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P-TIME decidability of NL1 with
assumptions

M aRr1A BuLINskA

Abstract

Buszkowski (2005) showed that systems of Non-associataraliek Calculus with
finitely many non-logical axioms are decidable in polyndrtime and generate context-
free languages. The same holds for systems with unary niedalstudied in Moortgat
(1997),n-ary operations, and the rule of permutation, studied ged§2004). The poly-
nomial time decidability for Classical Non-associativenlaek Calculus was established
by de Groote and Lamarche (2002). We study Non-associativebek Calculus with
identity enriched with a finite set of assumptions. To prdnat this system is decidable in
polynomial time we adapt the method used in Buszkowski (20DBe context-freeness
of the languages generated of the systems of Non-asseclambek Calculus is also
established.
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5.1 Introduction and preliminaries

Non-logical axioms can be of interest for linguistics fovegl reason. We
can use them to describe subcategorization in natural &geguiror instance,
restrictive adjectives are a sub-category of adjectivasthiér, by enriching
Non-associative Lambek Calculus with finitely new axioms,a@&n improve
its expressibility without lacking the nice computatiosghplicity.

First we describe the formalism of Non-associative Lambak@us with
identity constant (NL1). Let A& {p,q,r, ...} be the denumerable set of atoms
(primitive types).

The set of formulas (also called types) Tp1l is defined as thadlssh set
fulfilling the following conditions:

« 1eTpl,
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At € Tp1l,

if A,Be Tpl,thenfeB) e Tpl, (A/B) e Tpl (A\B) € Tpl, where binary
connectives \ , / ,e , are calledeft residuation, right residuatigrand
product respectively.

The set of formula structures STR1 is defined recursivelpbews:

A € STR1, where\ denotes an empty structure,
Tpl c STR1,; these formula structures are called atomic formulecst
tures,

if X,Y € STR1, thenX o Y) € STR1.

WesetKoA)=(AoX)=X

Substructures of a formula structure are defined in theviatig way:

A is the only substructure df,

if Xis an atomic formula structure, thénandX are the only substructures
of X,

if X = (X10Xy), thenX and all substructures &f; andX; are substructures
of X.

By X[Y] we denote a formula structupé with a distinguished substructure
Y, and byX[Z] - the substitution o for Y in X.

Sequents are formal expressiofs»> A such thatA € Tpl, X € STR1.
The Gentzen-style axiomatization of the calculus NL1 eryplbe axiom

schemas:
(id) A—A (1R) A—>1
and the following rules of inference:
X[A] = A
(L) X[1] - A’
X[AoB] - C X—-A Y->B
L) XAeBSC R v SA.B "
Y—->A XB—-C AoX—B
(L) X[Yo (A\B)] - C ’ R =as
X[A]->C; Y—>B XoB— A
D Sqemevisc R xSas
Y > A XA - B
(CUT) X > B

For any system S we write SX — Aif the sequenX — A is derivable

in S.

The most general models of NL1 are residuated groupoid déhtity.
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A residuated groupoidavith identity is a structure
M= (M7S7'7\7/71)
such that
= (M,-,1) is a groupoid with identity in whicla-1 = a, 1-a = afor all
ae M,
* (M,<)is aposet,
= \,/ are binary operations o¥ satisfying the equivalences:

(RES) ab<c iff b<a\c iff a<c/b

foralla,b,ce M.

Every residuated groupoid fulfills the following monotoitydaws:

(MON) If a<b then ca<cb and ac<bc
(MRE) If a<b then c\a<c\b, a/c<b/c,
b\c<a\c, c/b<c/
foralla,b,ce M.

