG that has no use-
less abstract atomic types or constants. We defineG ′ = 〈Σ′0,Σ1,L

′, [s,L (s)]〉

L      / 193

as follows: defineΣ′0 = 〈A
′

0 ,C
′
0, τ
′
0〉 by

A
′

0 = { [p, β] | p ∈ A0, β ∈ Φ(L (p)) − T (A1) },

C
′
0 = { [[a,Q]] | a ∈ C0, Q ∈ Φ(L (a)) − Λaff(Σ1) },

τ′0 = { [[a,Q]] 7→ ([τ0(a), τ′1(Q)])‡ },

where ([p, β])‡ = [p, β],

([α→ γ, β→ δ])‡ =


([α, β])‡ → ([γ, δ])‡ if β < T (A1),

([γ, δ])‡ if β ∈ T (A1),

andL ′ by

L
′([p, β]) = (β)†, L

′([[a,Q]]) = (Q)†.

G ′ is linear, but it may contain useless abstract atomic types or constants. The
linearized ACGG l for G is the result of eliminating all the useless abstract
atomic types and constants fromG ′.

Lemma 32 LetG andG ′ be as in Definition 15.
For every variable-free M∈ Λlin(Σ0) of an atomic type and every Q∈

Φ(L (M)) − Λaff(Σ1), there is N∈ Λlin(Σ′0) such thatτ′0(N) = [τ0(M), τ′1(Q)]
andL

′(N) ≡ (Q)†.
Conversely, for every variable-free N∈ Λlin(Σ′0) of an atomic type,

there are M ∈ Λlin(Σ0) and Q ∈ Φ(L (M)) − Λaff(Σ1) such thatτ′0(N) =
[τ0(M), τ′1(Q)] andL ′(N) ≡ (Q)†.

Theorem 33 For every affine ACGG ∈ Gaff(2, n), there is a linear ACG
G l ∈ Glin(2, n) such thatO(G l) = {P ∈ O(G) | P is linear}.

Proof. Use Lemmas 31, 32, and 30. ⊔⊓

De Groote and Pogodalla (2003, 2004) have presented encoding methods
for linear CFTGs and LCFRSs by linear ACGs. Their methods canalso be
applied to non-duplicating CFTGs and MCFGs.

Example 2 Let a non-duplicating CFTGG consist of the following produc-
tions:4

S→ P(a, b), P(x1, x2)→ P(c(x1), c(S)) | d(x1, x2),

where the ranks ofS, P, a, b, c, d are 0, 2, 0, 0, 1, 2, respectively. De Groote
and Pogodalla’s method transformsG into the following affine ACGG :

x ∈ C0 τ0(x) L (x)

A p→ s λyo2→o
p .ypaobo

B s→ p→ p λyo
sy

o2→o
p xo

1xo
2.yp(co→ox1)(co→oys)

C p λxo
1xo

2.d
o2→ox1x2

4The notation adopted here follows de Groote and Pogodalla.

194 / R Y

When we apply the linearization method given in Definition 15to G , we get
the following linear ACGG l whose distinguished type is [s, o]:

x ∈ C l
0 L

l(x)
τl

0(x)

[[A, λyo→o→o
p .ypab]]

λyo2→o
p .ypab

[p, o→ o→ o] → [s, o]
[[A, λyo→o→o

p .ypab]]
λyo→o

p .ypa
[p, o→ o→ o] → [s, o]

[[B, λyo
sy

o→o→o
p xo

1xo
2.yp(cx1)(cys)]]

λyo
sy

o2→o
p xo

1.yp(cx1)(cys)[s, o] → [p, o→ o→ o] → [p, o→ o→ o]
[[B, λyo

sy
o→o→o
p xo

1xo
2.yp(cx1)(cys)]] λyo→o

p xo
1.yp(cx1)

[p, o→ o→ o] → [p, o→ o→ o]
[[C, λxo

1xo
2.dx1x2]]

λxo
1xo

2.dx1x2[p, o→ o→ o]

The linearized ACGG
l is actually the encoding of the linear CFTGG′ con-

sisting of the following productions:

S→ P(a, b) | P′(a), P′(x1)→ P(c(x1), c(S)) | P′(c(x1)),

P(x1, x2)→ d(x1, x2),

where the ranks of nonterminalsS, P, P′ are 0, 2, 1, respectively.G, G , G
l ,

andG′ generate the same tree language.

