
11

Encoding second order string ACG with
deterministic tree walking transducers
S S

Abstract
In this paper we study the class of string languages represented by second order Ab-

stract Categorial Grammar. We prove that this class is the same as the class of output
languages of determistic tree walking automata. Together with the result of de Groote
and Pogodalla (2004) this shows that the higher-order operations involved in the defi-
nition of second order ACGs can always be represented by operations that are at most
fourth order.

Keywords A  ,λ-,   -
 ,    

11.1 Introduction

Abstract Categorial Grammars (ACGs) (de Groote (2001)) arebased on the
linear logic (Girard (1987)) and on the linearλ-calculus. They describe the
surface structures by using for syntax the ideas Montague (1974) devoted to
semantics. ACGs describe parse structures with higher-order linearλ-terms
and syntax as a higher-order linear homomorphism (lexicon)on parse struc-
tures. Intuitively, the higher the order of the parse structures is, the richer
should the languages of analysis be and the higher the order of the lexicons
is, the richer should the class of languages be. On the one hand, de Groote
and Pogodalla (2004) have shown how to encode of several context free for-
malisms by using second order parse structures (i.e.sets of trees). They have
encoded Context Free Grammars using second order lexicons,Linear Con-
text Free Tree Grammars using third order lexicons and Linear Context Free
Rewriting Systems (Weir (1988)) with fourth order lexicons. On the other

143

Proceedings of FG-2006.
Editor: Shuly Wintner.
Copyright c© 2007, CSLI Publications.



144 / S S

hand Yoshinaka and Kanazawa (2005) have explored the expressivity of lex-
icalized ACGs. They have exhibited a non-semilinear stringlanguage with
third order parse structures and an NP-complete string language with fourth
order parse structures. (Salvati (2005) gave an example of an NP-complete
language with third order parse structures and a first order lexicon).

The present work addresses the problem of the expressivity of ACGs in
a particular case. We show that the class of languages definedby second or-
der string ACGs is the same as the class of languages defined asoutputs of
Deterministic Tree Walking Transducers (DTWT) (Aho and Ullman (1971)).
Together with the results of de Groote and Pogodalla (2004) and Weir (1992),
this result proves that the generative power of second orderstring ACGs is ex-
actly the same as the generative power of Linear Context FreeRewriting Sys-
tems. This furthermore shows that second order string ACGs can always be
described with fourth order lexicons. We may nevertheless conjecture that the
use of lexicons of order greater than four may give more compact grammars.

The paper is organized as follows: we first briefly define the linearλ-
calculus and ACGs in section 11.2. In section 11.3, we use thecorrespon-
dence between proofs of linear logic and linearλ-terms to relate sub-formulae
of a typeα with sub-terms of terms of typeα. Section 11.4 introducesh-
reduction, the reduction used by the DTWTs which encode second order
string ACGs. Section 11.5 presents the encoding of second order string ACGs
with DTWTs. Finally we conclude and outline future work in section 11.6.

11.2 Definitions

Given a finite set of atomic typesA, we define,TA, the set of linear applica-
tive types built onA with the following grammar:

TA ::= A | (TA ⊸ TA)

If α1, . . . ,αn are elements ofTA andα ∈ A we will write (α1, . . . , αn) ⊸ α

the type (α1 ⊸ (· · · (αn ⊸ α) · · · )). The order of the typeα, ord(α), is 1 if α
is atomic (i.e.α ∈ A), and ord(α⊸ β) = max(ord(α) + 1, ord(β)).

Higher-order signatures are triples (C,A, τ) whereC is a finite set of con-
stants,A is a finite set of atomic types andτ is a function fromC toTA. The
order of a signature (C,A, τ) is max{ord(τ(a))|a ∈ C}. Given a higher-order
signatureΣ = (C,A, τ) we will denoteA byAΣ, C byCΣ, τ by τΣ andTA by
TΣ; if τΣ(a) = (α1, . . . , αn)⊸ α, then the arity ofa ∈ CΣ is n, it will be noted
ρΣa or ρa (whenΣ is clear from the context).

A higher-order signatureΣ is said to be astring signatureif AΣ = {∗},
# ∈ CΣ, τΣ(#) = ∗ and for alla ∈ CΣ\{#}, τΣ(a) = (∗⊸ ∗).

We are now going to define the set of linearλ-terms built on a signature



E    ACG / 145

Σ. We assume that the notions of free variables1, capture-avoiding substitu-
tions,α-conversion,β-reduction,η-reduction. . . are familiar to the reader. If
necessary, one may consult Barendregt (1984).

