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Pregroups with modalities

ALEKSANDRA KISLAK-M ALINOWSKA

Abstract

In this paper we concentrate mainly on the notiog-giregroups, which are pregroups
(first introduced by Lambek Lambek (1999) in 1999) enrichetth wodality operators.
B-pregroups were first proposed by Fadda Fadda (2002) in 20G1motivation to in-
troduce them was to (locally) limit the associativity in tbalculus considered. In this
paper we present this new calculus in the form of a rewritygjesn, and prove the very
important feature of this system: that in a given derivatioe non-expanding rules must
always precede non-contracting ones in order for the dagivao be minimal (normal-
ization theorem). We also propose a sequent system for dhislas and prove the cut
elimination theorem for it.
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9.1 Introduction

Definition 2 A pregroup is a structureés, <, -,1,r,1) such thatG, <,-,1) is
a partially ordered monoid, aridr are unary operations da, fulfilling the
following conditions:

da<l<adandad <l<aa (9.1)

for all a € G. Elementa (a" respectively) is called the left (right) adjoint of
a.

The notion of a pregroup, introduced by Lambek Lambek (1989¢on-
nected to the notion of a residuated monoid, known from teer of par-
tially ordered algebraic systems.

Theorem 18 (Lambek (1999))In each pregroup the following equalities
and inequalities are valid:

1=1=1 d =a=4a", (9.2)
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(ab) =b'd, (ab) =ba, (9.3)

a<b iff b<d if b<a. (9.4)
For any arbitrary elemers of a pregroup we define an eleme?, for
n e Z, in a following way:a° = a, a™? = (@), a™b = (@), As a

consequence of (2) and (9.4) we obtain:
aWa™D < 1 < g (9.5)
if a<bthen&" < b@ and 2D < am1) (9.6)

forallne Z.

Let (P, <) be a poset. Elements of the $tare treated as constanierms
are expressions of the forpi”?, for p € P, n € Z; p© is equalp. Typesare

finite strings of terms, denoted XY, Z, V, U etc. The basic rewriting rules
are as follows:

= (CON) - contraction:
X, p™, p Dy 5 X, Y;
= (EXP) - expansion:
XY = X, p™D, p,y;
= (IND) - induced step:
X, p@.Y — X, q@,Y,
X, gD,y - X, p@*DY,  forp<qw (P,<).

Furthermore, we consider derivatioks= Y in F(P) (free pregroup gener-
ated by P, <)). Following Lambek (2001), we distinguish two specialess

= (GCON) - generalized contraction:
X, p(2n), q(2n+l)’ Y - X, Y;
X, gD p@) Y - X Y;  wherep < qin (P, <).
* (GEXP - generalized expansion:
X, Y - X, p(2n+l)’ q(2n), Y;
XY = X, g, p@-1Y;  wherep < qin (P, <).
The relation= is a reflexive and transitive closure of the relation

Theorem 19 (Lambek switching lemma, Lambek (1999))f X = Y isin
F(P), then there exist types U, V such that we can go from type X % & (
U) using only generalized contractions, from type U to V £J V) using
only induced steps, and from type V to Y &/ Y) using only generalized
expansions.

From the above mentioned lemma we obtain:

Corollary 20 (Buszkowski (2003)) If X = Y in F(P), and Y is a simple type
or an empty string, then X can be transformed into Y only bynsieg§ CON)
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and(IND). If X = Y in F(P), and X is a simple type or an empty string, then
X can be transformed into Y only by meang$®XP) and (IND).

9.2 Pregroups with modalities

In this section we generalize some definitions and result€eming pre-
groups introduced in Lambek (1999). The definition of a poegrwith 3-
operator was proposed by Fadda (2002). The motivation todnte modal-
ity operators stems from the fact there was a need to (Igdaijt associa-
tivity in the calculus considered.

Definition 3 A pregroup with3-operator is a pregroup enriched addition-
ally with a monotone mapping: G — G.

Definition 4 A p-pregroup is a pregroup wigroperator such thatoperator
has the right adjoing (3-operator), i.e., there exists a monotone mapping
B : P — P with the property that for ath andb in P, (a) < b if and only if

a < B(b).

