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Properties of binary transitive closure
logics over trees

SrepHAN KEPSER

Abstract

Binary transitive closure logic (FCfor short) is the extension of first-order predicate
logic by a transitive closure operator of binary relatioBsterministic binary transitive
closure logic (F&*) is the restriction of FOto deterministic transitive closures. It is
known that these logics are more powerful than FO on arpisauctures and on finite
ordered trees. Itis also known that they are at most as polasfmonadic second-order
logic (MSO) on arbitrary structures and on finite trees. Wé study the expressive
power of FO and FG* on trees to show that several MSO properties can be expressed
in FOP* (and hence FQ.

The following results will be shown.
= Alinear order can be defined on the nodes of a tree.
The class EVEN of trees with an even number of nodes can beedefin
On arbitrary structures with a tree signature, the clasttses and finite trees can be
defined.
= There is a tree language definable in%@hat cannot be recognized by any tree

walking automaton.
= FO" is strictly more powerful than tree walking automata.
These results imply that FO and FO are neither compact nor do they have the
Lowenheim-Skolem-Upward property.

Keywords BINARY TRANSITIVE CLOSURE LOGIC

8.1 Introduction

The question about the best suited logic for describingdreperties or defin-
ing tree languages is an important one for model theoretitagyas well
as for querying treebanks. Model theoretic syntax is a rebgarogram in
mathematical linguistics concerned with studying the dptge complex-
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ity of grammar formalisms for natural languages by definimgjrtderivation
trees in suitable logical formalisms. Since the very inflisdiook by Rogers
(1998) it is monadic second-order logic (MSO) or even momggrful logics

that are used to describe linguistic structures.

With the advent of XML and query languages for XML documemtgar-
ticular XPath, the interest in logics for querying treebanbse dramatically.
There is now a large interest in this topic in computer s@ehtdependent of
that, but temporarily parallel, large syntactically aratet treebanks became
available in linguistics. They provide nowadays a rich amgartant source
for the study of language. But in order to access this sosuiéable query
languages for treebanks are required.

One of the simplest properties that are known to be inexjieds first-
order predicate logic (FO henceforth) is the transitivesglte of a binary rela-
tion. Itis therefore a natural move to extend FO by a binaaggitive closure
operator. And this move has been done before in the defirdfiouery lan-
guages for relational databases, in particular for the S§h&dard. But it
seems that the expressive power of FO plus binary transitogures (FO
for short) to define tree properties is not much studied yleis & somewhat
surprising, because there is reason to believe thatis@ore user friendly
than MSO. Most users of query languages, in particular istguunderstand
the concept of a transitive closure very well and know howdeitt It is a lot
more dificult to use set variables to describe tree properties. Ampiafor
this claim is the fact MSO is capable of defining binary tréwsiclosures, as
shown by Moschovakis (1974). A formula expressing the ftaesclosure
in MSO is given at the end of the next section. It is questita#iat ordi-
nary users (without profound knowledge of MSO) would be a@blénd this
formula.

There exists a more restricted version of transitive clesnamely de-
terministic transitive closure (FO). The deterministic transitive closure of
a binary relation is the transitive closure of the functiooadeterministic
part of the relation. We propose to seriously considet*Fa3 a language for
defining tree properties. We do so by showing that severabitapt MSO
definable properties can be defined in"E@ne such example is the ability
to define a linear order on the nodes of a tree. The order rdsemepth-first
left-to-right traversal of a tree. A linear order is a powgidoncept that can
be used defining additional properties. For example, it edus count the
number of nodes in a tree modulo a given natural number. Aariesg is the
definition of the class EVEN of all trees with an even numbenaodles in
FO™.

Arguably an important reason for Rogers’ choice of MSO isaitslity
to axiomatize trees. l.e., there exists a set of axioms duahan arbitrary
structure (of a suitable signature) is a tree — finite or itdiriiff it is a model



PROPERTIES OF BINARY TRANSITIVE CLOSURE LOGICS OVER TREES / 105

of the axioms. It is known that this characterization of sreannot be done
using FO. But the full expressive power of MSO may not reallyrieeded

for the axiomatization, because we show that arbitrarystege finite trees

can be axiomatized in FO This capability of axiomatizing finite and infinite
trees implies that F© (and hence also FQis neither compact nor does it
possess the Lowenheim-Skolem-Upward property.

