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Pregroups with modalities
A K-M

Abstract
In this paper we concentrate mainly on the notion ofβ-pregroups, which are pregroups

(first introduced by Lambek Lambek (1999) in 1999) enriched with modality operators.
β-pregroups were first proposed by Fadda Fadda (2002) in 2001.The motivation to in-
troduce them was to (locally) limit the associativity in thecalculus considered. In this
paper we present this new calculus in the form of a rewriting system, and prove the very
important feature of this system: that in a given derivationthe non-expanding rules must
always precede non-contracting ones in order for the derivation to be minimal (normal-
ization theorem). We also propose a sequent system for this calculus and prove the cut
elimination theorem for it.

Keywords P, β-,  ,  

9.1 Introduction
Definition 2 A pregroup is a structure (G,≤, ·, l, r, 1) such that (G,≤, ·, 1) is
a partially ordered monoid, andl, r are unary operations onG, fulfilling the
following conditions:

ala ≤ 1 ≤ aal and aar ≤ 1 ≤ ara (9.1)

for all a ∈ G. Elemental (ar respectively) is called the left (right) adjoint of
a.

The notion of a pregroup, introduced by Lambek Lambek (1999), is con-
nected to the notion of a residuated monoid, known from the theory of par-
tially ordered algebraic systems.

Theorem 18 (Lambek (1999))In each pregroup the following equalities
and inequalities are valid:

1l = 1r = 1, alr = a = arl , (9.2)
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(ab)l = blal , (ab)r = brar , (9.3)

a ≤ b iff bl ≤ al iff br ≤ ar . (9.4)

For any arbitrary elementa of a pregroup we define an elementa(n), for
n ∈ Z, in a following way:a0 = a, a(n+1) = (a(n))r , a(n−1) = (a(n))l . As a
consequence of (2) and (9.4) we obtain:

a(n)a(n+1) ≤ 1 ≤ a(n+1)a(n) (9.5)

i f a ≤ b then a(2n) ≤ b(2n) and b(2n+1) ≤ a(2n+1) (9.6)

for all n ∈ Z.
Let (P,≤) be a poset. Elements of the setP are treated as constants.Terms

are expressions of the formp(n), for p ∈ P, n ∈ Z; p(0) is equalp. Typesare
finite strings of terms, denoted byX,Y,Z,V,U etc. The basic rewriting rules
are as follows:

. (CON) - contraction:
X, p(n), p(n+1),Y→ X,Y;. (EXP) - expansion:
X,Y→ X, p(n+1), p(n),Y;. (IND) - induced step:
X, p(2n),Y→ X, q(2n),Y,
X, q(2n+1),Y→ X, p(2n+1),Y, for p ≤ q w (P,≤).

Furthermore, we consider derivationsX ⇒ Y in F(P) (free pregroup gener-
ated by (P,≤)). Following Lambek (2001), we distinguish two special cases:

. (GCON) - generalized contraction:
X, p(2n), q(2n+1),Y→ X,Y;
X, q(2n−1), p(2n),Y→ X,Y; wherep ≤ q in (P,≤).. (GEXP) - generalized expansion:
X,Y→ X, p(2n+1), q(2n),Y;
X,Y→ X, q(2n), p(2n−1),Y; wherep ≤ q in (P,≤).

The relation⇒ is a reflexive and transitive closure of the relation→.

Theorem 19 (Lambek switching lemma, Lambek (1999))If X ⇒ Y is in
F(P), then there exist types U, V such that we can go from type X to U (X⇒
U) using only generalized contractions, from type U to V (U⇒ V) using
only induced steps, and from type V to Y ( V⇒ Y) using only generalized
expansions.

From the above mentioned lemma we obtain:

Corollary 20 (Buszkowski (2003)) If X ⇒ Y in F(P), and Y is a simple type
or an empty string, then X can be transformed into Y only by means of(CON)
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and(IND). If X⇒ Y in F(P), and X is a simple type or an empty string, then
X can be transformed into Y only by means of(EXP) and(IND).