Itis easy to show that-operators, if they exist, are uniquely defined and con-
nected tg3-operators with the following rules of expansion and cocttom,
forallae P.

a<pB@) and BB@A)<a. (9.7)

The basic rewriting rules are as follows:

1. Contracting rules
*(CON) - contraction:
X, p™, p™DY - X Y;
*(B - CON) - B-contraction:
X, [BY)]™, [B(Y)]™D,Z — X,Z; whereB € {8, 3}.
=*(B — CON) - g-contraction:
X, BB, Z — X, Y@, Z;
X, [B(:B(W)](ZMD’ Z > X, Y(2n+1)’ Z:
*(B-IND.) - B; induced step:
X, [B(Y)I®,Z — X, [B(Y2)]?", Z;
whereB € {ﬂ,,@}, andY; — Y is a contracting rule.
Xv [B(YZ)] (2n+1)» Z- Xv [B(Yl)] (2n+1)7 21
whereB € {3,8}, aY1 — Y is an expanding rule.
2. Expanding rules
*(EXP) - expansion:
XY = X, p™), p®y;
*(B - EXP) - B-expansion:
X, Z = X [B(Y)]™D,[B(V)]™,Z; whereB ¢ {3,3}.



122/ ALEKSANDRA KISLAK-MALINOWSKA

*(8— EXP) - B - expansion:

X Y®), Z > X BB, Z;

X, Y@ 7 5 X [B(B(Y))] @D, Z.
*(B—-INDy) - Be induced step:

X, [B(YD]I®Y,Z — X, [B(Y2)]*", Z;

whereB € {3,8}, aY1 — Y is an expanding rule.

X, [B(Y2)]", Z — X, [B(Y)] ™Y, Z;

whereB € {3,8}, aY1 — Y is a contracting rule.

3. P-rules (neither expanding nor contracting)

*(IND) - induced step:

X, p@Y — X, q@,Y,

X, @Y - X, p@ Y, forp<qw (P,<).
*(B-INDy) - Bp induced step:

Xv [B(Yl)] (Zn)» Z- Xv [B(YZ)] (2n)’ 21

whereB € {8,8}, andY; — Y is a P-rule.

X, [B(Y2)]@™D,Z — X, [B(Y1)]@™D, Z;

whereB € {8,3}, andY; — Y is a P-rule.

In the above mentioned rules we assume fhatare elements d?, whereas
XY, Z Y1, Yo are elements of’. The relation= is a reflexive and transitive
closure of the relatior-.

Fadda (2002) gives some examples illustrating the usage -ofore-
groups for natural language. Among others, he shows thagraisg a type
[BOOI"X[B(X)]" to the conjunctiorand(whereX is an arbitrary type), will let
us see the structure of a sentence more clearly.

Consider the sentencdohn and Mary leftApplying the calculus of pre-
groups without modalities we can show that the string of syassigned to
given words can be reduced to the type of a sentence. Howbeeavyder of
consecutive contraction is important hengfeans a noun phrase):

(*) John and Mary left.
np ngnpng np ngs
np ng np ngs
np ngs
(**) John and Mary left.
np ngnpng np ngs —
np np np ngs -
np np s - s

In the second case (**) we do not get a typeApplying the calculus of
B-pregroups, we could handle the above mentioned sentetice following
way:

(**) John and Mary left.
Bnp)  [BMPI'np[B(nP]' Bnp) npPs — s

Ll
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In that case the structure of types 'induces’ the order ofreations.

Normalization theorem for g - pregroups
Further we consider derivations of a tyle= Y.

Definition 5 A derivation is called non-expanding, if there are no expagd
rules present.

Definition 6 A derivation is called non-contracting, if there are no caot-
ing rules present.

Definition 7 Composition of derivationsg)(X = U) anddx(U = Y) is a
derivationY from X, which transforms firsX into U according tod;, and
thenU into Y according tads.

Definition 8 A derivationd(X = Y) is called normal, if it is a composition
of some non-expanding derivatiah(X = U) and some non-contracting
derivationd,(U = Y).

On elements oP” we introduce a measure in the following way:
ule) =0,
u(p") =1, i
u(B(Y)) = u(Y) +1, forBe (8.5}
p(Y1, oy Yi) = p(Y1) + oo+ p(Yid).