There exists a tree automaton concept that defines settiehohef parallel
processing of nodes in a tree, namely tree walking autonTaté]. As the
name implies, a tree is processed by walking up and down indtigspect-
ing nodes serially. One may therefore believe that thesenzath could be
the automaton-theoretic correspondent of* FBut we show here that FO
is more powerful. Every tree language that is recognized BWA can be
defined in FO. The relationship towards FOis less clear. There are PO
definable tree languages that cannot be recognized by any. TWA

8.2 Preliminaries

Let M be a set. We write(M) for the power set oM. LetRC M x M be a
binary relation oveM. Thetransitive closure T(R) of R is the smallest set
containingRand for allx,y,ze M such thatx,y) € TC(R)and {/,2) € TC(R)
we have k.2 € TC(R). l.e.,

TC(R) := ﬂ{W| RCWCMxMVYxXy,ze M :
XY, (.2 eW = (x,2) € W}.

Deterministictransitive closure is the transitive closure of a determini
tic, i.e., functional relation. For an arbitrary binaryatbn R we define its
deterministic reducby

Ro:={(x,y) eR|VzZz: (X, eR = y=12.

Now
DTC(R) := TC(Rp).

We consider labeled ordered unranked trees. A tree is atdfettee set of
child nodes of every node is linearly ordered. A tree is ukealif there is no
relationship between the label of a node and the number chitdren. For
brevity we just writetreefor labeled ordered unranked tréa Sections 8.3
and 8.5 we only consider finite trees, in Section 8.4 we alssider infinite
trees.

Definition 1 A tree domainis a non-empty subs@t C N* such that for all
uveN*:uve T = ueT (closure under prefixes) and for alke N* and
ieN:uieT = ujeT forall j <i(closure under left sisters).

Let £ be a set of labels. Areeis a pair [, Lab) whereT is a tree domain
andLab: T — Lis a node labeling function.

A tree isfiniteiff its tree domain is finite.
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We remark that a tree domain is at most countable, since suibaet of a
countable union of countable sets.

The languages to talk about trees will be extensions of dirdéer logic.
Their syntaxes is as follows. L&t = {X,y,Z w, U, X1, X2, X3, ... } be a denu-
merable infinite set of variables. The atomic formulaelgpg for each label
Le £, x>y x|y andx = y. Complex formulae are constructed from
simpler ones by means of the boolean connectives, exiatertd univer-
sal quantification, and transitive closure. l.e.¢iindy are formulae, then
G, dANY, PV Y, EIX:¢’ VX:¢! and [TC(1,X2 ¢](X’ y)! [DTCX1,X2 ¢](X’ y)! respec-
tively, are formulae.

The semantics of the first-order part of the language is stahd et
(T, Lab) be a tree. A variable assignmemt: X — T assigns variables to
nodes in the tree. The root node has the empty addrédsw [L(X)]2 =T
iff Lab(a(x)) = L. [x | y]? = T iff a(y) = a(x)i for somei € N, i.e., | is
the parent relation.)] — y]? = T iff there is au € T andi € N such that
a(x) = ui anda(y) = ui + 1, i.e.,— is the immediate sister relation.

Boolean connectives and quantification have their standéetpretation.
NOW’ I[[TCX1,X2 ¢](X’ y)]la =Tiff

(a(¥). a(y)) € TC({(b,d) | [¢] ™9 = T)

whereab/x;d/x; is the variable assignment that is identicabtexcept that
X, is assigned td andx; to d. If ¢ is a formula with free variables, o, it
can be regarded as a binary relatigr;, o). Then [TG, x, ¢] is the transitive
closure of this binary relation. This language is abbredd&C.

And [[DTC,, 5, ¢1(x.y)]? = T iff

(a(¥), a(y)) € DTC({(b, d) | []** % = T)).

This language is abbreviated FOIt is simple to see that everything express-
ible in FO”* can also be expressed in F®ecause

[DTCX1,X2 ¢(Xl7 XZ)](X’ y) <
[TCux, #(X1, X2) AVZP(X1,2) — Z= X2 (X, Y).

