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P-TIME decidability of NL1 with
assumptions
M B́

Abstract
Buszkowski (2005) showed that systems of Non-associative Lambek Calculus with

finitely many non-logical axioms are decidable in polynomial time and generate context-
free languages. The same holds for systems with unary modalities, studied in Moortgat
(1997),n-ary operations, and the rule of permutation, studied in Jäger (2004). The poly-
nomial time decidability for Classical Non-associative Lambek Calculus was established
by de Groote and Lamarche (2002). We study Non-associative Lambek Calculus with
identity enriched with a finite set of assumptions. To prove that this system is decidable in
polynomial time we adapt the method used in Buszkowski (2005). The context-freeness
of the languages generated of the systems of Non-associative Lambek Calculus is also
established.
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5.1 Introduction and preliminaries
Non-logical axioms can be of interest for linguistics for several reason. We
can use them to describe subcategorization in natural language. For instance,
restrictive adjectives are a sub-category of adjectives. Further, by enriching
Non-associative Lambek Calculus with finitely new axioms, we can improve
its expressibility without lacking the nice computationalsimplicity.

First we describe the formalism of Non-associative Lambek Calculus with
identity constant (NL1). Let At= {p, q, r, . . .} be the denumerable set of atoms
(primitive types).

The set of formulas (also called types) Tp1 is defined as the smallest set
fulfilling the following conditions:

. 1 ∈ Tp1,
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. At ⊆ Tp1,. if A, B ∈ Tp1, then (A•B) ∈ Tp1, (A/B) ∈ Tp1, (A\B) ∈ Tp1, where binary
connectives \ , / , • , are calledleft residuation, right residuation, and
product, respectively.

The set of formula structures STR1 is defined recursively as follows:

. Λ ∈ STR1, whereΛ denotes an empty structure,. Tp1 ⊆ STR1; these formula structures are called atomic formula struc-
tures,. if X,Y ∈ STR1, then (X ◦ Y) ∈ STR1.

We set (X ◦ Λ) = (Λ ◦ X) = X.
Substructures of a formula structure are defined in the following way:

. Λ is the only substructure ofΛ,. if X is an atomic formula structure, thenΛ andX are the only substructures
of X,. if X = (X1◦X2), thenX and all substructures ofX1 andX2 are substructures
of X.

By X[Y] we denote a formula structureX with a distinguished substructure
Y, and byX[Z] - the substitution ofZ for Y in X.

Sequents are formal expressionsX→ A such thatA ∈ Tp1, X ∈ STR1.
The Gentzen-style axiomatization of the calculus NL1 employs the axiom

schemas:

(Id) A→ A (1R) Λ→ 1

and the following rules of inference:

(1L)
X[Λ] → A
X[1] → A

,

(•L)
X[A ◦ B] → C
X[A • B] → C

, (•R)
X→ A; Y→ B
X ◦ Y→ A • B

,

(\L)
Y→ A; X[B] → C
X[Y ◦ (A\B)] → C

, (\R)
A ◦ X→ B
X→ A\B

,

(/L)
X[A] → C; Y→ B
X[(B/A) ◦ Y] → C

, (/R)
X ◦ B→ A
X→ A/B

,

(CUT)
Y→ A; X[A] → B

X[Y] → B
.

For any system S we write S⊢ X → A if the sequentX → A is derivable
in S.

The most general models of NL1 are residuated groupoid with identity.
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A residuated groupoidwith identity is a structure

M = (M,≤, ·, \, /, 1)

such that. (M, ·, 1) is a groupoid with identity in whicha · 1 = a, 1 · a = a for all
a ∈ M,. (M,≤) is a poset ,. \, / are binary operations onM satisfying the equivalences :

(RES) ab≤ c iff b ≤ a\c iff a ≤ c/b

for all a, b, c ∈ M.

Every residuated groupoid fulfills the following monotonicity laws:

(MON) If a ≤ b then ca≤ cb and ac≤ bc

(MRE) If a ≤ b then c\a ≤ c\b, a/c ≤ b/c,

b\c ≤ a\c, c/b ≤ c/

for all a, b, c ∈ M.
A modelis a pair (M, µ) such thatM is a residuated groupoid with identity

andµ is an assignment of elements ofM for atoms. One extendsµ for all
formulas :

µ(1) = 1, µ(A • B) = µ(A) · µ(B),

µ(A\B) = µ(A)\µ(B), µ(A/B) = µ(A)/µ(B).

and formula structure:

µ(Λ) = µ(1) = 1, µ(X ◦ Y) = µ(X) · µ(Y).