A measure on the rewriting rules is defined as follows:

u(CON) = 2,
WEXP) =2,
u(B—-CON) =2,
u(B—EXP) =2,

u(B—CON) = 2+ 2u(Y),

(B —EXP) =2+ 2u(Y),

u(IND) =1

p(Bec — IND) = 1+ p(d(Y1 — Y2))

p(Be — IND) = 1+ p(d(Y1 — Y2))

#(Bp — IND) = 1+ u(d(Y1 > Y)),

pu(d(Xo = X)) = p(d(Xo = X)) + ... + p(d(Xi-1 = X)),
whereXy = Xy meansXg — X; — ... = X.

Definition 9 A derivationd(X = Y) is called minimal, if it has the least pos-
sible measure of all derivationsfrom X, and the least possible complexity
(which is understood as a sum of measures of all rules usée iddrivation).

Definition 10 The position of a given rule in the derivatioty —» X; —
.. = X, is numbelti, such thatX_; — X; is the occurrence of this rule in the
derivation.
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Definition 11 A degree of non-normal derivatia(X = Y) is the minimal
position of a contracting rule which occurs (not necesgdiilectly) after an
expanding rule. A degree of normal derivation is number 0.

Theorem 21 (Normalization theorem forg-pregroups) Every minimal deri-
vation is normal.

Proof. Let Xg — X3 — ... = X, be a minimal derivation. Ldtbe a degree of
this derivation. We will show théat= 0, and as a consequence our derivation
is normal. Assume that> 0. Of course 1< i < nfrom the definition of a
degree. Lefj be the greatest number less thasuch thatX;_; — X; is the
occurrence of an expanding rule.
Let R; denote the rule used on the positipnandR; the rule used in the
positioni. The following cases are to be considered:

11. Ri=(EXP R;=(CON),

1.2. R =(EXP) R;=(B-CON),

1.3. R =(EXP) Ry=(8-CON),

14. R =(EXP R,=(B-INDy),

21. Ri=(B-EXP) R;=(CON),

22. Ri=(B-EXP R,=(B-CON),

23. Ri=(B-EXP) Ry;=(8-CON),

24. Ri=(B-EXP) R,=(B-IND),

31 Ri=@B-EXP) R;=(CON),

32. Ri=(B-EXP) R,=(B-CON),

33. Ri=(B-EXP) R,=(B-CON),

34. Ri=(B-EXP) Ry=(B-INDy),

41. Ri=(B-INDg) Ry;=(CON),

42. Ri=(B-INDg) R,=(B-CON),

43. Ri=(B-INDg) R;=(8-CON),

44. R =(B-INDe) R»=(B-INDy),

In the proof of this theorem the above mentioned cases arsidened.
In all cases we assume that the riRe occurs on the positionj, and the
rule R, on the positioni. All stepsX; — Xj;1 — ... = Xi_1 consist of
application of non-expanding and non-contracting rulé®se must be of the
form of either (ND) or (B,—IND). None of this steps cannot be independent
from Xi_; — X;, as otherwise we could do the last of independent steps after
Ry, getting the derivation with the same measure but the lowgreke. We
can also assume that none of this steps is not independem®fia — X;;
otherwise it would transform our derivation performing first step before
Ry, increasing the numbgr and changing neithemor u(d(X = Y)).
If the rulesR; and R, are adjacent (without intermediate P-rules), we

change the order in case they are independent from each (g#téng the
derivation of smaller complexity); in case they are depenétem each other
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we show that this part of derivation can be transformed usifes of smaller
complexity - thus showing that the initial derivation wag normal.

Considering the sixteen cases mentioned above, we showntirat
expanding rules must always precede non-contracting d@ierwise our
derivation would not be minimal, which would be a contraidictto our as-
sumption. Thus every minimal derivation must be normal.

As the proof is long and technical, we show as an example omtyad
above mentioned sixteen cases:

Case1l.1. R =(EXP R;=(CON),

Xj-1 — Xjis of the formS, T — S, p™b, p™ T; X;_; — X; is of the form
U,q", g™,V — U, V. The derivationXj_; — X; — ... — Xi_3 — X; could
be as follows:

S, p§)2n)’ TS, p§)2n)’ pﬁ2n+l)’ p(an)’ TS, péZn)’ p(k2_n1+1)’ pﬁZn)’ T .
— S, p&, p&™ Y, " T — S, p®", T, (assumingpo < p1 < ... < p), its
measure ig(d(Xj-1 = X)) =2+ k+2=k+ 4.

