P-TIME decidability of NL1 with assumptions

Maria Bulińska

Abstract

Buszkowski (2005) showed that systems of Non-associative Lambek Calculus with finitely many non-logical axioms are decidable in polynomial time and generate context-free languages. The same holds for systems with unary modalities, studied in Moortgat (1997), *n*-ary operations, and the rule of permutation, studied in Jäger (2004). The polynomial time decidability for Classical Non-associative Lambek Calculus was established by de Groote and Lamarche (2002). We study Non-associative Lambek Calculus with identity enriched with a finite set of assumptions. To prove that this system is decidable in polynomial time we adapt the method used in Buszkowski (2005). The context-freeness of the languages generated of the systems of Non-associative Lambek Calculus is also established.

Keywords Lambek calculus, P-TIME decidability

5.1 Introduction and preliminaries

Non-logical axioms can be of interest for linguistics for several reason. We can use them to describe subcategorization in natural language. For instance, restrictive adjectives are a sub-category of adjectives. Further, by enriching Non-associative Lambek Calculus with finitely new axioms, we can improve its expressibility without lacking the nice computational simplicity.

First we describe the formalism of Non-associative Lambek Calculus with identity constant (NL1). Let $At = \{p, q, r, ...\}$ be the denumerable set of atoms (primitive types).

The set of formulas (also called types) Tp1 is defined as the smallest set fulfilling the following conditions:

• $1 \in Tp1$,

Proceedings of FG-2006. Editor: Shuly Wintner. Copyright © 2007, CSLI Publications.

- At \subseteq Tp1,
- if A, B ∈ Tp1, then (A B) ∈ Tp1, (A/B) ∈ Tp1, (A\B) ∈ Tp1, where binary connectives \ , / , , are called *left residuation*, *right residuation*, and *product*, respectively.

The set of formula structures STR1 is defined recursively as follows:

- $\Lambda \in STR1$, where Λ denotes an empty structure,
- Tp1 ⊆ STR1; these formula structures are called atomic formula structures,
- if $X, Y \in STR1$, then $(X \circ Y) \in STR1$.

We set $(X \circ \Lambda) = (\Lambda \circ X) = X$.

Substructures of a formula structure are defined in the following way:

- Λ is the only substructure of Λ ,
- if *X* is an atomic formula structure, then Λ and *X* are the only substructures of *X*,
- if $X = (X_1 \circ X_2)$, then X and all substructures of X_1 and X_2 are substructures of X.

By X[Y] we denote a formula structure X with a distinguished substructure Y, and by X[Z] - the substitution of Z for Y in X.

Sequents are formal expressions $X \to A$ such that $A \in \text{Tp1}$, $X \in \text{STR1}$.

The Gentzen-style axiomatization of the calculus NL1 employs the axiom schemas:

(Id)
$$A \rightarrow A$$
 (1R) $\Lambda \rightarrow 1$

and the following rules of inference:

$$(1L) \quad \frac{X[\Lambda] \to A}{X[1] \to A},$$

$$(\bullet L) \quad \frac{X[A \circ B] \to C}{X[A \bullet B] \to C}, \qquad (\bullet R) \quad \frac{X \to A; \quad Y \to B}{X \circ Y \to A \bullet B},$$

$$(\backslash L) \quad \frac{Y \to A; \quad X[B] \to C}{X[Y \circ (A \backslash B)] \to C}, \qquad (\backslash R) \quad \frac{A \circ X \to B}{X \to A \backslash B},$$

$$(/L) \quad \frac{X[A] \to C; \quad Y \to B}{X[(B/A) \circ Y] \to C}, \qquad (/R) \quad \frac{X \circ B \to A}{X \to A/B},$$

$$(CUT) \quad \frac{Y \to A; \quad X[A] \to B}{X[Y] \to B}.$$

For any system S we write $S \vdash X \to A$ if the sequent $X \to A$ is derivable in S.

The most general models of NL1 are residuated groupoid with identity.

A residuated groupoid with identity is a structure

$$\mathcal{M} = (M, \leq, \cdot, \setminus, /, 1)$$

such that

- (M, ·, 1) is a groupoid with identity in which a · 1 = a, 1 · a = a for all a ∈ M.
- (M, \leq) is a poset,
- \, / are binary operations on M satisfying the equivalences:

(RES)
$$ab \le c$$
 iff $b \le a \setminus c$ iff $a \le c/b$

for all $a, b, c \in M$.