A modelis a pair (M, i) such thatM is a residuated groupoid with identity
andyu is an assignment of elements BF for atoms. One extends for all
formulas :

pu(1) =1, u(AeB)=u(A) - ubB),
(A\B) = u(A)\u(B), u(A/B) = u(A)/u(B).
and formula structure:

pA) =p(1) =1, u(XoY)=pu(X)-ulY).
A sequentX — A is said to be true in modelM, ) if u(X) < wp(A). In
particular a sequemt — Ais said to be true in model, ) if 1 < u(A).
One can prove the following property for formula structures

(MON - STR) If u(Y) < u(Z) then wu(X[Y]) < u(X[Z]).

5.2 NL1 with assumptions

LetI be a set of sequents of the foln— B, whereA, B € Tpl. By NL1()
we denote the calculus NL1 with additional $ebf assumptions. NL1 is
strongly complete with respect to the residuated groupwittsidentity, i.e.
all sequents provable in NLI) are precisely those which are true in all mod-
els (M, u) in which all sequents froriv are true. Soundness is easily proved
by induction on derivation in NLI{). Completeness follows from the fact
that the Lindenbaum algebra of NL1 is a residuated groupdldidentity.

In general, the calculus NLLJ has not the standard sub-formula property,
since (CUT) is legal rule in this system. Thus we take intosideration the
sub-formula property in some extended form.
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Let T be a set of formulas closed under sub-formulas and such lhat a
formulas appearing if" belong toT. By a T-sequent we mean a sequent
X — Asuch thatA and all formulas appearing X belong toT. Now, we can
reformulate the sub-formula property as follows:

EveryT-sequent provable in a system S has a proof in S such thaaiéats
appearing in this proof aré-sequents.

To prove the sub-formula property for NUI)(we will use special models,
namely residuated groupoids with identity of cones oveegipre-ordered
groupoids with identity.

Let (M, <, ) be a pre-ordered groupoid, that means, it is a groupoidavith
pre-ordering (i.e. a reflexive and transitive relationjisfging (MON).

A setP C M is called aconeon M if a < bandb € P entailsa € P. Let
C(M) denotes the set of cones bh

The operations \, / onC(M) are defined as follows:

(M1) I=faeM:a<l}
(M2) PiP;={ceM:(JaePi,bePy)c<ab}

(M3) Pi\P,={ce M:(Yae P;)ace Py}

(M4) Pl/Pz = {C eM: (Vb € P2) che Pl}
A structure C(M),c,-,\,/, 1) is a residuated groupoid with identity. It is
called the residuated groupoid with identity of cones over given pre-
ordered groupoid with identity.

Let M be the set of all formula structures all of whose atomic sulstiires

belong toT andA € M. If a sequenX — A has a proof in NL1[() consisting
of T-sequents only, we writeX —1 A.

First, we define oM a relation<y,. X < Y denotesX directly reduces to
Y. The definition of this relation is as follows:

Y[Z] <p Y[A] if Z -7 1,
Y[Z] <p Y[A] if Z -1 A
Y[AeB] <p Y[AoB] if AeBeT.

A pre-ordering< on M is defined as a reflexive and transitive closure of
the relation<,. ThenX < Y iff there existYp, ..., Yo, n > 0 such thatX =
Yo,Y = YyandYi_; <p Vi, foreachi=1,...,n.

Clearly, M, <,0,A) is a pre-ordered groupoid with identity fulfilling
(MON).

Next, we take into consideration the residuated groupoidooies with
identity C(M) = (C(M),<,-,\,/,1) over (M, <, 0, A) defined above. An as-
signmenj onC(M) is defined by setting:

u(p) ={XeM: X -1 p)
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for all atomsp. One can easily prove that
1(A) = {X €M : X >t Al,
forall AeT.
Fact 1 Every sequent provable ML1(T) is true in(C(M), w).

Proof. It suffice to show, that each axiom fraliis true in C(M), u). Assume
thatA — Bbelongstd'. ltyieldsA —1 B. We need to show tha(A) € u(B).
Let X € u(A). Then,X —t A. By (CUT), we getX —t B, which yields
X € u(B). O

Lemma 2 The systemL1(I') has the extended sub-formula property.