The following corollary generalizes the result by Fujiyoshi (2005), which
covers themonadiccase only.

Corollary 34 For every non-duplicating CFTG G, there is a linear CFTG G′

such that G and G′ generate the same tree language.

LetG be the affine ACG that encodes an MCFGG. The linearized ACGG l

is indeed in the form that is the encoding of an LCFRS5 (butG ′ is not). There-
fore, our result covers the following theorem shown by Seki et al. (1991).

Corollary 35 For every MCFG G, there is an LCFRS G′ such that the lan-
guages generated by G and G′ coincide.

Third or Higher-Order Case
Definition 15 itself does not depend on the order of the given affine ACG
except that in the general case, we do not know how to find and eliminate
useless abstract atomic types and constants. For the general case, however, the
linearized ACG given in Definition 15 may generate a strictlylarger language

5The LCFRS obtained from an MCFG through our linearization method may have nonter-
minals of rank 0. The reason why usual definitions of an LCFRS do not allow nonterminals
to have rank 0 is just to avoid redundancy. Mathematically speaking, allowing or disallowing
nonterminals of rank 0 does not matter at all.

L      / 195

than the original affine ACG. In the remainder of this paper, we present a
linearization method for general affine ACGs.

Example 3 Suppose that an affine ACGG ∈ Gaff(3, 1) consists of the fol-
lowing lexical entries:

x ∈ C0 τ0(x) L (x)
A q #
B p→ q→ q λyozo.bo→oz
C q→ s λzo.z
D (p→ s)→ s λxo→o.ao→o(xeo)

We seeO(G) = {

n-times︷ ︸︸ ︷
a(. . . (a(

n-times︷ ︸︸ ︷
b(. . . (b #) . . .)) . . .) | n ≥ 0 }. The linear ACGG ′

by Definition 15 consists of the following lexical entries:

x ∈ C ′0 τ′0(x) L ′(x)
[[A, #]] [q, o] #

[[B, λyozo.bz]] [q, o] → [q, o] λzo.bz
[[C, λzo.z]] [q, o] → [s, o] λzo.z

[[D, λxo→o.a(xe)]] [s, o] → [s, o] λxo.ax
[[D, λxo→o.a(xe)]] ([p, o] → [s, o]) → [s, o] λxo→o.a(xe)

The last lexical entry is useless. We have

O(G ′) = {

m-times︷ ︸︸ ︷
a(. . . (a(

n-times︷ ︸︸ ︷
b(. . . (b #) . . .)) . . .) | m, n ≥ 0 }) O(G).

Though any term of typep that is the first argument of an occurrence ofB is
bound to be erased in the original ACGG , we cannot ignore the occurrence of
the typep, because that occurrence ofp balances the numbers of occurrences
of B andD in a term inA(G).

Our new linearization method gives the linear ACGG ′′ consisting of the
following lexical entries (useless lexical entries are suppressed):

x ∈ C ′′0 τ′′0 (x) L ′′(x)
[[A, #]] [q, o] #

[[B, λyozo.bz]] [p, o] → [q, o] → [q, o] λyo→ozo.y(bz)
[[C, λzo.z]] [q, o] → [s, o] λzo.z

[[D, λxo→o.a(xe)]] ([p, o] → [s, o]) → [s, o] λx(o→o)→o.a(x(λzo.z))

where [p, o] is mapped too→ o. We haveO(G) = O(G ′′).