The above mentioned derivation can be changed by the derivat

ST - S, p? T - .S, p).T — S, p, T, (assumingpo <
p1 < ... £ px). The measure of a new derivationi@(Xj_1 = X)) = k (k
times the rule (ND) was used). We reach a contradiction, as the measure of
the second derivation is smaller. We showed that the irdgailvation was not
normal. O

Corollary 22 If X = Y in a freep-pregroup, and Y is a simple type or an
empty string, then Y can be derived from X only by means oerpanding
rules.

If X = Y in a freeB-pregroup, and X is a simple type or an empty string,
then Y can be derived from X only by means of non-contractilegr

9.3 Axiom system for pregroups with modalities

The rewriting system given in the previous section can atspiesented as
the calculus of sequents in a Gentzen style. IRk] be fixed. Atoms and
types are defined as befofgequentare of the formX = Y, whereX, Y are
types. The axiom and inference rules are as follows:

(Id) X=X,
XY=>Z X=VY.Z
(LA) X 0. g Y = 7 (RA) X = Y, p™ D, oM, 7
(2n) (2n)

(LND) 24 -v=2 (RIND) 2= XE o2

X pY=2 X=Y,q"2Z

X, p(2n+l)’ Y = Z X = Y, q(2n+1)’ Z

X q(2n+1)’ Y= 7 X=Y, p(2n+1)’ 7

In rules (LINb) and (RIND) we assume that< qin P. X,Y,Z are any
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arbitrary typesp, q are arbitrary elements &f, forn € Z.

XT=Z
BLA 9.
(BLA) X [BYI™, [BY)™,T = Z
X=>T,Z
BRA )
( ) X = T,[B(Y)]™Y, [B()]™, Z
XY T=27 X = T,Y® 7
@A X [BBEYN, T = Z BRA) X = T, BB, Z
XY T =7 X = T.Y@"D, 7
X, [ﬂ(ﬁ(y))](2n+1)’T =7 X=T, [ﬂ(ﬁ(Y))](Zn+1)’ 7
X[BY)*,Z=>T X = T, [B(Y)]®™,Z
(BLIND) XBV)T 25T (BRIND) T BN 2
X[BY)]® .z T X = T,[B(Y2)]?D, Z
X [B(Y)]®D,Z=>T X = T,[B(Y)]?D,Z

In rules (BLA), (BRA), (BLIND) and (BRIND),B € {8,3}. Addition-
ally, in rules (BLIND) we assume thaf; — Y, arises as a result of a non-
expanding rule in an even case, and a non-contracting mukes odd case, in
a rewriting system from a former section. In rules (BRIND) assume that
Y1 — Y, arises as a result of non-contracting rule in an even casenam-
expanding rule in an odd case, in a rewriting system form méorsection.

The cut rule is of the form

(CUT) X =>XY,:>YZ=> Z_

Let MS denote the system axiomatized by (Id), (LA), (RA), (LIND),
(RIND), (BLA), (BRA), (8- LA), (8- RA), (BLIND) and (BRIND). LetMS’
denote the systelS enriched additionally with a cut rule (CUT).

9.3.1 Cut elimination for the systems with modalities
We show that for above mentioned systems the following #@srhold:

Theorem 23 For all types XY, X = Y holds in the sense of a rewriting
system if and only if X% Y is provable in M3,

Proof. AssumeX = Y holds in the sense of the rewriting system.Then, there
exist typesZy, ...,Z,, n > 0, such thazy = X, Z, = Y, andz_; — Z,
1 <i < n. We show thaZ_; = Z; is provable in MS’, for 1< i < n. (Here
we show it only for a few chosen cases.)
1.1f Z_; — Z is the case of (CON), so it is of the forxy p™, p™1, Y —

. XY = X, Y
XY, we apply (LA) to axiomX, Y = X, Y. We gets P DY = XY

7.1fZ_1 — Z is the case of (IND), so it is of the form:
7.1.%X, p@Y — X, g@, Y for p < g, we apply (LIND) to axiom