Proof. Let X — A be aT-sequent provable in NLLJ. By fact 1 it is true in
the model C, 1), i.e. u(X) € u(A). SinceX e u(X), we haveX € u(A). But it
meansX —1 A. O

A sequent is said to bbasicif it is a T-sequent of the fornrA — A,
A — B, Ao B — C. LetT be finite, and lefl be a finite set of formulas,
closed under sub-formulas and such thatontains all formulas appearing
in T'. For suchT we shall describe arflective procedure which produces all
basic sequents derivable in NI (

LetSp consist of allT -sequent of the form (Id), all sequents frdh\ — 1
and allT-sequents of the form:

lcA— A Aocl—> A AoB— AeB,
Ao (A\B) — B, (A/B)o B — A.
AssumeS, has already been defineSl,,1 is S, enriched with sequents
resulting from the following rules:
(S1)if(AcB—C)eSpand AeB) € T,then @e B — C) € S1,
(S2)if (Ao X - C) e Spand A\C) € T, then X — A\C) € Spy1,
(S3)if(XoB—C)e Syand C/B) € T, then X — C/B) € Sp.1,
(S4)if (A - A e Spand Ao X - C) € S, then X — C) € Sy,
(S5)if (A > A)e Spand Xo A— C) € Sy, then X — C) € Sp,1,
(S6)if(A— B)e SpandBo X — C) € Sy, then @o X — C) € Sy,
(ST if(A—-B)eSpand XoB— C) € Sy, then Xo A — C) € Spi1,
(S8)if(AcB—C)e Spand C — D) € Sy, then Ao B — D) € Sp,1.
Clearly,S,, € Sp,1 for all n > 0. We defineST as the join of this chairS™
is a set of basic sequents, hence it must be finite. It yiBlds Sy, 1, for the

leastk such thatSk = Sk,1, and thisk is not greater then the number of basic
sequents.

Fact 3 The set $ can be constructed in polynomial time.
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Proof. Let n be the cardinality off. There aren, n> andn® basic sequents
of the formA — A, A - BandA o B — C, respectively. Hence, we have
m = n® + n? + n basic sequents. The s8§ can be constructed in timer).
To getSi;1 from S; we must closes; under the rules (S1)-(S8) which can be
done in at mosin® steps for each rule. For example, to cl&eunder (S1)
we must check ifAo B — C) € S; and (A e B) € T which needs at mosh
andn steps, respectively. The sequéné B — C is added tdS;,; only if it
doesn't belong to this set. To check this fact the masteps are needed. The
leastk such thaS" = Sy is at mosim. Then finely, we can construst’ from

T in time 0(m*) = O(n*?). O
By S(T) we denote the system whose axioms are all sequents$foand
whose only inference rule is (CUT). Then, every proof3(T) consist of
T-sequents only.

If as premises of (CUT) in the proof 8(T) of some sequerX — A only
sequents without empty antecedents are used, then thé lehail sequents
in this proof is not greater than the lengthXf— A. But it doesn’t hold if
we allow in (CUT) the premises of the fora — A. Therefore we introduce
another syster8(T)~ whose axioms are all sequents fr&hand whose only
inference rule is (CUT) with premises without empty anteged, and show
the following lemma.

Lemma 4 Forany sequent X> A, S(T)F X = A iff S(T)" + X - A.

Proof. The 'if’ direction is evident. To prove the 'only if’ direin we show
thatS(T)~ is closed under (CUT), i.e.

™) If S(T)" r X -» BandS(T)™ + Y[B] — A, thenS(T)™ + Y[X] — A.
AssumeS(T)™ + X - BandS(T)™ + Y[B] — A

If X # A, thenS(T)™ + Y[X] — A by definition of S(T)".

If X = A, then the sequeit — Bis of the formA — BandS(T)" +r A —
B, which means that — B is an axiom ofS(T)". To prove (*) we proceed
by induction on derivation of the second premiggB] — A.