Every residuated groupoid fulfills the following monotonicity laws:

(MON) If
$$a \le b$$
 then $ca \le cb$ and $ac \le bc$ (MRE) If $a \le b$ then $c \setminus a \le c \setminus b$, $a/c \le b/c$, $b \setminus c \le a \setminus c$, $c/b \le c/$

for all $a, b, c \in M$.

A *model* is a pair (\mathcal{M}, μ) such that \mathcal{M} is a residuated groupoid with identity and μ is an assignment of elements of M for atoms. One extends μ for all formulas:

$$\mu(\mathbf{1}) = 1, \quad \mu(A \bullet B) = \mu(A) \cdot \mu(B),$$

$$\mu(A \backslash B) = \mu(A) \backslash \mu(B), \quad \mu(A / B) = \mu(A) / \mu(B).$$

and formula structure:

$$\mu(\Lambda) = \mu(\mathbf{1}) = 1$$
, $\mu(X \circ Y) = \mu(X) \cdot \mu(Y)$.

A sequent $X \to A$ is said to be true in model (\mathcal{M}, μ) if $\mu(X) \le \mu(A)$. In particular a sequent $\Lambda \to A$ is said to be true in model (\mathcal{M}, μ) if $1 \le \mu(A)$.

One can prove the following property for formula structures:

(MON – STR) If
$$\mu(Y) \le \mu(Z)$$
 then $\mu(X[Y]) \le \mu(X[Z])$.

5.2 NL1 with assumptions

Let Γ be a set of sequents of the form $A \to B$, where $A, B \in \mathrm{Tp1}$. By NL1(Γ) we denote the calculus NL1 with additional set Γ of assumptions. NL1 is strongly complete with respect to the residuated groupoids with identity, i.e. all sequents provable in NL1(Γ) are precisely those which are true in all models (\mathcal{M}, μ) in which all sequents from Γ are true. Soundness is easily proved by induction on derivation in NL1(Γ). Completeness follows from the fact that the Lindenbaum algebra of NL1 is a residuated groupoid with identity.

In general, the calculus $NL1(\Gamma)$ has not the standard sub-formula property, since (CUT) is legal rule in this system. Thus we take into consideration the sub-formula property in some extended form.

Let T be a set of formulas closed under sub-formulas and such that all formulas appearing in Γ belong to T. By a T-sequent we mean a sequent $X \to A$ such that A and all formulas appearing in X belong to T. Now, we can reformulate the sub-formula property as follows:

Every T-sequent provable in a system S has a proof in S such that all sequents appearing in this proof are T-sequents.

To prove the sub-formula property for $NL1(\Gamma)$ we will use special models, namely residuated groupoids with identity of cones over given pre-ordered groupoids with identity.

Let (M, \leq, \cdot) be a pre-ordered groupoid, that means, it is a groupoid with a pre-ordering (i.e. a reflexive and transitive relation), satisfying (MON).

A set $P \subseteq M$ is called a *cone* on M if $a \le b$ and $b \in P$ entails $a \in P$. Let C(M) denotes the set of cones on M.

The operations \cdot , \setminus , / on C(M) are defined as follows:

$$(M1) \quad I = \{a \in M : a \le 1\}$$

$$(M2) \quad P_1 P_2 = \{c \in M : (\exists a \in P_1, b \in P_2) \ c \le ab\}$$

$$(M3) \quad P_1 \backslash P_2 = \{c \in M : (\forall a \in P_1) \ ac \in P_2\}$$

$$(M4) \quad P_1 / P_2 = \{c \in M : (\forall b \in P_2) \ cb \in P_1\}.$$

A structure $(C(M), \subseteq, \cdot, \setminus, I)$ is a residuated groupoid with identity. It is called the residuated groupoid with identity of cones over the given preordered groupoid with identity.

Let M be the set of all formula structures all of whose atomic substructures belong to T and $\Lambda \in M$. If a sequent $X \to A$ has a proof in NL1(Γ) consisting of T-sequents only, we write: $X \to_T A$.

First, we define on M a relation \leq_b . $X \leq_b Y$ denotes X directly reduces to Y. The definition of this relation is as follows:

$$Y[Z] \leq_b Y[\Lambda] \quad \text{if} \quad Z \to_T \mathbf{1},$$
 $Y[Z] \leq_b Y[A] \quad \text{if} \quad Z \to_T A,$ $Y[A \bullet B] \leq_b Y[A \circ B] \quad \text{if} \quad A \bullet B \in T.$

A pre-ordering \leq on M is defined as a reflexive and transitive closure of the relation \leq_b . Then $X \leq Y$ iff there exist $Y_0, \ldots, Y_n, n \geq 0$ such that $X = Y_0, Y = Y_n$ and $Y_{i-1} \leq_b Y_i$, for each $i = 1, \ldots, n$.