9.2 Pregroups with modalities

In this section we generalize some definitions and results concerning pre-
groups introduced in Lambek (1999). The definition of a pregroup with β-
operator was proposed by Fadda (2002). The motivation to introduce modal-
ity operators stems from the fact there was a need to (locally) limit associa-
tivity in the calculus considered.

Definition 3 A pregroup withβ-operator is a pregroupG enriched addition-
ally with a monotone mappingβ : G→ G.

Definition 4 A β-pregroup is a pregroup withβ-operator such thatβ-operator
has the right adjoint̂β (β̂-operator), i.e., there exists a monotone mapping
β̂ : P→ P with the property that for alla andb in P, β(a) ≤ b if and only if
a ≤ β̂(b).

It is easy to show that̂β-operators, if they exist, are uniquely defined and con-
nected toβ-operators with the following rules of expansion and contraction,
for all a ∈ P.

a ≤ β̂(β(a)) and β(β̂(a)) ≤ a. (9.7)

The basic rewriting rules are as follows:

1. Contracting rules.(CON) - contraction:
X, p(n), p(n+1),Y→ X,Y;.(B−CON) - B-contraction:
X, [B(Y)](n), [B(Y)](n+1),Z→ X,Z; whereB ∈ {β, β̂}..(β −CON) - β-contraction:
X, [β(β̂(Y))](2n),Z→ X,Y(2n),Z;
X, [β̂(β(Y))](2n+1),Z→ X,Y(2n+1),Z;.(B− INDc) - Bc induced step:
X, [B(Y1)](2n),Z→ X, [B(Y2)](2n),Z;
whereB ∈ {β, β̂}, andY1→ Y2 is a contracting rule.
X, [B(Y2)](2n+1),Z→ X, [B(Y1)](2n+1),Z;
whereB ∈ {β, β̂}, aY1→ Y2 is an expanding rule.

2. Expanding rules.(EXP) - expansion:
X,Y→ X, p(n+1), p(n),Y;.(B− EXP) - B-expansion:
X,Z→ X, [B(Y)](n+1), [B(Y)](n),Z; whereB ∈ {β, β̂}.
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.(β − EXP) - β - expansion:
X,Y(2n),Z→ X, [β̂(β(Y))](2n),Z;
X,Y(2n+1),Z→ X, [β(β̂(Y))](2n+1),Z..(B− INDe) - Be induced step:
X, [B(Y1)](2n),Z→ X, [B(Y2)](2n),Z;
whereB ∈ {β, β̂}, aY1→ Y2 is an expanding rule.
X, [B(Y2)](2n+1),Z→ X, [B(Y1)](2n+1),Z;
whereB ∈ {β, β̂}, aY1→ Y2 is a contracting rule.

3. P-rules (neither expanding nor contracting).(IND) - induced step:
X, p(2n),Y→ X, q(2n),Y,
X, q(2n+1),Y→ X, p(2n+1),Y, for p ≤ q w (P,≤)..(B− INDp) - Bp induced step:
X, [B(Y1)](2n),Z→ X, [B(Y2)](2n),Z;
whereB ∈ {β, β̂}, andY1→ Y2 is a P-rule.
X, [B(Y2)](2n+1),Z→ X, [B(Y1)](2n+1),Z;
whereB ∈ {β, β̂}, andY1→ Y2 is a P-rule.

In the above mentioned rules we assume thatp, q are elements ofP, whereas
X,Y,Z,Y1,Y2 are elements ofP′. The relation⇒ is a reflexive and transitive
closure of the relation→.

Fadda (2002) gives some examples illustrating the usage ofβ - pre-
groups for natural language. Among others, he shows that assigning a type
[β(X)]rX[β(X)] l to the conjunctionand (whereX is an arbitrary type), will let
us see the structure of a sentence more clearly.

Consider the sentence:John and Mary left.Applying the calculus of pre-
groups without modalities we can show that the string of types assigned to
given words can be reduced to the type of a sentence. However,the order of
consecutive contraction is important here (npmeans a noun phrase):

(*) John and Mary left.
np npr np npl np npr s →

np npl np npr s →

np npr s → s
(**) John and Mary left.

np npr np npl np npr s →

np npl np npr s →

np npl s 9 s
In the second case (**) we do not get a types. Applying the calculus of

β-pregroups, we could handle the above mentioned sentence inthe following
way:

(**) John and Mary left.
β(np) [β(np)]rnp [β(np)] l β(np) npr s → s
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In that case the structure of types ’induces’ the order of contractions.