It is an open question whether there are tree languages bliefimaFO" that
cannot be defined in FO

FO* is amongst the smallest extension of first-order logic. kinewn that
the transitive closure of a binary relationnist first-order definable (Fagin,
1975). But when talking about trees, people frequently wartblk about
paths in a tree. And a path is the transitive closure of aetiase steps. FO
and FO have at most the expressive power of monadic second-orgir lo
(MSO). Itis an old result, which goes back at least to Moselkis/(1974,
p. 20), that the transitive closure of every MSO-definabtehy relation is
also MSO-definable. The following formula is due to Coure€l1990). Let
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R be an MSO-definable binary relation. Then

VX (Vzw(ze XAR@zW) = we X)AVZR(X,2) = ze€ X))
= yeX

is a formula with free variablesandy that defines the transitive closureff
It follows that every tree language definable in*F&n be defined in MSO.
Whether the two logics are equivalent, seems an open que§iw FO*,
the question is settled. Recently, Bojanczyk et al. (20@§ktshown that the
expressive power of MSO for defining tree languages propedgnds the
expressive power of FO.

8.3 Definability of Order

One of the abstract insights from descriptive complexiwotty is that or-
der is a very important property of structures. The relatiop between cer-
tain logics and classical complexity classes is frequertjricted toordered
structures, i.e., structures where the carrier is lineantiered. The reason for
this restriction is to be found in the fact that computatismn ordered pro-
cess. Definability and non-definability results for certaigics over ordered
structures frequently do not extend to unordered strustuirés therefore an
important property of a logic, if the logic itself is capalolieexpressing order
without recourse to an extended signature. The probablyKyesvn logic
with this property i1, the extension of first-order logic by arbitrary relation
variables that are existentially quantified. It is obvigugbssible to define
order inZ}, because we can say there is a binary relation that has gfdipe
erties of a linear order. These properties are known to bedider properties.
It is hence the ability to say “there is a binary relation"ttisathe key.

There is no way that FO or FO' could define order on arbitrary finite
structures. But if we only consider ordered trees as mo&€); can define
order. Indeed it is possible to give a definition of the deft$t-left-to-right
order of nodes in a tree (and some variants).

Proposition 9 There is an explicit definition of a linear order of the nodes i
atree inFOP*.

Proof. Define the proper dominance relation of tr&@esn(x, y) as [DTG,x x |
vl(y, X). The idea of how to define dominance deterministically byking
upwards from the descendants to the ancestors goes backgsaRti and
Immerman (1995). Similarly but simpler, define the sistdatien SigXx,y)
as [DTG.y x — y](x y). Now definex <y as

Dom(x,y) v (Aw,v: Sigw,V) A
(w=xVv Domw, X)) A (v=yV DomV,Y))).
The first disjunct expresses the “depth-first” part of thesor@he more com-
plicated second disjunct formalizes the “left-to-righ#rp It expresses that
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there is a common ancestor of nodesndy and nodex is to be found on a
left branch whiley is to be found on a right branch. Care is taken that mu-
tual domination is excluded. Hence the two disjuncts areuatlyt exclusive.
Since the dominance and the sisterhood steps are bothxivefl¢the whole
relation< is irreflexive. Furthermore for each pair of distinct nodes itree,
either one dominates the other, or there is a common ancastbrthat one
node is on a left branch while the other is on a right branchnddehe rela-
tion is total. Transitivity can easily be checked by consitigthe four cases
involved in expanding < y andy < z O

The proposition basically states that ordered trees aereddstructures in
any logic at least as powerful as FONote that the root node is the smallest
element of the order. If the tree is finite, the largest elenethe leaf of the
rightmost branch of the tree. The root node is FO-definatde-dy : y | x.
The largest elemeriflax of the order is FO*-definable bydx—-3y : x < y.
The successoy of a nodex in the linear order $ ucgx,y)) is also FO*-
definable:xx < yA -3z : X < zA z < y. Using a linear order it is possible
to count modulo some natural number on trees. That is\fkre N we can
define the class of finite trees such that each tree in the bt x n + k
nodes (for some € N). As an example, we define the class EVEN of trees
with an even number of nodes (ire= 2,k = 0).

Proposition 10 The class of finite trees with an even number of nodes is
FOP*-definable.