Now, we give the formal definition of our new linearization method for
general affine ACGs. For simplicity, we assume thatA1 = {o} here, but it is
possible to lift this assumption. The new linearized ACGG ′′ has the form

196 / R Y

G ′′ = 〈Σ′′0 ,Σ1,L
′′, [s,L (s)]〉, whereΣ′′0 = 〈A

′′
0 ,C

′′
0 , τ

′′
0 〉 is defined by

A
′′

0 = { [p, β] | p ∈ A0, β ∈ Φ(L (p)) },

C
′′
0 = { [[a,Q]] | a ∈ C0, Q ∈ Φ(L (a)) },

τ′′0 = { [[a,Q]] 7→ [τ0(a), τ′1(Q)] }

where [α→ γ, β→ δ] = [α, β] → [γ, δ].

Here we have two simple lexiconsL0 : Σ′′0 → Σ0 andL1 : Σ′′0 → Σ
′
1;

L0([p, β]) = p, L0([[a,Q]]) = a, L1([p, β]) = β, L1([[a,Q]]) = Q.

We haveL̃1(N) ≡ L ◦L0(N) for N ∈ Λlin(Σ′′0). For anyM ∈ Λlin(Σ0) andQ ∈
Φ(L (M)), one can find a termχ(M,Q) ∈ Λlin(Σ′′0) such thatL0(χ(M,Q)) ≡
M andL1(χ(M,Q)) ≡ Q.

Lemma 36 For every Q∈ Λ̂aff(Σ1) andα ∈ T (A0), the following statements
are equivalent:

1. There is M∈ Λlin(Σ0) of typeα such thatL (M) ≡ Q̃.
2. There is N∈ Λlin(Σ′′0) of type[α, τ′1(Q)] such thatL1(N) ≡ Q.

Lemmas 31 and 36 imply

{M ∈ A(G) | |L (M)|β is linear} = {L0(N) | N ∈ A(G ′′) }.

Since (L1(N))† =β L̃1(N) ≡ L ◦L0(N) for everyN ∈ A(G ′′) by Lemma 30,
it is enough to define a new lexiconL ′′ so that

L
′′(N) =βη (L1(N))† (14.12)

for everyN ∈ A(G ′′).
We define the type substitutionσ : A

′′
0 → T ({o}) of L

′′ = 〈σ, θ〉 as

σ([p, β]) =


(β)† if β < T ({o}),

o→ o if β ∈ T ({o}).

Here we identifyσ with its homomorphic extension. As a preparation for
defining the term substitutionθ of L ′′, we give three kinds of linear combi-
nators. For [α, β] ∈ T (A ′′

0) such thatβ ∈ T ({o}), letσ([α, β]) = γ1 → · · · →

γm → o → o andγi = γi,1 → · · · → γi,ki → o → o. Zσ([α,β]) is a linear
combinator of typeσ([α, β]) defined as

Zσ([α,β]) ≡ λyγ1

1 . . .yγm
m zo.R1(R2(. . . (Rmz) . . .))

whereRi ≡ yγi

i Zγi,1 . . .Zγi,ki .

For each [α, β] ∈ T (A ′′
0) such thatβ ∈ T̂ ({o}) − T ({o}), we define two linear

combinatorsXβ
α of typeσ([α, β]) → (β)† andYβ

α of type (β)† → σ([α, β]) by
mutual induction. Let [α, β] = [α1, β1] → · · · → [αm, βm] → [p, β0] with
[p, β0] ∈ A ′′

0 and the set{1, . . . ,m} be partitioned into two subsetsI andJ so

L      / 197

thatβi < T ({o}) iff i ∈ I . Let I = {i1, . . . , ik} (i j < i j+1) andJ = { j1, . . . , j l}.
Let

Xβ
α ≡ λyσ([α,β]) x

(βi1)†

i1
. . . x

(βik)†

ik
.yσ([α,β]) P1 . . .Pm

where Pi ≡


Yβi
αi

x(βi)†

i if i ∈ I ,

Zσ([αi ,βi]) if i ∈ J,

and

Yβ
α ≡ λx(β)†yσ([α1,β1])

1 . . . yσ([αm,βm])
m ~z.M j1(. . . (M j l (x

(β)†Li1 . . . Lik~z)) . . .)

where~z is short forzγ1

1 . . . zγn
n for (β0)† = γ1→ · · · → γn → o, and


Li ≡ Xβi

αi
yσ([αi ,βi])

i for i ∈ I ,

Mi ≡ Zσ([αi ,βi])→o→oyσ([αi ,βi])
i for i ∈ J.