Normalization theorem for β - pregroups

Further we consider derivations of a typeX⇒ Y.

Definition 5 A derivation is called non-expanding, if there are no expanding
rules present.

Definition 6 A derivation is called non-contracting, if there are no contract-
ing rules present.

Definition 7 Composition of derivationsd1(X ⇒ U) andd2(U ⇒ Y) is a
derivationY from X, which transforms firstX into U according tod1, and
thenU into Y according tod2.

Definition 8 A derivationd(X ⇒ Y) is called normal, if it is a composition
of some non-expanding derivationd1(X ⇒ U) and some non-contracting
derivationd2(U ⇒ Y).

On elements ofP′ we introduce a measure in the following way:

µ(ε) = 0,
µ(p(n)) = 1,
µ(B(Y)) = µ(Y) + 1, for B ∈ {β, β̂}
µ(Y1, ...,Yk) = µ(Y1) + ... + µ(Yk).

A measure on the rewriting rules is defined as follows:

µ(CON) = 2,
µ(EXP) = 2,
µ(β −CON) = 2,
µ(β − EXP) = 2,
µ(B−CON) = 2+ 2µ(Y),
µ(B− EXP) = 2+ 2µ(Y),
µ(IND) = 1,
µ(Bc − IND) = 1+ µ(d(Y1→ Y2)),
µ(Be− IND) = 1+ µ(d(Y1→ Y2)),
µ(Bp − IND) = 1+ µ(d(Y1→ Y2)),
µ(d(X0⇒ Xk)) = µ(d(X0→ X1)) + ... + µ(d(Xk−1→ Xk)),
whereX0⇒ Xk meansX0→ X1→ ...→ Xk.

Definition 9 A derivationd(X⇒ Y) is called minimal, if it has the least pos-
sible measure of all derivationsY from X, and the least possible complexity
(which is understood as a sum of measures of all rules used in the derivation).

Definition 10 The position of a given rule in the derivationX0 → X1 →

...→ Xn is numberi, such thatXi−1 → Xi is the occurrence of this rule in the
derivation.
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Definition 11 A degree of non-normal derivationd(X ⇒ Y) is the minimal
position of a contracting rule which occurs (not necessarily directly) after an
expanding rule. A degree of normal derivation is number 0.

Theorem 21 (Normalization theorem forβ-pregroups) Every minimal deri-
vation is normal.

Proof. Let X0 → X1→ ...→ Xn be a minimal derivation. Leti be a degree of
this derivation. We will show thati = 0, and as a consequence our derivation
is normal. Assume thati > 0. Of course 1< i ≤ n from the definition of a
degree. Letj be the greatest number less thani, such thatX j−1 → X j is the
occurrence of an expanding rule.
Let R1 denote the rule used on the positionj, andR2 the rule used in the
positioni. The following cases are to be considered:

1.1. R1 = (EXP) R2 = (CON),
1.2. R1 = (EXP) R2 = (B−CON),
1.3. R1 = (EXP) R2 = (β −CON),
1.4. R1 = (EXP) R2 = (B− INDc),
2.1. R1 = (B− EXP) R2 = (CON),
2.2. R1 = (B− EXP) R2 = (B−CON),
2.3. R1 = (B− EXP) R2 = (β −CON),
2.4. R1 = (B− EXP) R2 = (B− INDc),
3.1. R1 = (β − EXP) R2 = (CON),
3.2. R1 = (β − EXP) R2 = (B−CON),
3.3. R1 = (β − EXP) R2 = (β −CON),
3.4. R1 = (β − EXP) R2 = (B− INDc),
4.1. R1 = (B− INDe) R2 = (CON),
4.2. R1 = (B− INDe) R2 = (B−CON),
4.3. R1 = (B− INDe) R2 = (β −CON),
4.4. R1 = (B− INDe) R2 = (B− INDc),