Proof. We only consider the case where a tree has more than two.nbues
formula

Iw : SucgRootw) A [DTCyyIz: Sucgx, 2) A Sucgz y)(w, Max)

expresses that we go in one step from the root to its succesgerom w
we can reach the last element of the order by an arbitrary eumbtwo
successor steps. If we take the two-successors-step patigththe linear
order from the root to the maximum, we have an odd number oés,agince
a path ofn double-successor-steps has 1 nodes. O

Corollary 11 FOP* has no normal form of the typgdDTCyy ¢(x, Y)(r,1)
whereg(x,y) is an FO formula and r the root. The same is true mutatis mu-
tandis forFO".

Proof. With a single application of a DTC-operator we can definegneith
a linear order. If FO with a single DTC-operator is interpgebver finite
successor structures, then it is equivalent to FO with oBler over finite
orderings, EVEN is not definable in FO. O

The above corollary is stated here because it contrastsavfithdamental
result in descriptive complexity theory. Let FO(TC) be tliéemsion of FO by
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transitive closure operators of arbitrary width, that is thansitive closure of
binary relations on tuples of arbitrary width. Let FO(DT@)its deterministic
counterpart. Immerman (1999) showed that both FO(TC) an@®FQG) on

ordered structures have a normal form consisting of a simgfier application
of the (deterministic) transitive closure operator on dreotvise FO formula.

8.4 Definability of Tree Structures

In previous and all following sections we assume that we cplysider tree
models as defined in the Preliminaries section. But in thitige we take a
more general view, a view that has its origin in model théorgtntax. The
aim is to find whether it is possible to give an axiomatizatdmhose struc-
tures linguists are interested in. This task has two subpahte first consists
of defining trees, or more precisely finite trees, as the oedmodels. The
second part consists of axiomatizing linguistic princisech as the Binding
theory in the given logic. We will only be concerned with thestfipart here.
This section is inspired by the book by Rogers (1998). Moezijzally we
show that the main results of Chapter 3 carry over t8‘F®/e will frequently
cite this chapter in the current section.

The language of this section is deterministic binary tré@restlosure logic
with equality over the following base relations:

< parentrelation

<* dominance relation

<" proper dominance relation

< left-of relation
We also assume there to be a £edf unary predicate symbols representing
linguistic labels. We write F&« for this language to indicate that the base
relations dffer from the ones in the other sections of this paper.

A model for FO*« is a tuple {, P, D, L, Lab) whereU is a non-empty
domain,P, D andL are binary relations oveéy interpreting<, <* and<. And
Lab: £ — p(U) interprets each label as a subsetof

Since the intended models of this language are trees, wetbaestrict
the class of models by giving axioms of trees. Many propgietrees can
be defined by first-order axioms. The following 12 axioms &atedcfrom
(Rogers, 1998, p. 15f.).

Al IxVy: x <"y
(Connectivity . dominance)
A2 VX y: (X<*yAYy<* X) > X=Y
(Antisymmetry of dominance)
A3 VXV, Z: (X<*YAY <" 2) - X< Z
(Transitivity of dominance)
Ad VXY X<T Yo (XS YAXEY)
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(Definition of proper dominance)

A5 VX y:X<ay o (X<t YyAVZ: (X< ZAZ<Y) > (Z<" XV Y < 2)
(Definition of immediate dominance)

A6 VX, z: X<t z— ((Ay: X<yAy<" 2 AAy:y<2)
(Discreteness of dominance)

A7 VXY (X< YAY < X) & (XELYAY£X)
(Exhaustiveness and exclusiveness)

A8 YW, X, Y,Z: (X<YAX<WAY< 2 5>W<2Z
(Inheritance of Left-of wrt. dominance)

A9 VX, V,Z: (X<YAY<2) > X<Z
(Transitivity of left-of)

AlO VX, y:X<y—->Yy£X
(Asymmetry of left-of)

All ¥YX(Ay: X<ay) > (AY: X<y AVZ:X<azZ—> ZLY)
(Existence of a minimum child)

Al2 VX, 2:Xx<z2— (AY: X<YAYW:X<W->WLY)A

Ay y<zZAYW:W<Zo Yy £W)

(Discreteness of left-of)