Note that if [α, β] = [p, β0] ∈ A ′′
0 , thenXβ0

p =βη Yβ0
p =βη λz(β0)† .z.

Now, we give a new linearization method as follows.

Definition 16 For a given affine ACGG , we define a new linear ACG as
G ′′ = 〈Σ′′0 ,Σ1,L

′′, [s,L (s)]〉, whereL ′′ = 〈σ, θ〉 for σ as above and

θ([[a,Q]]) ≡


|Y
τ′1(Q)
τ0(a) (Q)†|β if τ′1(Q) < T ({o}),

Zσ(τ′′0 ([[a,Q]])) if τ′1(Q) ∈ T ({o}).

If G ∈ Gaff(m, n), thenG ′′ ∈ Glin(m,max{2, n}).

Lemma 37 Given N ∈ Λ(Σ′′0) of type [α, β] such thatβ < T ({o}) and

L1(N) ∈ Λ̂aff(Σ1), we have

(L1(N))† =βη Xβ
αL

′′(N)φN

whereφN is the substitution on the free variables ofL ′′(N) such that

xσ([α,β])φN =


Yβ
αx(β)† if x has the type[α, β] in N andβ < T ({o}),

Zσ([α,β]) otherwise.

Theorem 38 For every affine ACGG ∈ Gaff(m, n), there is a linear ACG
G ′′ ∈ Glin(m,max{2, n}) such thatO(G ′′) = {P ∈ O(G) | P is linear}.

Proof. Lemma 37 entails the equation (14.12). ⊔⊓

14.4 Concluding Remarks
We have shown that the generative capacity of linear ACGs is as rich as that of
affine ACGs, that is, the non-deletion constraint on linear ACGsis superficial.
Our linearization method, however, increases the size of the given grammar
exponentially due to the definition ofΦ, so there may still exist an advan-
tage of allowing deleting operations in the ACG formalism. For instance, the

198 / R Y

atomic typenp of the abstract vocabulary of the ACG in Example 1 will be
divided up into three new atomic types which correspond to noun phrases as
third person singular subjects, plural subjects, and objects, respectively.

One attractive feature of ACGs is that they can be thought of as a gener-
alization of several well-established grammar formalisms(de Groote, 2002,
de Groote and Pogodalla, 2003, 2004). This paper demonstrates that the ACG
formalism also generalizes some “operation” on those grammars, namely,
conversion from non-duplicating grammars into non-duplicating and non-
deleting ones.

Recall that Fisher (1968a,b) showed that every CFTG has a corresponding
non-deleting CFTG whose string IO-language is equivalent.As a general-
ization of his result, the author conjectures that one can eliminate vacuous
λ-abstraction fromsemi-affine ACGspreserving the orders of the abstract
vocabularies and the lexicons, where a term issemi-affine if for every free
variablex of any sub-term, eitherx occurs at most once, orx has at most
second-order type. Actually, every CFTG has a corresponding semi-affine
ACG such that the tree IO-language of the CFTG coincides withthe ob-
ject language of the ACG, and the semi-affine ACG encoding a non-deleting
CFTG has no vacuousλ-abstraction. If the conjecture is correct, this implies
that every CFTG has a corresponding non-deleting CFTG whosetree/string
IO-language is equivalent.

Acknowledgment

The author is grateful to Makoto Kanazawa for initiating this research and
giving advice throughout this work. The author would like tothank to Sylvain
Salvati for his invaluable comments on the draft of this paper. In particular,
he inspired the author to get the conjecture stated in the last section.