In the proof of this theorem the above mentioned cases are considered.
In all cases we assume that the ruleR1 occurs on the positionj, and the
rule R2 on the positioni. All steps X j → X j+1 → ... → Xi−1 consist of
application of non-expanding and non-contracting rules. These must be of the
form of either (IND) or (Bp− IND). None of this steps cannot be independent
from Xi−1 → Xi , as otherwise we could do the last of independent steps after
R2, getting the derivation with the same measure but the lower degree. We
can also assume that none of this steps is not independent from X j−1 → X j ;
otherwise it would transform our derivation performing thefirst step before
R1, increasing the numberj, and changing neitheri norµ(d(X⇒ Y)).

If the rulesR1 and R2 are adjacent (without intermediate P-rules), we
change the order in case they are independent from each other(getting the
derivation of smaller complexity); in case they are dependent from each other
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we show that this part of derivation can be transformed usingrules of smaller
complexity - thus showing that the initial derivation was not normal.

Considering the sixteen cases mentioned above, we show thatnon-
expanding rules must always precede non-contracting ones.Otherwise our
derivation would not be minimal, which would be a contradiction to our as-
sumption. Thus every minimal derivation must be normal.

As the proof is long and technical, we show as an example only one of
above mentioned sixteen cases:

Case 1.1. R1 = (EXP) R2 = (CON),
X j−1 → X j is of the formS,T → S, p(n+1), p(n),T; Xi−1 → Xi is of the form
U, q(n), q(n+1),V → U,V. The derivationX j−1 → X j → ...→ Xi−1 → Xi could
be as follows:

S, p(2n)
0 ,T → S, p(2n)

0 , p(2n+1)
k , p(2n)

k ,T → S, p(2n)
0 , p(2n+1)

k−1 , p(2n)
k ,T → ...

→ S, p(2n)
0 , p(2n+1)

0 , p(2n)
k ,T → S, p(2n)

k ,T, (assumingp0 ≤ p1 ≤ ... ≤ pk), its
measure isµ(d(X j−1⇒ Xi)) = 2+ k+ 2 = k+ 4.

The above mentioned derivation can be changed by the derivation:
S, p(2n)

0 ,T → S, p(2n)
1 ,T → ...S, p(2n)

k−1,T → S, p(2n)
k ,T, (assumingp0 ≤

p1 ≤ ... ≤ pk). The measure of a new derivation isµ(d(X j−1 ⇒ Xi)) = k (k
times the rule (IND) was used). We reach a contradiction, as the measure of
the second derivation is smaller. We showed that the initialderivation was not
normal. ⊔⊓

Corollary 22 If X ⇒ Y in a freeβ-pregroup, and Y is a simple type or an
empty string, then Y can be derived from X only by means of non-expanding
rules.

If X ⇒ Y in a freeβ-pregroup, and X is a simple type or an empty string,
then Y can be derived from X only by means of non-contracting rules.

9.3 Axiom system for pregroups with modalities
The rewriting system given in the previous section can also be presented as
the calculus of sequents in a Gentzen style. Let (P,≤) be fixed. Atoms and
types are defined as before.Sequentsare of the formX ⇒ Y, whereX,Y are
types. The axiom and inference rules are as follows:

(Id) X⇒ X,

(LA) X,Y⇒ Z
X, p(n), p(n+1),Y⇒ Z

(RA) X⇒ Y,Z
X⇒ Y, p(n+1), p(n),Z

(LIND) X, q(2n),Y⇒ Z
X, p(2n),Y⇒ Z

(RIND) X⇒ Y, p(2n),Z
X⇒ Y, q(2n),Z

X, p(2n+1),Y⇒ Z
X, q(2n+1),Y⇒ Z

X⇒ Y, q(2n+1),Z
X⇒ Y, p(2n+1),Z

In rules (LIND) and (RIND) we assume thatp ≤ q in P. X,Y,Z are any
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arbitrary types,p, q are arbitrary elements ofP, for n ∈ Z.