A discussion of these axioms can be found in (Rogers, 1998%fp. Ev-
ery tree (finite or infinite) obeys to these axioms. But theeereon-standard
models, i.e., structures that are models of theses axiotwedudd not be con-
sidered as trees. Actually, itit possible to give a first-order axiomatization
of trees, as was shown by Backofen et al. (1995). The simplestple of a
non-standard model can be gained by adapting the well-kreoxample of
a non-standard model of FO arithmetics to tree structureis. odel is de-
picted in Figure 1. The carrier is the disjoint union of théumal numbers and
the integers. The dominance relation is defined by takinghdteral order
on natural numbers and integers plus every natural numbaindoes every
integer. Formallyl = NwZ, P ={(n,n+1)|ne NUZ},D = {(n,m) | n,me
Non<mpu{(n,m)|nmezZn<miu{(n,2 | neN,ze Z}, andL = 0. This
model is not a tree because the integers are infinitely fay &oan the root.

The FO axioms demand that the proper dominance relationromesmly
contain the immediate dominance relation but also theitreaslosure of the
immediate dominance. In the non-standard model, propefirdore truly
extends the transitive closure of immediate dominancenafiral numbers
properly dominate all integers. But this part of the domg®relation is not
contained in the transitive closure of immediate dominahtea proper tree
model, the proper dominance is always identical to the i@aslosure of
immediate dominance. This insight can be expressed Fi4&3 an axiom.

ATl VX, y: X<ty — [DTCy.z<W](Y, X)
(Proper dominance is the transitive closure of immediataidance)
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FIGURE1 A non-standard model of the first-order tree axioms.

r

FIGURE2 Another non-standard model of the first-order tree axioms.

Another way of reading this axiom is to say that the path fronaibitrary
node back to the root is finite.

AT1 together with the first-order axioms does still noffsie to axiomatize
proper trees. An example of a non-standard model for which Aglds true
is given in Figure 2. Formally, we set = {r}uNwZ, P = {(r,2) | ze NUZ},
D=PuU{(i,i)|ie{rfUNUZ}, andL = {(n,m) |n,me N,n < m}U{(n,m) |
nmezZn<miu{(nz|neN,ze Z}. Consider the sisters of a node. They
are ordered by, and there is a left-most sister. Now, in a proper tree, the
number of sisters to the left is finite for every node. In thedelon Figure 2 all
integers have infinitely many left sisters. This configuratias to be avoided
by means of one more axiom as follows. We can easily defineoth@ahode
is the immediate sister of another node. The relati®(x, y) is defined as
Az:z<«XAZ<ayAX<YA-=Iw: X<w<y. Now we can spell out an axiom
analog to AT1.
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AT2 VX V,Z: (X<YAX<ZAY<2Z) — [DTCywlIS(v,W)](y,2)
(Finitely many left sisters)

Theorem 12 Axioms A1-A12, AT1, and AT2 define the class of tree models.

The proof is analogous to the proof of Theorem 3.9 in (RogE®98).
Consider in particular Footnote 8 on page 23.

Proof. Rogers showed that every tree (in the sense of Definitios 4 model
of axioms A1-A12 and for each nodee U the setsA; = {(y, X) € D} of

ancestors okandLy = {y| 3z: (z X),(z y) € D and {, x) € L} of left sisters
of x are finite (Lemma 3.5). And every tree obviously satisfie®irs AT1
and AT2.

Furthermore, each model of axioms A1-A12 whéseand Ly are finite
for each nodex € U is isomorphic to a tree (Lemma 3.6).

Now suppose a model of A1-A12 satisfies AT1. Then for each madl¥
the setA is finite, because it contains the root (Al) and is constaictie
parent-child steps (AT1), and a transitive closure of @rgjéps cannot reach
a limit ordinal. An analogous argument can be made with reiSjpemodels
of A1-A12 and AT2. Hence for every model of of A1-A12, AT1, af@2
and all nodex € U we see that the sefs, andLy are finite. By the above
guoted Lemma 3.6, these models are isomorphic to trees. O

The tree models of Axioms A1-A2, AT1, and AT2 can be finite a8 a®
infinite. But since they are all tree models, they are at moshtable. This
is because every tree domain is at most countable (see raftarkDefini-
tion 1). And every tree model is isomorphic to a tree. As an adiate con-
sequence we get that POdoesnot have the Lowenheim-Skolem-Upward
property. This property states that if a theory (i.e., pt&dly infinite set of
sentences) has a model of sizét has models of arbitrary infinite cardinali-
ties. Itis a typical property of FO logic.