Given a higher-order signatureΣ andα ∈ TΣ, we assume that we are given
an infinite enumerable set of variablesxα, yα, zα. . . , Λα

Σ
the set of linearλ-

terms of typeα built onΣ is the smallest set verifying:

1. if a ∈ CΣ andτΣ(a) = α thena ∈ Λα
Σ

2. xα ∈ Λα
Σ

3. if t1 ∈ Λ
(β⊸α)
Σ

, t2 ∈ Λ
β

Σ
andFV(t1) ∩ FV(t2) = ∅ then (t1t2) ∈ Λα

Σ

4. if t ∈ Λβ
Σ
, xα ∈ FV(t) thenλxα.t ∈ Λ(α⊸β)

Σ

The setΛΣ denotes
⋃
α∈TΣ Λ

α
Σ
. Linearλ-terms arelinear because variables

may occur free at most once in them and that wheneverλxα.t is a linearλ-
term,xα has exactly one free occurrence int. Moreover, whenevert ∈ Λα

Σ
∩Λ

β

Σ

thenα = β, i.e.every linearλ-term has a unique type in a given signatureΣ.
We may, when it is not relevant, strip the typing annotation from the vari-

ables. We will writeλx1 . . . xn.t for the termλx1. . . . λxn.t and t0t1 . . . tn for
(. . . (t0t1) . . . tn). Given a list of indicesS = [i1, . . . , in], we will write λ−→xS.t
the termλxi1 . . . xin.t, t0

−→
tS the termt0ti1 . . . tin and−→cSt the termci1(. . . cin(t) . . .)

when for all j ∈ [1, n], ci j has type∗ ⊸ ∗. In particular,λ−→xn.t, t0
−→tn and−→cnt

may be used whenS = [1, . . . , n].
Given a string signatureΣ, strings will be represented by the closed terms

of type∗. For example, the termc1(. . . (cn#) . . .) represents the stringc1 . . . cn;
given w, a string built onCΣ, /w/ will denote the term ofΛ∗

Σ
which is in

normal form and representsw.
To define the sub-terms oft ∈ ΛΣ, we follow Huet (1997) and consider

them as pairs (C[] , t′) (whereC[] is a context,i.e. a term with a hole) such
that t = C[t′]. The set of sub-terms oft is denoted bySt. In particular, we
defineSαt to be {(C[] , v) ∈ St|v ∈ ΛαΣ}. If x is free in t, we noteCt,x[] the
context such thatCt,x[x] = t andx is not free inCt,x[]. Remark that sincet is
linearCt,x[] is always defined.

We say that a termt is in long from if for all (C[] , t′) ∈ Sα⊸βt eithert′ =
λx.t′′ or C[] = C′[[] t′′]. Every term can be put in long form byη-expansion,

therefore ift is the long form oft′, thent
∗
→η t′. When a term is in long form,

all its possible arguments are abstracted by aλ-abstraction. For example, the
term x∗⊸∗, which is not in long form, can be applied to an argument of type
∗; in long form, this term becomesλy∗.x∗⊸∗y∗, the possibility of applying it
to a term of type∗ is syntactically represented by theλ-abstraction. A term is
in long normal form (lnf for short) if it is both inβ-normal form and in long
form. The set lnfαΣ (resp.clnfαΣ) represents the set of terms ofΛα

Σ
in lnf (resp.

1Given aλ-term t, we will write FV(t) to denote the set of its free variables.



146 / S S

the closed terms ofΛα
Σ

in lnf). In the sequel of the paper we only deal with

terms in long form; thus each time we will writeλ−→xS.t, x
−→
tS or a

−→
tS, we will

implicitly make the assumption thatt, x
−→
tS or a

−→
tS has an atomic type.

We define homomorphisms between the higher-order signaturesΣ1 andΣ2

to be pairs (f , g) such thatf is a mapping fromTΣ1 toTΣ2, andg is a mapping
fromΛΣ1 toΛΣ2, and verifying:

1. if α ∈ AΣ1 then f (α) ∈ TΣ2, otherwise,f (α⊸ β) = f (α)⊸ f (β)

2. for all a ∈ CΣ1 such thatτΣ1(a) = α, g(a) ∈ clnf f (α)
Σ2

3. g(xα) = xf (α)

4. g(t1t2) = g(t1)g(t2)
5. g(λxα.t) = λxf (α).g(t)

One can easily check that whenevert ∈ Λα
Σ1

, g(t) ∈ Λ f (α)
Σ2

. In general, given a
homomorphismL = ( f , g), we will write indistinctlyL(α) for f (α) andL(t)
for g(t). Theorderof L is max{ord(L(α))|α ∈ AΣ1}.

An ACG (de Groote (2001)) is a 4-tuple (Σ1,Σ2,L,S) such that:

1. Σ1 is a higher-order signature,the abstract vocabulary
2. Σ2 is a higher-order signature,the object vocabulary
3. L is a homomorphism fromΣ1 to Σ2, the lexicon
4. S ∈ AΣ1

An abstract constant(resp. object constant) is an element ofCΣ1 (resp.CΣ2),
anabstract type(resp. object type) is an element ofTΣ1 (resp.TΣ2). Given an
abstract constanta,L(a) is called therealizationof a.