References
de Groote, Philippe. 2001. Towards abstract categorial grammars. InAssociation

for Computational Linguistics, 39th Annual Meeting and 10th Conference of the
European Chapter, Proceedings of the Conference, pages 148–155.

de Groote, Philippe. 2002. Tree-adjoining grammars as abstract categorial grammars.
In TAG+6, Proceedings of the 6th International Workshop on Tree Adjoining Gram-
mars and Related Frameworks, pages 145–150. Università di Venezia.

de Groote, Philippe and Sylvain Pogodalla. 2003.m-linear context-free rewriting sys-
tems as abstract categorial grammars. In R. T. Oehrle and J. Rogers, eds.,Proceed-
ings of Mathematics of Language - MOL-8, Bloomington, Indiana, U. S., pages
71–80.

R / 199

de Groote, Philippe and Sylvain Pogodalla. 2004. On the expressive power of abstract
categorial grammars: Representing context-free formalisms.Journal of Logic, Lan-
guage and Information13(4):421–438.

Fisher, Michael J. 1968a.Grammars with Macro-Like Productions. Ph.D. thesis,
Harvard University.

Fisher, Michael J. 1968b. Grammars with macro-like productions. InProceedings of
the 9th IEEE Conference on Switching and Automata Theory, pages 131–142.

Fujiyoshi, Akio. 2005. Linearity and nondeletion on monadic context-free tree gram-
mars.Information Processing Letters93(3):103–107.

Hindley, J. Roger. 1997.Basic Simple Type Theory. Cambridge University Press.

Kanazawa, Makoto and Ryo Yoshinaka. 2005. Lexicalization of second-order ACGs.
Tech. Rep. NII-2005-012E, National Institute of Informatics.

Salvati, Sylvain. 2006. Encoding second order string ACGs with deterministic tree
walking transducers. InProceedings of the 11th conference on Formal Grammar.

Seki, Hiroyuki, Takashi Matsumura, Mamoru Fujii, and TadaoKasami. 1991. On
multiple context-free grammars.Theoretical Computer Science88(2):191–229.

15

List of contributors

Miguel A. Alonso
Departamento de Computación, Facultad de Informática
Universidade da Coruña, Spain

Maxime Amblard
LaBRI, Université Bordeaux 1
Bordeaux, France

Houda Anoun
LaBRI, Université Bordeaux 1
Bordeaux, France

John Blatz
Department of Computer Science, Johns Hopkins University
Baltimore, MD, USA

Maria Buli ńska
Faculty of Mathematics and Computer Science, Uniwersytet Warmińsko-
Mazurski
Olsztyn, Poland

Jason Eisner
Department of Computer Science, Johns Hopkins University
Baltimore, MD, USA

Josef van Genabith
National Centre for Language Technology, School of Computing, Dublin City
University
Dublin, Ireland

Carlos Gómez-Rodŕıguez
Departamento de Computación, Facultad de Informática
Universidade da Coruña, Spain

Laura Kallmeyer
Eberhard-Karls Universität Tübingen

201

202 / P  FG-2006

Tübingen, Germany

Stephan Kepser
Eberhard-Karls Universität Tübingen
Tübingen, Germany

Aleksandra Kislak-Malinowska
Uniwersytet Warmińsko-Mazurski
Olsztyn, Poland

Alain Lecomte
Université Pierre Mendes-France (Grenoble II)
Grenoble, France

Rebecca Nesson
Division of Engineering and Applied Sciences, Harvard University
Cambridge, MA, USA

Sylvain Salvati
National Institute of Informatics
Tokyo, Japan

Stuart Shieber
Division of Engineering and Applied Sciences, Harvard University
Cambridge, MA, USA

Edward P. Stabler
Linguistics Department, UCLA
Los Angeles, CA, USA

Jesse Tseng
CNRS/Loria
Vandoeuvre-lès-Nancy, France

Manuel Vilares
Departamento de Computación, Facultad de Informática
Universidade da Coruña, Spain

Ryo Yoshinaka
National Institute of Informatics, University of Tokyo
Tokyo, Japan