(BLA) X,T ⇒ Z
X, [B(Y)](n), [B(Y)](n+1),T ⇒ Z

(BRA) X⇒ T,Z
X⇒ T, [B(Y)](n+1), [B(Y)](n),Z

(β LA) X,Y(2n),T ⇒ Z
X, [β(β̂(Y))](2n),T ⇒ Z

(β RA) X⇒ T,Y(2n),Z
X⇒ T, [β̂(β(Y))](2n),Z

X,Y(2n+1),T ⇒ Z
X, [β̂(β(Y))](2n+1),T ⇒ Z

X⇒ T,Y(2n+1),Z
X⇒ T, [β(β̂(Y))](2n+1),Z

(BLIND) X, [B(Y2)]
(2n),Z⇒ T

X, [B(Y1)]
(2n),Z⇒ T

(BRIND) X⇒ T, [B(Y1)]
(2n),Z

X⇒ T, [B(Y2)]
(2n),Z

X, [B(Y1)]
(2n+1),Z⇒ T

X, [B(Y2)]
(2n+1),Z⇒ T

X⇒ T, [B(Y2)]
(2n+1),Z

X⇒ T, [B(Y1)]
(2n+1),Z

In rules (BLA), (BRA), (BLIND) and (BRIND),B ∈ {β, β̂}. Addition-
ally, in rules (BLIND) we assume thatY1 → Y2 arises as a result of a non-
expanding rule in an even case, and a non-contracting rules in an odd case, in
a rewriting system from a former section. In rules (BRIND) weassume that
Y1 → Y2 arises as a result of non-contracting rule in an even case, and non-
expanding rule in an odd case, in a rewriting system form a former section.

The cut rule is of the form
(CUT) X⇒ Y, Y⇒ Z

X⇒ Z .
Let MS denote the system axiomatized by (Id), (LA), (RA), (LIND),

(RIND), (BLA), (BRA), (β - LA), (β - RA), (BLIND) and (BRIND). LetMS′

denote the systemMS enriched additionally with a cut rule (CUT).

9.3.1 Cut elimination for the systems with modalities

We show that for above mentioned systems the following theorems hold:

Theorem 23 For all types X,Y, X ⇒ Y holds in the sense of a rewriting
system if and only if X⇒ Y is provable in MS′.

Proof. AssumeX⇒ Y holds in the sense of the rewriting system.Then, there
exist typesZ0, ...,Zn, n ≥ 0, such thatZ0 = X, Zn = Y, andZi−1 → Zi ,
1 ≤ i ≤ n. We show thatZi−1 ⇒ Zi is provable in MS’, for 1≤ i ≤ n. (Here
we show it only for a few chosen cases.)

1. If Zi−1→ Zi is the case of (CON), so it is of the formX, p(n), p(n+1),Y→

X,Y, we apply (LA) to axiomX,Y⇒ X,Y. We get X,Y⇒ X,Y
X, p(n), p(n+1),Y⇒ X,Y

.

7. If Zi−1→ Zi is the case of (IND), so it is of the form:
7.1.X, p(2n),Y→ X, q(2n),Y,for p ≤ q, we apply (LIND) to axiom

X, q(2n),Y ⇒ X, q(2n),Y. We get X, q(2n),Y⇒ X, q(2n),Y
X, p(2n),Y⇒ X, q(2n),Y

. We can also apply

(RIND) to axiomX, p(2n),Y⇒ X, p(2n),Y. We obtainX, p(2n),Y⇒ X, p(2n),Y
X, p(2n),Y⇒ X, q(2n),Y

.
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7.2. X, q(2n+1),Y → X, p(2n+1),Y, for p ≤ q,we apply (LIND) to axiom

X, p(2n+1),Y ⇒ X, p(2n+1),Y. We get: X, p(2n+1),Y⇒ X, p(2n+1),Y
X, q(2n+1),Y⇒ X, p(2n+1),Y

. We can

also apply (RIND) to the axiomX, q(2n+1),Y ⇒ X, q(2n+1),Y. We get then:
X, q(2n+1),Y⇒ X, q(2n+1),Y
X, q(2n+1),Y⇒ X, p(2n+1),Y

.

So, ifn = 0, thenX⇒ Y is an axiom (Id), ifn > 0, thenX⇒ Y is provable
in MS’, using cut rule (CUT).