Clearly, $(M, \leq, \circ, \Lambda)$ is a pre-ordered groupoid with identity Λ fulfilling (MON).

Next, we take into consideration the residuated groupoid of cones with identity $C(M) = (C(M), \subseteq, \cdot, \setminus, I)$ over (M, \le, \circ, Λ) defined above. An assignment μ on C(M) is defined by setting:

$$\mu(p) = \{ X \in M : X \to_T p \},$$

for all atoms p. One can easily prove that

$$\mu(A) = \{ X \in M : X \to_T A \},\$$

for all $A \in T$.

Fact 1 Every sequent provable in $NL1(\Gamma)$ is true in $(C(M), \mu)$.

Proof. It suffice to show, that each axiom from Γ is true in $(C(M), \mu)$. Assume that $A \to B$ belongs to Γ . It yields $A \to_T B$. We need to show that $\mu(A) \subseteq \mu(B)$. Let $X \in \mu(A)$. Then, $X \to_T A$. By (CUT), we get $X \to_T B$, which yields $X \in \mu(B)$.

Lemma 2 The system $NL1(\Gamma)$ has the extended sub-formula property.

Proof. Let $X \to A$ be a T-sequent provable in NL1(Γ). By fact 1 it is true in the model (C, μ) , i.e. $\mu(X) \subseteq \mu(A)$. Since $X \in \mu(X)$, we have $X \in \mu(A)$. But it means $X \to_T A$.

A sequent is said to be *basic* if it is a T-sequent of the form $\Lambda \to A$, $A \to B$, $A \circ B \to C$. Let Γ be finite, and let T be a finite set of formulas, closed under sub-formulas and such that T contains all formulas appearing in Γ . For such T we shall describe an effective procedure which produces all basic sequents derivable in NL1(Γ).

Let S_0 consist of all T-sequent of the form (Id), all sequents from Γ , $\Lambda \to \mathbf{1}$ and all T-sequents of the form:

$$\mathbf{1} \circ A \to A, A \circ \mathbf{1} \to A, A \circ B \to A \bullet B,$$

 $A \circ (A \backslash B) \to B, (A / B) \circ B \to A.$

Assume S_n has already been defined. S_{n+1} is S_n enriched with sequents resulting from the following rules:

- (S1) if $(A \circ B \to C) \in S_n$ and $(A \bullet B) \in T$, then $(A \bullet B \to C) \in S_{n+1}$,
- (S2) if $(A \circ X \to C) \in S_n$ and $(A \setminus C) \in T$, then $(X \to A \setminus C) \in S_{n+1}$,
- (S3) if $(X \circ B \to C) \in S_n$ and $(C/B) \in T$, then $(X \to C/B) \in S_{n+1}$,
- (S4) if $(\Lambda \to A) \in S_n$ and $(A \circ X \to C) \in S_n$, then $(X \to C) \in S_{n+1}$,
- (S5) if $(\Lambda \to A) \in S_n$ and $(X \circ A \to C) \in S_n$, then $(X \to C) \in S_{n+1}$,
- (S6) if $(A \to B) \in S_n$ and $(B \circ X \to C) \in S_n$, then $(A \circ X \to C) \in S_{n+1}$,
- (S7) if $(A \to B) \in S_n$ and $(X \circ B \to C) \in S_n$, then $(X \circ A \to C) \in S_{n+1}$,
- (S8) if $(A \circ B \to C) \in S_n$ and $(C \to D) \in S_n$, then $(A \circ B \to D) \in S_{n+1}$.

Clearly, $S_n \subseteq S_{n+1}$ for all $n \ge 0$. We define S^T as the join of this chain. S^T is a set of basic sequents, hence it must be finite. It yields $S^T = S_{k+1}$, for the least k such that $S_k = S_{k+1}$, and this k is not greater then the number of basic sequents.

Fact 3 The set S^T can be constructed in polynomial time.