Corollary 13 The logics=OP* and FO* do nothave the Lowenheim-Skolem-
Upward property.

Linguists are mostly (if not exclusively) concerned withtértrees. Hence
it would be nice if we could restrict the class of models ferttown to finite
trees. This can indeed be done. Rogers (1998) defines a tingar on the
nodes of a tree as follows. Node< y iff X <* y v x < y. By Axiom A7, each
pair of nodes is either a member of the dominance relationroember of
the left-of relation. Hence this defines indeed a linear oietually, the or-
der is the same as the one in the previous section: depthefirsd-right tree
traversal. As in the previous section we &ecgXx, y) for y being the imme-
diate successor ofin the order. Finiteness can now be defined in two steps.
Firstly we demand the linear order to be the deterministiogitive closure
of the immediate successor relation. The consequencesofiéimand is that
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for every element in the order there is only a finite numberarfes that are
smaller than this element. Secondly we demand the ordenv®daaximal
element. If the maximal element has only a finite number ahelats smaller
than it, the tree is obviously finite.

AF Vxy:x<y = [DTCyy Sucgx, V)I(Xy) A
AXVY Yy < XVy=X
(Finiteness of the ordet)

Theorem 14 Axioms Al1-A12, AT1, AT2, and AF define the clasfirfe
tree models.

Proof. By Theorem 12, every model of the Axioms A1-A12, AT1, and AT2
is isomorphic to a tree model. If a model is finite, then AF ig@ialy true.
For the converse, assume tWady : x <y = [DTCyy Sucgx, y)I(X.y).

By definition of the DTC-operator, the sigt| y < x} of elements smaller than
x is finite for every nodex. If the order has additionally a maximal element
m, then it is finite. O

This theorem implies that another property of FO, namely gacimess,
does not extend to FO.

Corollary 15 The logics=COP* and FO* are notcompact.

FO, on the other hand, is not capable of defining the class ité firees.
It is well known that compactness and definability of finitem@f models
mutually exclude each other.

8.5 Transitive Closure Logics and Tree Walking Automata

Tree walking automata were introduced by Aho and Ullman )%& se-
quential automata on trees. At every moment of its run, a T8 ia single
node of the tree and in one of a finite number of states. It watksnd the
tree choosing a neighboring node based on the current gtatigbel of the
current node, and the child number of the current node.

More formally, we consider trees of maximal branching degré& he fol-
lowing definition is mainly cited from (Bojanczyk and Colcbet, 2005). Ev-
ery nodev has a type. The possible values are Types, 1,2,...,k} x {I,i}
wherer stands for the rootj € {1,...,k} states thav is the j-th child, |
states that is a leaf,i thatv is an internal node. A direction is an element of
Dir = {7, l1,..., L stay} where? stands for ‘move to the parent; ‘move
to the j-th child, andstayto ‘stay at the current node’. A TWA is a quintuple
(S,%, 6, 50, F) whereS is a finite set of stateg is the alphabet of node labels,
S € S is the initial state andF C S is the set of final states. The transition
relations is of the form

6 C (S x Typesx X) x (S x Dir).
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A configuration is a pair of a node and a state. A run is a sequehconfig-
urations where every two consecutive configurations arsistant with the
transition relation. A run is accepting it starts and ends at the root of the
tree, the first state i) and the last state is a memberrafThe TWA accepts
atree ff there is an accepting run. The setbfrees recognized by a TWA is
the set of trees for which there is an accepting run.

Bojanczyk and Colcombet (2005) showed that TWA cannot reizegall
regular tree languages. This means that MSO and tree awtarastrictly
more powerful than TWA. In an extension of their proof we vgitlow that
even FO is more powerful than TWA.

Theorem 16 The classes of tree languages definabl&®i strictly extend
the classes of tree languages recognizable by TWA.

Proof. The proof consists of two parts. We will first show that evEkyA-
recognizable tree language is F@efinable. Secondly we will show that
there is an FO-definable tree language that cannot be recognized by any
TWA.