Xy (Zn)9 Y= X7 (Zn)9 Y
X, q(ZH)’ Y = X q(2n)’ Y. We QEIX g(Zn) Y = X g(Zn) Y

: X PPV Y = X pP, Y
(RIND) to axiomX, p@,Y = X, p@,Y. We obtalnx, FIS(Z"), Yo X S(Zn), v

. We can also apply
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7.2. XD Y — X p@+DY, for p 2 ci)we apply ((ZLIll\)lD) to axiom
N+ Y = X N+

X p(2n+l) Y = X p(2n+l) Y. We get g(2n+l) v X E(2n+l) v
also apply (RIND) to the axionX, q(2”+1) Y = X q(z"*l) Y. We get then:

q(2n+1) Y = X q(2n+1) Y
X, q(2n+l), Y = X, p(2n+l), Y '

So, ifn =0, thenX = Yis an axiom (Id), ifn > 0, thenX = Y is provable
in MS’, using cut rule (CUT).

Assume thaiX = Y is provable MS. We show that = Y holds in the
sense of the rewriting system.

If X = Y jest (Id), then the claim is true. For inference rules we show
that if the premise (premises) holds (hold) in the rewritaygtem, then the
conclusion holds in this system. (Again, only a few chosesesg

1. For (LA), the antecedent of the conclusion can be transédrinto the
antecedent of the premise by (CON).

7. For BLA)the antecedent of the conclusion can be transformedtirego
antecedent of the premise 8+CON).

11. For (CUT),if the premises hold in the rewriting systehert the con-
clusion also holds in this system, sineeis transitive. O

We can

Theorem 24 (Cut elimination theorem) For all types XY, X= Y is prov-
able in MS if and only if ¥X= Y is provable in MS’.

Proof. The 'only if’ part is obvious. If for all types{, Y, X = Y is provable
in MS (without CUT), it is also provable in MS’.

Assume thaKX = Y is provable in MS'’. By the theorem 23 = Y holds
in the rewriting system. From the theorem 21 there existl $yjpe U, that
X = U holds only by using non-expanding rules, wherdas> Y holds only
by using non-contracting rules. Thus, there exist tyggs.., Zm, (m > 0),
such thatZzg = X, Zn, = Uandforall1<i <m, Z_, — Z is a result
of non-expanding rules. We show that = U is provable in MS, for all
0<i<mZ,= Uisanaxiom (Id). Assume th@& = U is provable in MS,
i >0.1fZ_1 - Z is (CON), thenz_; = U is a result of applying (LA) to
Z = U.If Z_; — Z is (B— CON), thenz_; = U is a result of applying
(BLA)to Z; = U.If Z_; — Z is (B— CON), thenz,_; = U is a result of
applying BLA) to Z = U. If Z_; — Z is (IND), thenz_; = U is a result
of application (LIND) tozZ; = U. If Zi_; — Z is (B— IND), thenZ;_; = U
is a result of applying (BLIND) t&Z; = U. If Zi_; — Z; is (B— IND)), then
Zi_1 = U is aresult of applying (BLIND) t&; = U.

Now, there exist type¥y, ..., Vh, N > 0, such thavy = U, V,, = Y, an for
alll <i <n, Vi1 - Vis aresult of applying a non-contracting rule. We
show thatX = V; is provable in MS, for all < i < n. X = V; is provable
in MS from the first part of the proof. Assume thét= V,_; is provable in
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MS, 1<i.If Vi.1 — V;is (EXP), thenX =V, is a result of applying (RA)
toX = Vi_1. If Vi1 - Vjis (B— EXP), thenX = V; is a result of applying
(BRA)to X = V1. If Vi_1 - Vjis (8- EXP), thenX = V,; is a result of
applying BRA) to X = Vi_1. If Vi_1 — Vj is (IND), thenX = V,; is a result
of applying (RIND) doX = V,_;. If Vi_.1 — V, is (B—INDg), thenX = V; is
a result of applying (BRIND) tX = Vi_1. If Vi_1 — V; is (B - INDy), then
X =V, is aresult of applying (BRIND) t&X = Vi_.

Thus, we showed tha¢ = Y is provable in MS. O

9.4 Conclusion

In this paper we presented pregroups with modalities. ,Rivst presented
them in the form of a rewriting system, then we proposed tlgeset system
for them and finally showed the connections between thospitesentations.
Using those connections we were able to prove the cut elimiméeorem.
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