Proof. Let *n* be the cardinality of *T*. There are *n*, n^2 and n^3 basic sequents of the form $\Lambda \to A$, $A \to B$ and $A \circ B \to C$, respectively. Hence, we have $m = n^3 + n^2 + n$ basic sequents. The set S_0 can be constructed in time $O(n^2)$. To get S_{i+1} from S_i we must close S_i under the rules (S1)-(S8) which can be done in at most m^3 steps for each rule. For example, to close S_i under (S1) we must check if $(A \circ B \to C) \in S_i$ and $(A \bullet B) \in T$ which needs at most m and n steps, respectively. The sequent $A \bullet B \to C$ is added to S_{i+1} only if it doesn't belong to this set. To check this fact the next m steps are needed. The least k such that $S^T = S_k$ is at most m. Then finely, we can construct S^T from T in time $O(m^4) = O(n^{12})$. □

By S(T) we denote the system whose axioms are all sequents from S^T and whose only inference rule is (CUT). Then, every proof in S(T) consist of T-sequents only.

If as premises of (CUT) in the proof in S(T) of some sequent $X \to A$ only sequents without empty antecedents are used, then the length of all sequents in this proof is not greater than the length of $X \to A$. But it doesn't hold if we allow in (CUT) the premises of the form $\Lambda \to A$. Therefore we introduce another system $S(T)^-$ whose axioms are all sequents from S^T and whose only inference rule is (CUT) with premises without empty antecedents, and show the following lemma.

Lemma 4 For any sequent $X \to A$, $S(T) \vdash X \to A$ iff $S(T)^- \vdash X \to A$.

Proof. The 'if' direction is evident. To prove the 'only if' direction we show that $S(T)^-$ is closed under (CUT), i.e.

(*) If $S(T)^- \vdash X \to B$ and $S(T)^- \vdash Y[B] \to A$, then $S(T)^- \vdash Y[X] \to A$.

Assume $S(T)^- \vdash X \to B$ and $S(T)^- \vdash Y[B] \to A$.

If $X \neq \Lambda$, then $S(T)^- \vdash Y[X] \to A$ by definition of $S(T)^-$.

If $X = \Lambda$, then the sequent $X \to B$ is of the form $\Lambda \to B$ and $S(T)^- \vdash \Lambda \to B$, which means that $\Lambda \to B$ is an axiom of $S(T)^-$. To prove (*) we proceed by induction on derivation of the second premise: $Y[B] \to A$.

If $Y[B] \to A$ is an axiom of $S(T)^-$, then $(Y[B] \to A) \in S^T$. S^T is closed under (CUT). Hence, $(Y[\Lambda] \to A) \in S^T$ which yields $S(T)^- \vdash Y[\Lambda] \to A$.

If $Y[B] \to A$ is a conclusion of (CUT) from premises without empty antecedents, then Y[B] = Z[Y'] and for some $C \in T$, $S(T)^- \vdash Y' \to C$ and $S(T)^- \vdash Z[C] \to A$. We consider the following cases.

- I. *B* is contained in Y'. Then Y' = Y'[B].
 - (1) $Y'[B] \neq B$. By the induction hypothesis, (*) holds for $\Lambda \to B$ and $Y'[B] \to C$, so $S(T)^- \vdash Y'[\Lambda] \to C$. Since $Y'[B] \neq B$, we have $Y'[\Lambda] \neq \Lambda$. Using (CUT), we get $S(T)^- \vdash Z[Y'[\Lambda]] \to A$, which means $S(T)^- \vdash Y[\Lambda] \to A$.
 - (2) Y'[B] = B. By the induction hypothesis, (*) holds for $\Lambda \to B$ and

 $B \to C$, so $S(T)^- \vdash \Lambda \to C$. Using inductive hypothesis to $\Lambda \to C$ and $Z[C] \to A$, we get $S(T)^- \vdash Z[\Lambda] \to A$, which means $S(T)^- \vdash Y[\Lambda] \to A$.

II. *B* and *Y'* do not overlap. Then *B* is contained in *Z* and does not overlap *C* in *Z*. We write Z[C] = Z[B, C]. From the assumption we have $Y' \neq \Lambda$. By induction hypothesis, (*) holds for $\Lambda \to B$ and $Z[B, C] \to A$, so $S(T)^- \vdash Z[\Lambda, C] \to A$. By (CUT), $S(T)^- \vdash Z[\Lambda, Y'] \to A$, which means $S(T)^- \vdash Y[\Lambda] \to A$.

Corollary 5 Every basic sequents provable in S(T) belongs to S^{T} .

Proof. We proceed by induction on proofs in S(T). Assume $X \to A$ is a basic sequent derivable in S(T). If $X \to A$ is an axiom of S(T), then $(X \to A) \in S^T$. If $X \to A$ is a conclusion of (CUT), we consider three cases.