Assume thatX ⇒ Y is provable MS. We show thatX ⇒ Y holds in the
sense of the rewriting system.

If X ⇒ Y jest (Id), then the claim is true. For inference rules we show,
that if the premise (premises) holds (hold) in the rewritingsystem, then the
conclusion holds in this system. (Again, only a few chosen cases.)

1. For (LA), the antecedent of the conclusion can be transformed into the
antecedent of the premise by (CON).

7. For (βLA)the antecedent of the conclusion can be transformed intothe
antecedent of the premise by (β-CON).

11. For (CUT),if the premises hold in the rewriting system, then the con-
clusion also holds in this system, since⇒ is transitive. ⊔⊓

Theorem 24 (Cut elimination theorem) For all types X,Y, X⇒ Y is prov-
able in MS if and only if X⇒ Y is provable in MS’.

Proof. The ’only if’ part is obvious. If for all typesX,Y, X ⇒ Y is provable
in MS (without CUT), it is also provable in MS’.

Assume thatX⇒ Y is provable in MS’. By the theorem 23,X⇒ Y holds
in the rewriting system. From the theorem 21 there exists such typeU, that
X⇒ U holds only by using non-expanding rules, whereasU ⇒ Y holds only
by using non-contracting rules. Thus, there exist typesZ0, ...,Zm, (m ≥ 0),
such thatZ0 = X, Zm = U and for all 1 ≤ i ≤ m, Zi−1 → Zi is a result
of non-expanding rules. We show thatZi ⇒ U is provable in MS, for all
0 ≤ i ≤ m. Zm⇒ U is an axiom (Id). Assume thatZi ⇒ U is provable in MS,
i > 0. If Zi−1 → Zi is (CON), thenZi−1 ⇒ U is a result of applying (LA) to
Zi ⇒ U. If Zi−1 → Zi is (B− CON), thenZi−1 ⇒ U is a result of applying
(BLA) to Zi ⇒ U. If Zi−1 → Zi is (β − CON), thenZi−1 ⇒ U is a result of
applying (βLA) to Zi ⇒ U. If Zi−1 → Zi is (IND), thenZi−1 ⇒ U is a result
of application (LIND) toZi ⇒ U. If Zi−1 → Zi is (B− INDc), thenZi−1⇒ U
is a result of applying (BLIND) toZi ⇒ U. If Zi−1 → Zi is (B− INDp), then
Zi−1 ⇒ U is a result of applying (BLIND) toZi ⇒ U.

Now, there exist typesV0, ...,Vn, n ≥ 0, such thatV0 = U, Vn = Y, an for
all 1 ≤ i ≤ n, Vi−1 → Vi is a result of applying a non-contracting rule. We
show thatX ⇒ Vi is provable in MS, for all 0≤ i ≤ n. X ⇒ V0 is provable
in MS from the first part of the proof. Assume thatX ⇒ Vi−1 is provable in
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MS, 1 ≤ i. If Vi−1 → Vi is (EXP), thenX ⇒ Vi is a result of applying (RA)
to X ⇒ Vi−1. If Vi−1 → Vi is (B− EXP), thenX ⇒ Vi is a result of applying
(BRA) to X ⇒ Vi−1. If Vi−1 → Vi is (β − EXP), thenX ⇒ Vi is a result of
applying (βRA) to X ⇒ Vi−1. If Vi−1 → Vi is (IND), thenX ⇒ Vi is a result
of applying (RIND) doX⇒ Vi−1. If Vi−1→ Vi is (B− INDe), thenX⇒ Vi is
a result of applying (BRIND) toX⇒ Vi−1. If Vi−1 → Vi is (B− INDp), then
X⇒ Vi is a result of applying (BRIND) toX⇒ Vi−1.

Thus, we showed thatX⇒ Y is provable in MS. ⊔⊓

9.4 Conclusion
In this paper we presented pregroups with modalities. First, we presented
them in the form of a rewriting system, then we proposed the sequent system
for them and finally showed the connections between those twopresentations.
Using those connections we were able to prove the cut elimination theorem.
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