An ACGG = (Σ1,Σ2,L,S) defines two languages:

1. the abstract language:A(G) = clnfS
Σ1

2. the object language:O(G) = {v ∈ clnfΣ2 |∃t ∈ A(G).v =βη L(t)}

An ACGG = (Σ1,Σ2,L,S) is said to be astring ACGif Σ2 is a string signa-
ture andL(S) = ∗. Theorder of an ACGis the order of its abstract signature.

11.3 Path in types, active subs-terms and active variables
We assume that we are given a signatureΣ and that all the types and all the
terms used in this section are built on that signature.

A linear λ-term t ∈ lnfαΣ represents, via the Curry-Howard isomorphism,
a cut-free proof ofα in the Intuitionistic Implicative and Exponential Linear
Logic. This correspondence leads to a natural relation between sub-formulae
of α and sub-terms oft. This section presents this relation which will play a
central role in our encoding.

The sub-formulae of a type will be designated by means of paths. A path
π = i1 · i2 · · · in−1 · in is a possibly empty sequence of strictly positive integers;



E    ACG / 147

n is the length ofπ and whenn = 0, π will be denoted by•. Given a set of
pathsP, i · P denotes the set{i · π|π ∈ P}. The set of paths in the typeα, Pα is
defined as follows:

P(α1,...,αn)⊸α0 = {•} ∪

n⋃

i=1

i · Pαi (recall thatα0 is atomic)

The setPα is split within two parts: the positive paths, denoted byP+α and the
negative paths denoted byP−α. Positive (resp.negative) paths are the path of
Pα which have an even (resp.odd) length.

Given a pathπ, we definep+ π as:p+ π =

{
• if π = •
(p+ k) · π′ if π = k · π′

Givent ∈ lnfαΣ, we define two particular subsets ofSt, the set ofactive sub-
terms,AT t, and the set ofactive variables,AVt. The setsAT t andAVt are
defined as the smallest sets satisfying:

1. ([], t) ∈ AT t

2. if (C[] , λ−→xn.t′) ∈ AT t then for alli ∈ [1, n],

(C[λ−→xn.Ct′ ,xi []] , xi) ∈ AVt

3. if (C[[] t1 . . . tn], x) ∈ AVt then for alli ∈ [1, n],

(C[xt1 . . . ti−1[] . . . tn], ti) ∈ AT t

If a term t can be applied ton arguments, then, givent1, . . . , tn terms in
lnf, during theβ-reduction oftt1 . . . tn the active variables oft will eventually
substituted by a term duringβ-reduction and the residuals of the active sub-
terms oft will eventually become the argument of a redex. On the other hand,
the variables oft which are not active will never be substituted and the sub-
terms oft which are not active will never be the argument of a redex.

We can now define two mutually recursive functionsAT t andAV t respec-
tively fromAT t ontoP+α and fromAVt ontoP−α:

1. AT t([] , t) = •
2. if AT t(C[] , λ−→xn.t′) = π then for alli ∈ [1, n],

AV t(C[λ−→xn.Ct′ ,xi []] , xi) = π · i

3. if AV t(C[[] t1 . . . tn], x) = π then for alli ∈ [1, n],

AT t(C[xt1 . . . ti−1[] . . . tn], ti) = π · i

One can easily check thatAT t(C[] , v) = π (resp.AV t(C[] , x) = π) implies that
the type ofv (resp. x) is the type designated (in the obvious way) byπ in α.

The functionsAT t andAV t are bijections whose converse isPt:

1. Pt(•) = ([] , t)

2. Pt(π · i) =

{
(C[λ−→xn.Ct′ ,xi [] , xi) if Pt(π) = (C[] , λ−→xn.t′)
(C[xt1 . . . ti−1[] . . . tn, ti) if Pt(π) = (C[[] t1 . . . tn], x)



148 / S S

For all (C[] , t′) ∈ AT t (resp.(C[] , x) ∈ AVt) it is straightforward that
Pt(AT t(C[] , t′)) = (C[] , t′) (resp.Pt(AV t(C[] , x)) = (C[] , x)); and that for all
π ∈ P+α (resp.π ∈ P−α), AT t(Pt(π)) = π (resp.AV t(Pt(π)) = π).

11.4 h-reduction

The DTWTs which encode second order string ACGs perform the normal-
ization of the realization of abstract terms. They use a particular reduction
strategy,h-reduction, which is related tohead linear reduction(Danos and
Regnier (2004)).