- (1) $X = \Lambda$. By lemma 4, $\Lambda \to A$ has a proof in $S(T)^-$. Hence $\Lambda \to A$ is an axiom, which means $(\Lambda \to A) \in S^T$.
- (2) X = B. By lemma 4, there exists a proof such that $B \to A$ is a conclusion from premises $B \to C$ and $C \to A$, where $C \neq \Lambda$. Since proofs in S(T) consist with T-sequents only, $B \to C$ and $C \to A$ are basic sequents. By induction hypothesis, $(B \to C) \in S^T$ and $(C \to A) \in S^T$. S^T is closed under (CUT), so $(B \to A) \in S^T$.
- (3) $X = B \circ C$. By lemma 4, there exists a proof such that $B \circ C \to A$ is a conclusion from premises without empty premises. Hence, they are of the form: $(B \circ C \to D, D \to A)$ or $(B \to D, D \circ C \to A)$ or $(C \to D, B \circ D \to A)$. By the same argument as in (2), in each case, we get $(B \circ C \to A) \in S^T$.

Now, we can state an interpolation lemma for S(T).

Lemma 6 If $S(T) \vdash X[Y] \rightarrow A$, then there exists $D \in T$ such that $S(T) \vdash Y \rightarrow D$ and $S(T) \vdash X[D] \rightarrow A$.

Proof. We proceed by induction on proofs in S(T).

- I. Assume $X[Y] \to A$ is an axiom of S(T). We consider the following cases.
 - (1) X[Y] = Y. Then Y = X (observe, that this case includes sub case $X = \Lambda$). We set D = A. We have $S(T) \vdash X \to A$ from assumption and $S(T) \vdash A \to A$, since $(A \to A) \in S^T$.
 - (2) X[Y] = B, $Y = \Lambda$. Then $X[Y] = X[\Lambda] = B = B \circ \Lambda$ or $X[Y] = \Lambda \circ B$ and $D = \mathbf{1}$. We have $S(T) \vdash \Lambda \to \mathbf{1}$ and $S(T) \vdash B \to A$. $(B \circ \mathbf{1} \to B) \in S^T$, so $S(T) \vdash B \circ \mathbf{1} \to B$. Using (CUT) we get $S(T) \vdash X[\mathbf{1}] \to A$. For $X[Y] = \Lambda \circ B$ the argument is dual.

- (3) $X[Y] = B \circ C$, $Y \neq \Lambda$. Then Y = B or Y = C, hence D = B or D = C, respectively.
- (4) $X[Y] = B \circ C$, $Y = \Lambda$. Then $X[\Lambda]$ has one of the form: $\Lambda \circ (B \circ C)$, $(B \circ C) \circ \Lambda$, $(\Lambda \circ B) \circ C$, $(B \circ \Lambda) \circ C$, $(B \circ \Lambda) \circ C$, $(A \circ C)$, $(B \circ C) \circ A$. In all these cases we set $(B \circ C) \circ A$. For example, if $(B \circ C) \circ A \circ A$ and $(B \circ C) \circ A \circ A \circ A$, we get $(B \circ C) \circ A \circ A \circ A \circ A$.
- II. Assume $X[Y] \to A$ is a conclusion of (CUT). Then X[Y] = Z[Y'] and for some $B \in T$: $S(T) \vdash Y' \to B$ and $S(T) \vdash Z[B] \to A$.

In this part the proof is analogous to the proof of lemma 2 in Buszkowski (2005). The following cases are considered.

- (1) Y is contained in Y'. Then Y' = Y'[Y]. By the induction hypothesis, there exists $D \in T$ such that $S(T) \vdash Y \to D$ and $S(T) \vdash Y'[D] \to B$. Using (CUT) with the premises $Z[B] \to A$ and $Y'[D] \to B$ we get $S(T) \vdash Z[Y'[D]] \to A$, which means $S(T) \vdash X[D] \to A$.
- (2) Y' is contained in Y. Then X[Y] = X[Y[Y']] = Z[Y'] and Z[B] = X[Y[B]]. By the induction hypothesis, there exists $D \in T$ such that $S(T) \vdash Y[B] \to D$ and $S(T) \vdash X[D] \to A$. Using (CUT) with the premises $Y' \to B$ and $Y[B] \to D$ we get $S(T) \vdash Y[Y'] \to D$.
- (3) Y and Y' do not overlap. Then Y is contained in Z and does not overlap B in Z. We write Z[B] = Z[B, Y]. By the induction hypothesis, there exists $D \in T$ such that $S(T) \vdash Y \to D$ and $S(T) \vdash Z[B, D] \to A$. Using (CUT) with the premises $Y' \to B$ and $Z[B, D] \to B$ we get $S(T) \vdash Z[Y', D] \to A$, which means $S(T) \vdash X[D] \to A$.