The first part of the proof is based on recent results by NemdrSahwen-
tick (2003). They showed that a tree language is recogredaba TWA if and
only if it is definable by a formula of the following type: [KG ¢(x, y)I(r, r)
wherer is a constant for the root of a tregjs an FO formula with additional
unarydepthy, predicates. Apart from thdepth, predicates, these formulae
are obviously in FO. Now, depthy(x) is true if x is a multiple ofm steps
away from the root. For eveny, the predicateepth, can be defined by an
FO'-formula: [TCq x, IX1,..-Xm-1 : Xo L X1 A -+ A Xm1 | Xm](r,X) is @
predicate that is true on a nodgust in case there iskae N such thaix is at
depthk x m. Thus every TWA-recognizable tree language is f@finable.

To show the second half of the theorem, we will indicate thatgeparat-
ing languagéd. given by Bojanczyk and Colcombet (2005) can be defined in
FOP*. The authors consider binary trees. They show (in Fact 1)Ltltan be
defined in first-order logic with the following three basidatens: left and
right child, and ancestor relation. Now, left and right dhife obviously FO
definable relations. And the ancestor relation is — as in theipus sections
— FO*-definable by [DTGyx x | YI(Y, X). O

Corollary 17 There exists akOP*-definable tree language that ot TWA-
recognizable.

Please note that there exists an alternative proof of Theafe Engelfriet
and Hoogeboom (2006) have recently shown that transitbsice logics cor-
respond to certain pebble automata. (A pebble automatoh\geenhanced
by a finite sets of pebbles.) More precisely, the determigtbble automata
have exactly the same expressive power as determinisgybiransitive clo-
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sure logic. And non-deterministic pebble automata have#nee expressive
power as binary transitive closure logic where each trivesitosure operator
is under the scope of an even number of negations. Since a $\&Aébble
automaton with 0 pebbles, the first half of above theorenofdl from the
equivalence results of (Engelfriet and Hoogeboom, 200i6¢.Second half of
the theorem follows from new results by Bojanczyk et al. @0&ho show
that each additional pebble extends the expressive poveepelbble automa-
ton. Bojanczyk et al. (2006) also provide an alternativeopod Corollary 17.
As aresult, either TWA and DPA are incomparable, or TWA ass [@owerful
than DPA.

8.6 Conclusion

We showed a range of properties of F@nd FO to indicate that they should
seriously be considered as logics for defining tree langaia§jighough the
addition of binary transitive closure to first-order logannche seen as a small
one, FO* is capable of expressing important second-order progeotier
trees. It is possible to define a linear order over the nodadriee. And using
this order one can count modulo any natural number. On aristructures
with appropriate signature one can axiomatize the clagseses and finite
trees. These axiomatizations showed that*H® neither compact nor does
it have the Lowenheim-Skolem-Upward property. Furtheradthough tree
walking automata look like they might serve as an automatodehfor FO,

it turns out that FOis more powerful than TWA.

A word about complexity issues may be in place"Fénd FO have quite
a good data complexity. By translating Fformulae into MSO formulae and
using the equivalence between MSO and tree automata oneedhat FO
has a linear time data complexity. And since*H®a sub-logic of FO(TC), it
also has NLOGSPACE data complexity wherea$'H@as LOGSPACE data
complexity. A straight-forward implementation of tramgit closure yields a
PTIME query complexity. It is unclear to the author whethgs tresult can
be improved upon.

The main open question is of course whethet Estrictly less powerful
than MSO. Itis also interesting to study the relationshipof to modal lan-
guages for trees like PQkee (Kracht, 1995). Marx (2004) basically showed
that PDLyree is at most as powerful as EQwhere FQ is the restriction of
FO* where every formula has at most 3fdrent variables. ten Cate (2006)
recently showed that queries in XPath with Kleene star ang loredicate
have the same expressive power ag.FO

One may also ask what happens if we introduce the transitosuie
of arbitrary relations, not just binary ones. This logicl{edviated FO(TC))
was introduced by Immerman (see Immerman, 1999) to logickcribe
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the complexity class NLOGSPACE. Tiede and Kepser (2006¢ magently
shown that FO(TC) is more expressive than MSO over treessfdtement
remains true even if one only consideeterministicransitive closures.
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