This reduction strategy is only defined for a particular class of λ-terms.
Firstly, theseλ-terms have to be built on a string signatureΣ; secondly, they
have a particular form. To describe this form, we need first defineNα

Σ
⊆ Λα

Σ

(NΣ =
⋃
α∈TΣ N

α
Σ
) as:

Nα
Σ ::= lnfαΣ | (N

β⊸α

Σ
N

β

Σ
)

Then, the set of terms we are interested in are theHT-terms defined by the
following grammar:

HT ::= N∗Σ | cHT | (λxα1
1 . . . xαn

n .HT )Nα1
Σ
. . .Nαn

Σ

wherec ∈ CΣ. EveryHT-term is inΛ∗
Σ

and is of the form:

(λ−−→xS1.
−→cT1(. . . (λ

−−→xSn.
−→cTn(x j

−→tQ))−−→vSn . . .))
−−→vS1

so thatSi ∩ S j , ∅ implies thati = j, vk (with k ∈
⋃

i∈[1,n] Si) andtq (with
q ∈ Q) are elements ofNΣ.

Given aHT-term,

t = (λ−−→xS1.
−→cT1(. . . (λ

−−→xSn.
−→cTn(x j

−→
tQ))−−→vSn . . .))

−−→vS1

we say thatt h-contracts tot′ (notedt →h t′) if

t′ = (λ−−→xS′1
.−→cT1(. . . (λ

−−→xS′n.
−→cTn(v j

−→
tQ))−−→vS′n . . .))

−−→vS′1

whereS′k = Sk\{ j}. It is a routine to check thatt =β t′, that t′ is also a
HT-term and that the normal form oft can be obtained in a finite number of
h-contractions. The reflexive and transitive closure of→h, h-reduction, will
be written

∗
→h.

GivenG = (Σ1,Σ2,S,L) a second order string ACG, andu ∈ clnfSΣ , we
are going to see howh-contraction normalizesL(u). The determinism of→h

allows one to predict statically (i.e. without performing the reduction) which
sub-term ofL(u) will be substituted to a given bound variable inL(u) during
h-reduction. This prediction is based on the notions ofreplaceable variables
andunsafe termsintroduced by Böhm and Dezani-Ciancaglini (1975). Re-
placeable variables and unsafe terms ofu belong toSL(u) and will be respec-
tively denoted byRVu andUT u.



E    ACG / 149

If (C[] , a) ∈ Su and (C′[] , x) ∈ AVL(a), then (L(C)[C′[]] , x) ∈ RVu;UT u

is the smallest set verifying:

1. if (C[] , a−→vρa) ∈ Su andC[] , [] then (L(C)[] ,L(a−→vρa)) ∈ UT u

2. if (C[] , a) ∈ Su and (C′[] , v) ∈ ATL(a) then (L(C)[C′[]] , v) ∈ UT u

The prediction will be given byφu, a bijection betweenRVu andUT u.
The definition ofφu relies on few more technical definitions.

Given (Ca[] , a) ∈ Su such thatCa[] = C[[] v1 . . . vρa], then

(C[av1 . . . vi−1[] . . .vρa], vi)

is the ith argumentof (Ca[] , a). Given (Ca[] , a), (Cb[] , b) ∈ Su, we say that
(Ca[] , a) is thehead of the ith argumentof (Cb[] , b) if

Cb[] = C[[] v1 . . . vi−1(a−−→wρa) . . .vρb] andCa[] = C[bv1 . . . vi−1([]−−→wρa) . . .vρb]

Given (C[] , x) ∈ RVu, we now defineφu(C[] , x). As (C[] , x) ∈ RVu,
we have (Ca[] , a) ∈ Su andCx[] such that (Cx[] , x) ∈ AVL(a) andC[] =
L(Ca)[Cx[]]. Let π = AVL(a)(Cx[] , x), sinceπ ∈ P−

L(τΣ1 (a)), π is of odd length,
andπ = i.π′. Then we have three cases:

1. if i ≤ ρa andπ′ = •, thenφu(C[] , x) = (L(C′)[] ,L(t)) where (C′[] , t) is
the ith argument of (Ca[] , a)

2. if i ≤ ρa andπ′ , •, thenφu(C[] , x) = (L(Cb)[C′[]] , t) where (Cb[] , b)
is the head of theith argument of (Ca[] , a) and (C′[] , t) = PL(b)(ρb + π

′)
3. if i > ρa thenφu(C[] , x) = (L(Cb)[C′[]] , t) where (Ca[] , a) is the head

of thekth argument of (Cb[] , b) and (C′[] , t) = PL(b)(k · (i − ρa) · π′).