If Y[B] — Ais an axiom ofS(T)~, then (Y[B] — A) € ST. ST is closed
under (CUT). Hence Y[A] — A) € ST which yieldsS(T)™ r Y[A] — A.

If Y[B] — Ais a conclusion of (CUT) from premises without empty an-
tecedents, theN[B] = Z[Y’] and for someC € T, S(T)" + Y — C and
S(T)™ + Z[C] — A. We consider the following cases.

I. Bis contained iry’. ThenY’ = Y’[B].
(1) Y’[B] # B. By the induction hypothesis, (*) holds fox — B and
Y'[B] — C, soS(T)” + Y[A] — C. SinceY’[B] # B, we haveY’[A] #
A. Using (CUT), we ge8(T)™ + Z[Y’'[A]] — A, which means$(T)™ +
Y[A] — A
(2) Y’[B] = B. By the induction hypothesis, (*) holds fex — B and
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B — C,soS(T)” + A — C. Using inductive hypothesis t& — C and
Z[C] — A we getS(T)™ + Z[A] — A, which means$(T)™ + Y[A] —
A
II. BandY’ do not overlap. The is contained irnZ and does not overlap
C in Z. We write Z[C] = Z[B,C]. From the assumption we haw =*
A. By induction hypothesis, (*) holds fok — B andZ[B,C] — A, so
S(T)™ + Z[A,C] — A. By (CUT),S(T)” + Z[A,Y’] — A, which means
S(T)" + Y[A] - A
O

Corollary 5 Every basic sequents provable ifT9 belongsto $.

Proof. We proceed by induction on proofs8{(T). AssumeX — Ais a basic
sequent derivable iB(T). If X — Ais an axiom of5(T), then X — A) € ST.
If X — Ais a conclusion of (CUT), we consider three cases.

(1) X = A. By lemma 4,A — Ahas a proof inS(T)". HenceA — Ais an
axiom, which means — A) € ST.

(2) X = B. By lemma 4, there exists a proof such tBat> A is a conclusion
from premiseB — C andC — A, whereC # A. Since proofs in S(T)
consist withT-sequents onlyB — C andC — A are basic sequents. By
induction hypothesis g — C) € ST and C — A) € ST. ST is closed
under (CUT), soB — A) e S™.

(3) X = Bo C. By lemma 4, there exists a proof such tlsat C — Alis a
conclusion from premises without empty premises. Henesy, #ne of the
form: (BoC—-D,D—-A)or(B— D,DoC—-A)or(C— D,BoD —
A). By the same argument as in (2), in each case, weRyeE(— A) € ST.

O

Now, we can state an interpolation lemma 8{iT).

Lemma 6 If S(T) - X[Y] — A, then there exists @ T such that $T) +
Y — Dand ST) + X[D] — A.

Proof. We proceed by induction on proofs8{(T).

I. AssumeX[Y] — A is an axiom ofS(T). We consider the following
cases.

(1) X[Y] = Y. ThenY = X (observe, that this case includes sub case
X = A). We setD = A. We haveS(T) - X — Afrom assumption and
S(T)r A— A since A — A) e ST,

(2) X[Y] =B,Y = A. ThenX[Y] = X[A] = B=BoAorX[Y] =AoBand
D=1 We haveS(T) r A —» 1andS(T) - B— A. (Bo1l— B) e ST,
soS(T) + Bo1l — B. Using (CUT) we getS(T) + X[1] — A. For
X[Y] = A o Bthe argument is dual.
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(B)X[Y] =BoC,Y # A.ThenY =BorY =C, henceD =BorD =C,
respectively.

(4) X[Y] = BoC, Y = A. ThenX[A] has one of the formA o (B o C),
(BoC)oA, (AoB)oC,(BoA)oC,Bo(AoC),Bo(CoA).In
all these cases we sBt = 1. For example, ifX[A] = A o (Bo C),
we haveS(T) + A — 1 and using (CUT) t&5(T) + BoC — Aand
S(Mr1oA— A wegetS(T)+ 1o (BoC) — A

Il. AssumeX[Y] — Ais a conclusion of (CUT). TheK[Y] = Z[Y’] and for

someB e T: S(T) + Y — BandS(T) + Z[B] — A
In this part the proof is analogous to the proof of lemma 2 isEw@wski

(2005). The following cases are considered.