A sequentX → A is said to be true in model (M, µ) if µ(X) ≤ µ(A). In
particular a sequentΛ→ A is said to be true in model (M, µ) if 1 ≤ µ(A).

One can prove the following property for formula structures:

(MON − STR) If µ(Y) ≤ µ(Z) then µ(X[Y]) ≤ µ(X[Z]).

5.2 NL1 with assumptions
Let Γ be a set of sequents of the formA→ B, whereA, B ∈ Tp1. By NL1(Γ)
we denote the calculus NL1 with additional setΓ of assumptions. NL1 is
strongly complete with respect to the residuated groupoidswith identity, i.e.
all sequents provable in NL1(Γ) are precisely those which are true in all mod-
els (M, µ) in which all sequents fromΓ are true. Soundness is easily proved
by induction on derivation in NL1(Γ). Completeness follows from the fact
that the Lindenbaum algebra of NL1 is a residuated groupoid with identity.

In general, the calculus NL1(Γ) has not the standard sub-formula property,
since (CUT) is legal rule in this system. Thus we take into consideration the
sub-formula property in some extended form.
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Let T be a set of formulas closed under sub-formulas and such that all
formulas appearing inΓ belong toT. By a T-sequent we mean a sequent
X→ A such thatA and all formulas appearing inX belong toT. Now, we can
reformulate the sub-formula property as follows:

EveryT-sequent provable in a system S has a proof in S such that all sequents
appearing in this proof areT-sequents.

To prove the sub-formula property for NL1(Γ) we will use special models,
namely residuated groupoids with identity of cones over given pre-ordered
groupoids with identity.

Let (M,≤, ·) be a pre-ordered groupoid, that means, it is a groupoid witha
pre-ordering (i.e. a reflexive and transitive relation), satisfying (MON).

A set P ⊆ M is called aconeon M if a ≤ b andb ∈ P entailsa ∈ P. Let
C(M) denotes the set of cones onM.

The operations·, \, / onC(M) are defined as follows:

(M1) I = {a ∈ M : a ≤ 1}

(M2) P1P2 = {c ∈ M : (∃a ∈ P1, b ∈ P2) c ≤ ab}

(M3) P1\P2 = {c ∈ M : (∀a ∈ P1) ac ∈ P2}

(M4) P1/P2 = {c ∈ M : (∀b ∈ P2) cb∈ P1}.

A structure (C(M),⊆, ·, \, /, I ) is a residuated groupoid with identity. It is
called the residuated groupoid with identity of cones over the given pre-
ordered groupoid with identity.

Let M be the set of all formula structures all of whose atomic substructures
belong toT andΛ ∈ M. If a sequentX→ A has a proof in NL1(Γ) consisting
of T-sequents only, we write:X→T A.

First, we define onM a relation≤b. X ≤b Y denotesX directly reduces to
Y. The definition of this relation is as follows:

Y[Z] ≤b Y[Λ] if Z→T 1,

Y[Z] ≤b Y[A] if Z→T A,

Y[A • B] ≤b Y[A ◦ B] if A • B ∈ T.

A pre-ordering≤ on M is defined as a reflexive and transitive closure of
the relation≤b. ThenX ≤ Y iff there existY0, . . . ,Yn, n ≥ 0 such thatX =
Y0,Y = Yn andYi−1 ≤b Yi , for eachi = 1, . . . , n.

Clearly, (M,≤, ◦,Λ) is a pre-ordered groupoid with identityΛ fulfilling
(MON).

Next, we take into consideration the residuated groupoid ofcones with
identity C(M) = (C(M),⊆, ·, \, /, I ) over (M,≤, ◦,Λ) defined above. An as-
signmentµ onC(M) is defined by setting:

µ(p) = {X ∈ M : X→T p},
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for all atomsp. One can easily prove that

µ(A) = {X ∈ M : X→T A},

for all A ∈ T.

Fact 1 Every sequent provable inNL1(Γ) is true in(C(M), µ).

Proof. It suffice to show, that each axiom fromΓ is true in (C(M), µ). Assume
thatA→ Bbelongs toΓ. It yieldsA→T B. We need to show thatµ(A) ⊆ µ(B).
Let X ∈ µ(A). Then,X →T A. By (CUT), we getX →T B, which yields
X ∈ µ(B). ⊔⊓

Lemma 2 The systemNL1(Γ) has the extended sub-formula property.