Computingφu(C[] , x) only requires to know about the immediate sur-
rounding ofa. This is the reason why the normalization ofL(u) can be per-
formed by a DTWT. To prove the correctness of the prediction of φu we need

the notion ofstrict residual: given t and t′ such thatt
∗
→h t′, (C[] , v) ∈ St

and (C′[] , v) ∈ St′ , we say that (C′[] , v) is the strict residualof (C[] , v) when-

everC[xy1 . . . yn]
∗
→h C′[xy1 . . . yn] with FV(v) = {y1, . . . , yn} andx is a fresh

variable.
Given t such thatL(u)

∗
→h t, we say thatt is predicted byφu if the two

following properties hold:

1. for all (C[] , (λ−→xnλ
−→yq.v)−→vn) ∈ St andi ∈ [1, n], the fact that

(C[(λ−→xnλ
−→yq.Cv,xi [])

−→vn], xi)

is the strict residual of (Cxi [] , xi) ∈ RVL(u) implies that

(C[(λ−→xnλ
−→yq.v)v1 . . . vi−1[] . . .vn], vi)

is the strict residual ofφu(Cxi [] , xi).
2. for all (C[[]−→vq], x) ∈ St, (C[[]−→vq], x) is the strict residual of some

(C′[[]−→vq], x) ∈ RVu.



150 / S S

We are now going to show thath-reduction preserves the predictions ofφu.
This will be achieved by using the following technical lemma:

Lemma 25 Given (C[[]−→vq], x) ∈ RVu if we haveφu(C[[]−→vq], x) = (C′[] , t′)
then t′ = (λ−→xp

−→yq.w)−→wp and we have

φu(C′[(λ−→xp
−→yq.Cw,yk[])

−→wp], yk) = (C[xv1 . . . vk−1[] . . .vq], vk)

Proof.
This proof only consists in unfolding the definitions. Since(C[[]−→vq], x) ∈

RVu, we must have (Ca[] , a) ∈ Su andCx[] such that:

1. C[[]−→vq] = L(Ca)[Cx[[]
−→vq]]

2. (Cx[[]
−→vq], x) ∈ AVL(a)

3. AVL(a)(Cx[[]
−→vq], x) = i · π for somei andπ

There are three different cases depending oni andπ.

Case 1:i ≤ ρa andπ = •: this case is very similar to the following one and is
thus left to the reader. It is the only case wherep may be different from 0.

Case 2: i ≤ ρa and π , •: by definition if (Cb[] , b) is the head of the
ith argument of (Ca[] , a), and if PL(b)(ρb + π) = (C′′[] , λ−→yq.w) thenC′[] =
L(Cb)[C′′[]] and t′ = λ−→yq.w. Let’s now suppose thatπ = m · π′, then we have
that AVL(b)(λ

−→yq.Cw,yk[] , yk) = (ρb + π) · k = (ρb + m) · π′ · k. Therefore, as
ρb + m > ρb and as (Cb[] , b) is the head of theith argument of (Ca[] , a), we
have thatφu((λ−→yq.Cw,yk[]) , yk) = (L(Ca)[Ck[]] , uk) where

(Ck[] , uk) = PL(a)(i · (ρb +m− ρb) · π′ · k) = PL(a)(i · π · k)

But we have thatAVL(a)(Cx[[]
−→vq], x) = i · π which implies that

(Ck[] , uk) = PL(a)(i · π · k) = (Cx[xv1 . . . vk−1[] . . .vr ], vk).

Finally asC[] = L(Ca)[Cx[]] we get the result.

Case 3:i > ρa: this case is similar to the previous one. ⊔⊓

Proposition 26 If L(u)
∗
→h t, then t is predicted byφu.

Proof. This proof is done by induction on the number ofh-contraction steps
of the reduction. The case where this is zero is a simple application of the

definitions. Now let’s suppose thatL(u)
∗
→h t →h t′, then, by induction

hypothesis,t is predicted byφu; furthermore,t is aHT-term, thus

t = (λ−−→xS1.
−→cT1(. . . (λ

−−→xSn.
−→c Tn(x j

−→
tQ))−−→vSn . . .))

−−→vS1

and
t′ = (λ−−→xS′1

.−→cT1(. . . (λ
−−→xS′n.
−→c Tn(v j

−→
tQ))−−→vS′n . . .))

−−→vS′1

with S′i = Si\{ j}.



E    ACG / 151

Within the two conditions required to obtain thatt′ is predicted byφu, only
the first one requires more than a straightforward application of the induction
hypothesis. There is actually only one subterm oft′ which is problematic:
v j
−→
tQ. From the induction hypothesis we know that the subterm corresponding

to x j in t is the strict residual of (C[[]−→tQ], x j) ∈ RVu and that the subterm

corresponding tov j in t is the strict residual ofφu(C[[]−→tQ], x j). Finally the

previous lemma allows us to conclude thatv j
−→
tQ fullfills the first condition.⊔⊓

11.5 Encoding second order string ACGs with DTWT
We are now going to show how to encode second order string ACGsinto
DTWT. We do not follow the standard definition of DTWT as givenin Aho
and Ullman (1971). Indeed, instead of walking on the parse trees of a context
free grammar, the transducers we use walk on linearλ-terms built on a second
order signature. But, as these sets ofλ-terms are isomorphic to regular sets of
trees, the string languages output by our transducers are the same as those of
usual DTWT. By abuse, we call our transducers DTWT.