(1) Y is contained inY’. ThenY’ = Y’[Y]. By the induction hypothesis,
there existd € T such thatS(T) + Y — D andS(T) + Y’'[D] — B.
Using (CUT) with the premiseZ[B] — A andY’[D] — B we get
S(T) + Z[Y’[D]] — A, which mean$(T) + X[D] — A.

(2) Y’ is contained inY. Then X[Y] = X[Y[Y’]] = Z[Y’'] and Z[B] =
X[Y[B]]. By the induction hypothesis, there exidis € T such that
S(T) + Y[B] - D andS(T) + X[D] — A. Using (CUT) with the
premisesy’ — BandY[B] — D we getS(T) + Y[Y’]] — D.

(3) Y andY’ do not overlap. Thel is contained irZ and does not overlap
B in Z. We write Z[B] = Z[B, Y]. By the induction hypothesis, there
existsD € T such thatS(T) + Y — D andS(T) + Z[B,D] — A.
Using (CUT) with the premise¥” — B andZ[B,D] — B we get
S(T) + Z[Y’,D] — A, which means$(T) + X[D] — A.

O

Lemma 7 For any T-sequent X»> A, X -1 Aiff S(T) - X — A.

Proof. Recall, thatX —1 A means that the sequeXit— A has the proof in
NL1(T) consisting withT-sequents only.

To prove 'if’ direction observe thaX —t A, for all sequents — Ain
ST,

TheT-sequents which are axioms of NI[}(belong toSy. Thus, to prove
the ’only if’ direction it sufices to show that all inference rules of NIC)(
restricted toT -sequents, are admissibleS(T). For example, let us consider
(1L). AssumeX[A] — A. By lemma 6, there exidD € T such thatS(T) ~
A — DandS(T) + X[D] — A. Since Dol — D) € ST, thenS(T) - Dol —
D. By two applications of (CUT), we g&(T) + X[A o 1] — A, which means
S(T) + X[1] — A. O

Theorem 8 If T is finite, thenNL1(I") is decidable in polynomial time.

Proof. LetT be a finite set of sequents of the foh— C and letX —» A
be a sequent. Lat be the number of logical constants and atomXir> A
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andT’. As T we choose the set of all sub-formulas of formulas appearing i
X — Aand formulas appearing In Since the number of sub-formulas of any
formulaB is equal to the number of logical constants and atoni; ih hasn
elements and we can constructit in time)( By lemma 2, NL1[) - X — A
iff X -1 A.Bylemma7X —1 Aiff S(T) v X — A. Proofs inS(T) are actu-
ally derivation trees of a context-free grammar whose petida rules are the
reversed sequents fro8Y. Checking derivability in context-free grammars
is P-TIME decidable. For example, by known CYK algorithntgan be done
in time not exceedt - n%, wherek is the size oS". By the proof of fact 3, the
size of ST is at most 0G%) andST can be constructed in Bf%). Hence, the
total time is 00%?), i.e. NL1() is P-TIME decidable. O

By theorem 8, we have immediately that languages genergtdtblrate-
gorial grammar based on the system NIL)14re context-free. In Buszkowski
(2005) the analogous result was established for)LL(I") with permuta-
tion rule and Generalized Lambek Calculus (GLY( The context-freeness
of the languages generated by Non-associative Lambek IQaluere studied
by Buszkowski (1986), Kandulski (1988) and Jager (2004)ifBka (2005)
obtained the weak equivalence of context-free grammargemmars based
on the associative Lambek calculus with finite set of simm@e-togical ax-
ioms of the formp — q, wherep, q are primitive types.
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