Proof. Let X → A be aT-sequent provable in NL1(Γ). By fact 1 it is true in
the model (C, µ), i.e.µ(X) ⊆ µ(A). SinceX ∈ µ(X), we haveX ∈ µ(A). But it
meansX→T A. ⊔⊓

A sequent is said to bebasic if it is a T-sequent of the formΛ → A,
A → B, A ◦ B → C. Let Γ be finite, and letT be a finite set of formulas,
closed under sub-formulas and such thatT contains all formulas appearing
in Γ. For suchT we shall describe an effective procedure which produces all
basic sequents derivable in NL1(Γ).

LetS0 consist of allT-sequent of the form (Id), all sequents fromΓ,Λ→ 1
and allT-sequents of the form:

1 ◦ A→ A, A ◦ 1→ A, A ◦ B→ A • B,
A ◦ (A\B)→ B, (A/B) ◦ B→ A.

AssumeSn has already been defined.Sn+1 is Sn enriched with sequents
resulting from the following rules:

(S1) if (A ◦ B→ C) ∈ Sn and (A • B) ∈ T, then (A • B→ C) ∈ Sn+1,

(S2) if (A ◦ X→ C) ∈ Sn and (A\C) ∈ T, then (X→ A\C) ∈ Sn+1,

(S3) if (X ◦ B→ C) ∈ Sn and (C/B) ∈ T, then (X→ C/B) ∈ Sn+1,

(S4) if (Λ→ A) ∈ Sn and (A ◦ X→ C) ∈ Sn, then (X→ C) ∈ Sn+1,

(S5) if (Λ→ A) ∈ Sn and (X ◦ A→ C) ∈ Sn, then (X→ C) ∈ Sn+1,

(S6) if (A→ B) ∈ Sn and (B ◦ X→ C) ∈ Sn, then (A ◦ X→ C) ∈ Sn+1,

(S7) if (A→ B) ∈ Sn and (X ◦ B→ C) ∈ Sn, then (X ◦ A→ C) ∈ Sn+1,

(S8) if (A ◦ B→ C) ∈ Sn and (C→ D) ∈ Sn, then (A ◦ B→ D) ∈ Sn+1.

Clearly,Sn ⊆ Sn+1 for all n ≥ 0. We defineST as the join of this chain.ST

is a set of basic sequents, hence it must be finite. It yieldsST = Sk+1, for the
leastk such thatSk = Sk+1, and thisk is not greater then the number of basic
sequents.

Fact 3 The set ST can be constructed in polynomial time.
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Proof. Let n be the cardinality ofT. There aren, n2 andn3 basic sequents
of the formΛ → A, A → B andA ◦ B → C, respectively. Hence, we have
m = n3 + n2 + n basic sequents. The setS0 can be constructed in time 0(n2).
To getSi+1 from Si we must closeSi under the rules (S1)-(S8) which can be
done in at mostm3 steps for each rule. For example, to closeSi under (S1)
we must check if (A ◦ B→ C) ∈ Si and (A • B) ∈ T which needs at mostm
andn steps, respectively. The sequentA • B→ C is added toSi+1 only if it
doesn’t belong to this set. To check this fact the nextm steps are needed. The
leastk such thatST = Sk is at mostm. Then finely, we can constructST from
T in time 0(m4) = 0(n12). ⊔⊓

By S(T) we denote the system whose axioms are all sequents fromST and
whose only inference rule is (CUT). Then, every proof inS(T) consist of
T-sequents only.

If as premises of (CUT) in the proof inS(T) of some sequentX→ A only
sequents without empty antecedents are used, then the length of all sequents
in this proof is not greater than the length ofX → A. But it doesn’t hold if
we allow in (CUT) the premises of the formΛ → A. Therefore we introduce
another systemS(T)− whose axioms are all sequents fromST and whose only
inference rule is (CUT) with premises without empty antecedents, and show
the following lemma.

Lemma 4 For any sequent X→ A, S(T) ⊢ X→ A iff S(T)− ⊢ X→ A.

Proof. The ’if’ direction is evident. To prove the ’only if’ direction we show
thatS(T)− is closed under (CUT), i.e.

(*) If S(T)− ⊢ X→ B andS(T)− ⊢ Y[B] → A, thenS(T)− ⊢ Y[X] → A.

AssumeS(T)− ⊢ X→ B andS(T)− ⊢ Y[B] → A.
If X , Λ, thenS(T)− ⊢ Y[X] → A by definition ofS(T)−.
If X = Λ, then the sequentX→ B is of the formΛ→ B andS(T)− ⊢ Λ→

B, which means thatΛ → B is an axiom ofS(T)−. To prove (*) we proceed
by induction on derivation of the second premise:Y[B] → A.