A DTWT is defined as a 6-tuple

A = (Σ,D,Q,T, δ, q0, q f )

whereΣ is a second order signature;D ∈ AΣ; Q is a finite set of states;T is
a finite set of terminals;δ , the transition function, is a partial function from
CΣ×(Q\{q f }) to ({up; stay}∪(down×N+))×Q×T∗ whereN+ denotes the set of
strictly positive natural numbers andT∗ denotes the monoid freely generated
by T; q0 ∈ Q is the initial state; andq f ∈ Q is the final state. Aconfiguration
of A is given by (C[] , a, q, s) whereC[a] ∈ clnfDΣ , a ∈ CΣ, q ∈ Q ands ∈ T∗;
initial configurationsare of the form ([]−→vρa, a, q0, ǫ) (ǫ being the empty string)
wherea−→vρa ∈ clnfDΣ . The automatonA defines a move relation,⊢A (⊢∗A is the
reflexive transitive closure of⊢A), between configurations: (C[] , a, q, s) ⊢A
(C′[] , b, q′, sw) if δ(a, q) = (q′,m,w) and one of the following holds:

1. m= upand (C[] , a) is the head of one of the arguments of (C′[] , b)
2. m= stayand (C′[] , b) = (C[] , a)
3. m= (down, i) and (C′[] , b) is the head of theith argument of (C[] , a)

Givena−→vρa ∈ clnfDΣ , a−→vρa generatesswith A if

([]−→vρa, a, q0, ǫ) ⊢
∗
A (C[] , b, q f , s).

The language ofA, LA , is {s|∃v ∈ clnfDΣ .v generatess}.
Given a second order string ACGG = (Σ1,Σ2,L,S) we are going to build

an automatonAG = (Σ,D,Q,T, δ, q0, q f ) such thatO(G) = {/w/|w ∈ LAG}.
Let kG = max{ρa|a ∈ CΣ1}, we then defineΣ as:

1. AΣ = AΣ1 × [1, kG]



152 / S S

2. CΣ = CΣ1 × [1, kG]

3. if τΣ1(a) = (α1, . . . , αn)⊸ α then

τΣ((a, k)) = ((α1, 1), . . . , (αn, n))⊸ (α, k).

Remark that ifv ∈ clnf(α,k)
Σ

, then for all (C[] , (a, j)) ∈ Sv, C[] , []−→vρa implies
that (C[] , (a, j)) is the head of thejth argument of (C′[] , (b, l)) ∈ Sv. Further-
more, givenv = (a, k)−→vρa ∈ clnf(α,k)

Σ
we notẽv the term of clnfαΣ1

such that

ṽ = a
−→
ṽρa.

ThenD = (S, 1), Q = ([0, kG] × P) ∪ {q f } whereP =
⋃
α∈CΣ1

PL(α), q0 =

(0, •); buildingδ requires some more definitions.
Given (a, k) and (i, π), theselection pathof (a, k) and (i, π) is:

π′ =

{
i · π if i > 0
ρa + π if i = 0

If the selection path of (a, k) and (i, π) is in P+
L(τΣ1 (a)) then we say that (a, k)

and (i, π) arecoherent; δ will be only defined on coherent pairs of (a, k) and
(i, π). A configurationK = (C[] , (a, k), (i, π),w) is said to becoherentif (a, k)
and (i, π) are coherent.

If (a, k) and (i, π) are coherent and ifπ′ is their selection path, then
we define thefocused termof (a, k) and (i, π) asPL(a)(π′). Furthermore, if
(C[] , t) is the focused term of (a, k) and (i, π) and if t = λ−→xp.

−→cn(x−→vq), then
(C[λ−→xp.

−→cn([]−→vq)], x)) is called thefocused variableof (a, k) and (i, π).
If (a, k) and (i, π) are coherent thenδ((a, k), (i, π)) = (q,move,w) depends

on the focused term of (a, k) and (i, π), (noted (C[] , t)):

1. if t = −→cn# thenq = q f , move= stayandw = c1 . . . cn

2. if t = λ−→xp.
−→cn(x−→vq), AVL(a)(C[λ−→xp.

−→cn([]
−→vq)], x) = l · π′′ and l > ρa then

q = (k, (l − ρa) · π′′), move= upandw = c1 . . . cn

3. if t = λ−→xp.
−→cn(x−→vq), AVL(a)(C[λ−→xp.