Lemma 7 For any T-sequent $X \to A$, $X \to_T A$ iff $S(T) \vdash X \to A$.

Proof. Recall, that $X \to_T A$ means that the sequent $X \to A$ has the proof in NL1(Γ) consisting with T-sequents only.

To prove 'if' direction observe that $X \to_T A$, for all sequents $X \to A$ in S^T .

The *T*-sequents which are axioms of NL1(Γ) belong to S_0 . Thus, to prove the 'only if' direction it suffices to show that all inference rules of NL1(Γ), restricted to *T*-sequents, are admissible in S(T). For example, let us consider (1L). Assume $X[\Lambda] \to A$. By lemma 6, there exist $D \in T$ such that $S(T) \vdash \Lambda \to D$ and $S(T) \vdash X[D] \to A$. Since $(D \circ 1 \to D) \in S^T$, then $S(T) \vdash D \circ 1 \to D$. By two applications of (CUT), we get $S(T) \vdash X[\Lambda \circ 1] \to A$, which means $S(T) \vdash X[1] \to A$.

Theorem 8 *If* Γ *is finite, then* NL1(Γ) *is decidable in polynomial time.*

Proof. Let Γ be a finite set of sequents of the form $B \to C$ and let $X \to A$ be a sequent. Let n be the number of logical constants and atoms in $X \to A$

and Γ . As T we choose the set of all sub-formulas of formulas appearing in $X \to A$ and formulas appearing in Γ . Since the number of sub-formulas of any formula B is equal to the number of logical constants and atoms in B, T has n elements and we can construct it in time $O(n^2)$. By lemma 2, $NL1(\Gamma) \vdash X \to A$ iff $X \to_T A$. By lemma 7, $X \to_T A$ iff $S(T) \vdash X \to A$. Proofs in S(T) are actually derivation trees of a context-free grammar whose production rules are the reversed sequents from S^T . Checking derivability in context-free grammars is P-TIME decidable. For example, by known CYK algorithm, it can be done in time not exceed $k \cdot n^3$, where k is the size of S^T . By the proof of fact 3, the size of S^T is at most $O(n^3)$ and S^T can be constructed in $O(n^{12})$. Hence, the total time is $O(n^{12})$, i.e. $NL1(\Gamma)$ is P-TIME decidable.

By theorem 8, we have immediately that languages generated by the categorial grammar based on the system $NL1(\Gamma)$ are context-free. In Buszkowski (2005) the analogous result was established for $NL(\Gamma)$, $NL(\Gamma)$ with permutation rule and Generalized Lambek Calculus (GLC(Γ)). The context-freeness of the languages generated by Non-associative Lambek Calculus were studied by Buszkowski (1986), Kandulski (1988) and Jäger (2004). Bulińska (2005) obtained the weak equivalence of context-free grammars and grammars based on the associative Lambek calculus with finite set of simple non-logical axioms of the form $p \rightarrow q$, where p, q are primitive types.

References

- Bulińska, M. 2005. The Pentus Theorem for Lambek Calculus with Simple Nonlogical Axioms. Studia Logica 81:43–59.
- Buszkowski, W. 1986. Generative capacity of Nonassociative Lambek Calculus. *Bulletin of Polish Academy of Sciences*. *Mathematics* 34:507–516.
- Buszkowski, W. 2005. Lambek Calculus with Nonlogical Axioms. In C. Casadio, P. J. Scott, and R. A. G. Seely, eds., *Language and Grammar*, Studies in Mathematical Linguistics and Natural Language, pages 77–93. CSLI Publications.
- de Groote, P. and F. Lamarche. 2002. Clasical Non-Associative Lambek Calculus. *Studia Logica* 71:355–388. Special issue: The Lambek calculus in logic and linguistics.
- Jäger, G. 2004. Residuation, Structural Rules and Context Freeness. *Journal of Logic, Language and Information* 13:47–59.
- Kandulski, M. 1988. The equivalence of Nonassociative Lambek Categorial Grammars and Context-Free Grammars. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 52:34–41.
- Moortgat, M. 1997. Categorial Type Logics. In J. van Benthem and A. ter Meulen, eds., *Handbook of Logic and Language*, pages 93–177. Amsterdam, Cambrigde Mass.: Elsvevier, MIT Press.