If Y[B] → A is an axiom ofS(T)−, then (Y[B] → A) ∈ ST . ST is closed
under (CUT). Hence, (Y[Λ] → A) ∈ ST which yieldsS(T)− ⊢ Y[Λ] → A.

If Y[B] → A is a conclusion of (CUT) from premises without empty an-
tecedents, thenY[B] = Z[Y′] and for someC ∈ T, S(T)− ⊢ Y′ → C and
S(T)− ⊢ Z[C] → A. We consider the following cases.

I. B is contained inY′. ThenY′ = Y′[B].
(1) Y′[B] , B. By the induction hypothesis, (*) holds forΛ → B and

Y′[B] → C, soS(T)− ⊢ Y′[Λ] → C. SinceY′[B] , B, we haveY′[Λ] ,
Λ. Using (CUT), we getS(T)− ⊢ Z[Y′[Λ]] → A, which meansS(T)− ⊢
Y[Λ] → A.

(2) Y′[B] = B. By the induction hypothesis, (*) holds forΛ → B and



P-TIME   NL1   / 41

B→ C, soS(T)− ⊢ Λ → C. Using inductive hypothesis toΛ → C and
Z[C] → A, we getS(T)− ⊢ Z[Λ] → A, which meansS(T)− ⊢ Y[Λ] →
A.

II. B andY′ do not overlap. ThenB is contained inZ and does not overlap
C in Z. We write Z[C] = Z[B,C]. From the assumption we haveY′ ,
Λ. By induction hypothesis, (*) holds forΛ → B andZ[B,C] → A, so
S(T)− ⊢ Z[Λ,C] → A. By (CUT), S(T)− ⊢ Z[Λ,Y′] → A, which means
S(T)− ⊢ Y[Λ] → A.

⊔⊓

Corollary 5 Every basic sequents provable in S(T) belongs to ST .

Proof. We proceed by induction on proofs inS(T). AssumeX→ A is a basic
sequent derivable inS(T). If X→ A is an axiom ofS(T), then (X→ A) ∈ ST .
If X→ A is a conclusion of (CUT), we consider three cases.

(1) X = Λ. By lemma 4,Λ → A has a proof inS(T)−. HenceΛ → A is an
axiom, which means (Λ→ A) ∈ ST .

(2) X = B. By lemma 4, there exists a proof such thatB→ A is a conclusion
from premisesB → C andC → A, whereC , Λ. Since proofs in S(T)
consist withT-sequents only,B → C andC → A are basic sequents. By
induction hypothesis, (B → C) ∈ ST and (C → A) ∈ ST . ST is closed
under (CUT), so (B→ A) ∈ ST.

(3) X = B ◦ C. By lemma 4, there exists a proof such thatB ◦ C → A is a
conclusion from premises without empty premises. Hence, they are of the
form: (B◦C→ D , D→ A) or (B→ D , D◦C→ A) or (C→ D , B◦D→
A). By the same argument as in (2), in each case, we get (B◦C→ A) ∈ ST .

⊔⊓

Now, we can state an interpolation lemma forS(T).

Lemma 6 If S(T) ⊢ X[Y] → A, then there exists D∈ T such that S(T) ⊢
Y→ D and S(T) ⊢ X[D] → A.

Proof. We proceed by induction on proofs inS(T).

I. AssumeX[Y] → A is an axiom ofS(T). We consider the following
cases.

(1) X[Y] = Y. Then Y = X (observe, that this case includes sub case
X = Λ). We setD = A. We haveS(T) ⊢ X → A from assumption and
S(T) ⊢ A→ A, since (A→ A) ∈ ST .

(2) X[Y] = B, Y = Λ. ThenX[Y] = X[Λ] = B = B◦Λ or X[Y] = Λ◦B and
D = 1. We haveS(T) ⊢ Λ → 1 andS(T) ⊢ B→ A. (B ◦ 1→ B) ∈ ST ,
so S(T) ⊢ B ◦ 1 → B. Using (CUT) we getS(T) ⊢ X[1] → A. For
X[Y] = Λ ◦ B the argument is dual.
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(3) X[Y] = B ◦C, Y , Λ. ThenY = B or Y = C, henceD = B or D = C,
respectively.

(4) X[Y] = B ◦ C, Y = Λ. ThenX[Λ] has one of the form:Λ ◦ (B ◦ C),
(B ◦ C) ◦ Λ, (Λ ◦ B) ◦ C, (B ◦ Λ) ◦ C, B ◦ (Λ ◦ C), B ◦ (C ◦ Λ). In
all these cases we setD = 1. For example, ifX[Λ] = Λ ◦ (B ◦ C),
we haveS(T) ⊢ Λ → 1 and using (CUT) toS(T) ⊢ B ◦ C → A and
S(T) ⊢ 1 ◦ A→ A, we getS(T) ⊢ 1 ◦ (B ◦C)→ A.