−→cn([]
−→vq)], x) = l · π′′ and l ≤ ρa then

q = (0, π′′), move= (down, l) andw = c1 . . . cn

We now relate the walk ofAG onv ∈ clnf(S,1)
Σ

with theh-reduction ofL(̃v).
To establish this relation we need to show that the transducer computesφṽ.
Given a coherent configurationK = (C[] , (a, k), (i, π),w), theactivated term

of K is (L(C′)[] ,L(a
−→
ṽρa)) if ( i, π) = (0, •) andC̃[] = C′[[]

−→
ṽρa], otherwise it is

(L(C̃)[C′[]] , t) if (C′[] , t) is the focused term of (a, k) and (i, π); theactivated
variableof K is (L(C̃)[C′[]] , x) if the focused variable of (a, k) and (i, π) is
(C′[] , x). We will show that givenK1 andK2 such thatK1 ⊢AG K2, if (C[] , x)
is the activated variable ofK1 thenφṽ(C[] , x) is the activated term ofK2. This
property shows thatAG performs theh-reduction ofL(̃v) and that ifL(̃v)
normalizes to/w/ then, walking onv, AG ends in the final state and outputs
w.



E    ACG / 153

Lemma 27 Given v= (a, 1)−→vρa ∈ clnf(S,1)
Σ

and two coherent configurations
K1 and K2 such that([]−→vρa, (a, 1), (0, •), ǫ) ⊢∗AG K1 ⊢AG K2, if (C[] , x) is the
activated variable of K1 thenφṽ(C[] , x) is the activated term of K2.

Proof. As for the proof of lemma 25, this proof is mainly based on theunfold-
ing of the definitions. We simply computeφṽ(C[] , x) and the activated term of
K2 and then show that they are the same.

We assume thatKr = (Cr [] , (ar , kr), (ir , πr ),wr) with r ∈ [1, 2], thatπ′r is
the selection path ofKr . If PL(a1)(π′1) = (C′1[] , λ−→xp.

−→cn(x−→vq)), then letπ′′1 =
AVL(a1)(C′1[λ−→xp.

−→cn([]
−→vq), x); asπ′′1 ∈ P

−
L(τΣ1(a1)), we know thatπ′′1 = i · π′′. We

then have three cases:

Case 1: if i ≤ ρa1 and π′′ = •, then φṽ(C[] , x) = (L(C′)[] ,L(t)) if
(C′[] , t) is theith argument of (C1[] , a1). But in that case, we have that
δ((a1, k1), (i1, π1)) = ((0, •), (down, i), c1 . . . cn); thus (a2, k2) is the head
of the ith argument of (a1, k1) and as (i2, π2) = (0, •), we obtain, by
definition, that the activated term ofK2 is indeed (L(C′)[] ,L(t)).

Case 2: if i ≤ ρa1 andπ′′ , •, thenφṽ(C[] , x) = (L(Cb)[C′[]] , t) if (Cb[] , b)
is theith argument of (C1[] , a1) and if (C′[] , t) = PL(b)(ρb + π

′′). In that
case, we haveδ((a1, k1), (i1, π1)) = ((0, π′′), (down, i), c1 . . . cn); there-
fore, (a2, k2) is the head ofith argument of (a1, k1) which implies that
(C2[] , a2) = (Cb[] , b); finally by definition we have that the activated
term ofK2 is (L(Cb)[C′[]] , t) = φṽ(C[] , x).

Case 3: if i > ρa1 thenφṽ(C[] , x) = (L(Cb)[C′[]] , t) if (Ca1[] , a1) is the head
of thek1

th argument of (Cb[] , b) and (C′[] , t) = PL(b)(k1 · (i − ρa1) · π
′′).

In that case, we haveδ((a1, k1), (i, π)) = ((k1, (i−ρa1) ·π
′′), up, c1 . . . cn),

and the definition leads to the fact that the activated term ofK2 is
(L(Cb)[C′[]] , t) = φṽ(C[] , x).

⊔⊓

Proposition 28 Given u∈ clnfS
Σ1

, there is a unique v= (a, 1)−→vρa ∈ clnf(S,1)
Σ

such that̃v = u, and([]−→vρa, (a, 1), (0, •), ǫ) ⊢∗AG (C[] , b, qf ,w) iffL(u) =βη /w/.

Proof. The existence and the uniqueness ofv are obvious from the definition
of Σ. To prove the proposition it suffices to study the walk ofAG on v and
the h-reduction ofL(u) in parallel: assume thatK1 = ([]−→vρa, (a, 1), (0, •), ǫ),

t1 = L(u), K1 ⊢
k
AG

Kk and t1
k
→h tk (where⊢kAG corresponds tok steps of

AG and
k
→h to k steps ofh-reduction). The use of the previous lemma and an

induction onk prove thattk is of the form

tk = (λ−−→xS1.
−→cT1(. . . (λ

−−→xSk.
−→cTk(x j

−→
tQ))−→vSk . . .))