II. AssumeX[Y] → A is a conclusion of (CUT). ThenX[Y] = Z[Y′] and for
someB ∈ T: S(T) ⊢ Y′ → B andS(T) ⊢ Z[B] → A.

In this part the proof is analogous to the proof of lemma 2 in Buszkowski
(2005). The following cases are considered.
(1) Y is contained inY′. ThenY′ = Y′[Y]. By the induction hypothesis,

there existsD ∈ T such thatS(T) ⊢ Y → D andS(T) ⊢ Y′[D] → B.
Using (CUT) with the premisesZ[B] → A and Y′[D] → B we get
S(T) ⊢ Z[Y′[D]] → A, which meansS(T) ⊢ X[D] → A.

(2) Y′ is contained inY. Then X[Y] = X[Y[Y′]] = Z[Y′] and Z[B] =
X[Y[B]]. By the induction hypothesis, there existsD ∈ T such that
S(T) ⊢ Y[B] → D and S(T) ⊢ X[D] → A. Using (CUT) with the
premisesY′ → B andY[B] → D we getS(T) ⊢ Y[Y′]] → D.

(3) Y andY′ do not overlap. ThenY is contained inZ and does not overlap
B in Z. We write Z[B] = Z[B,Y]. By the induction hypothesis, there
existsD ∈ T such thatS(T) ⊢ Y → D and S(T) ⊢ Z[B,D] → A.
Using (CUT) with the premisesY′ → B and Z[B,D] → B we get
S(T) ⊢ Z[Y′,D] → A, which meansS(T) ⊢ X[D] → A.

⊔⊓

Lemma 7 For any T-sequent X→ A, X→T A iff S(T) ⊢ X→ A.

Proof. Recall, thatX →T A means that the sequentX → A has the proof in
NL1(Γ) consisting withT-sequents only.

To prove ’if’ direction observe thatX →T A, for all sequentsX → A in
ST .

TheT-sequents which are axioms of NL1(Γ) belong toS0. Thus, to prove
the ’only if’ direction it suffices to show that all inference rules of NL1(Γ),
restricted toT-sequents, are admissible inS(T). For example, let us consider
(1L). AssumeX[Λ] → A. By lemma 6, there existD ∈ T such thatS(T) ⊢
Λ→ D andS(T) ⊢ X[D] → A. Since (D◦1→ D) ∈ ST , thenS(T) ⊢ D◦1→
D. By two applications of (CUT), we getS(T) ⊢ X[Λ◦1] → A, which means
S(T) ⊢ X[1] → A. ⊔⊓

Theorem 8 If Γ is finite, thenNL1(Γ) is decidable in polynomial time.

Proof. Let Γ be a finite set of sequents of the formB → C and letX → A
be a sequent. Letn be the number of logical constants and atoms inX → A
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andΓ. As T we choose the set of all sub-formulas of formulas appearing in
X→ A and formulas appearing inΓ. Since the number of sub-formulas of any
formulaB is equal to the number of logical constants and atoms inB, T hasn
elements and we can construct it in time 0(n2). By lemma 2, NL1(Γ) ⊢ X→ A
iff X→T A. By lemma 7,X→T A iff S(T) ⊢ X→ A. Proofs inS(T) are actu-
ally derivation trees of a context-free grammar whose production rules are the
reversed sequents fromST . Checking derivability in context-free grammars
is P-TIME decidable. For example, by known CYK algorithm, itcan be done
in time not exceedk · n3, wherek is the size ofST . By the proof of fact 3, the
size ofST is at most 0(n3) andST can be constructed in 0(n12). Hence, the
total time is 0(n12), i.e. NL1(Γ) is P-TIME decidable. ⊔⊓

By theorem 8, we have immediately that languages generated by the cate-
gorial grammar based on the system NL1(Γ) are context-free. In Buszkowski
(2005) the analogous result was established for NL(Γ), NL(Γ) with permuta-
tion rule and Generalized Lambek Calculus (GLC(Γ)). The context-freeness
of the languages generated by Non-associative Lambek Calculus were studied
by Buszkowski (1986), Kandulski (1988) and Jäger (2004). Bulińska (2005)
obtained the weak equivalence of context-free grammars andgrammars based
on the associative Lambek calculus with finite set of simple non-logical ax-
ioms of the formp→ q, wherep, q are primitive types.
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