−−→vS1

if and only if Kk = (Ck[] , (ak, lk), (ik, πk),wk) so thatwk =
−→cT1 . . .

−−−→cTk−1, if



154 / S S

(C′k[] , λ
−−→xSk.
−→cTk(x j

−→
tQ)) ∈ Stk (with the obviousC′k[]) is the strict residual of

(C′′k [] , λ−−→xSk.
−→cTk(x j

−→
tQ)) ∈ St1 then (C′′k [] , λ−−→xSk.

−→cTk(x j
−→
tQ)) is the activated term of

Kk and (C′′k [λ−−→xSk.
−→cTk([]

−→
tQ)], x j) is the activated variable ofKk. This allows us

to conclude that the walk ends in the configuration (C[] , b, qf ,w) iff L(u) =βη
/w/. ⊔⊓

This finally shows thatO(G) is indeed equal to{/w/|w ∈ LAG}.

11.6 Conclusions and future work
In this paper, we have proved that the languages defined by second order
string ACGs were the same as the output languages of DTWT. From the re-
sults of Weir (1992) and de Groote and Pogodalla (2004), we obtain as a
corollary that the languages defined by second order string ACGs are exactly
the languages defined by LCFRS. Furthermore as, according tode Groote and
Pogodalla (2004), LCFRS can be encoded by second order string ACGs with
a fourth order lexicons, we obtain that every second order string ACG can be
encoded by another one whose lexicon has at most fourth order.

In our next work, we would like to exhibit a direct translation of a second
order string ACG into another one with a fourth order lexicon. This would
help understanding how relevant the order of the lexicon is.We conjecture
that using lexicons of order greater than four may lead to more compact gram-
mars. The problem is to know how compact those grammars can beand if the
compaction is important whether it can be used do design large grammars for
natural languages.

As the tools we used are general, we think it is possible to prove that
any second order ACG can be represented as a second order ACG whose
lexicon is at most fourth order. Indeed, the notion of paths and the relations
they establish with active sub-terms and active variables do not depend on
the problem. The only definition which is dependent of the fact we deal with
strings is the definition ofh-reduction. We nevertheless think that, provided
we define a generalized notion of DTWT which would output linearλ-terms
instead of strings, we can show that second order ACGs can be encoded with
these generalized DTWTs. It would remain to encode those DTWTs with
second order ACGs with a fourth order lexicon to generalize our result. But
this last part does not seem too difficult.

The first part seems also feasible since it should be possibleto generalize
h-reduction. Indeed, instead of having a unique variable on which we could
make the substitution, the fact that the constants in the term introduce some
branching may lead to have several such variables. This would correspond
on the generalized DTWTs to the fact that when it would outputa branching
constant the transducer should duplicate its head in order to have one head to
generate each argument of that constant.



R / 155

Finally this work may lead to the definition of an abstract machine for sec-
ond order ACGs. Such a machine would be valuable to study the problem of
parsing second order ACGs and give insights on the strategies that can be im-
plemented for those grammars. Furthermore, as such a machine would have a
language made of linearλ-terms, it would be a first step towards the definition
of an abstract machine whose language is a set ofλ-terms. In Montague style
semantics, the problem of generation mainly consists in parsing languages
of λ-terms. We would then obtain a valuable tool to study the problem of
generation in that setting.

References
Aho, A. V. and J. D. Ullman. 1971. Translations on a context free grammar.Informa-

tion and Control19(5):439–475.

Barendregt, Henk P. 1984.The Lambda Calculus: Its Syntax and Semantics, vol. 103.
Studies in Logic and the Foundations of Mathematics, North-Holland Amsterdam.
revised edition.

Böhm, Corrado and Mariangiola Dezani-Ciancaglini. 1975.Lambda-terms as total or
partial functions on normal forms. In C. Böhm, ed.,Lambda-Calculus and Com-
puter Science Theory, vol. 37 ofLecture Notes in Computer Science, pages 96–121.
Springer. ISBN 3-540-07416-3.

Danos, Vincent and Laurent Regnier. 2004. How abstract machines implement head
linear reduction. Preprint of the Institut de Mathématiques de Luminy.

de Groote, Philippe. 2001. Towards abstract categorial grammars. In A. for Compu-
tational Linguistic, ed.,Proceedings 39th Annual Meeting and 10th Conference of
the European Chapter, pages 148–155. Morgan Kaufmann Publishers.

de Groote, Philippe and Sylvain Pogodalla. 2004. On the expressive power of abstract
categorial grammars: Representing context-free formalisms.Journal of Logic, Lan-
guage and Information13(4):421–438.

Girard, Jean-Yves. 1987. Linear logic.Theoretical Computer Science50:1–102.

Huet, Gérard. 1997. The zipper.Journal of Functional Programming7(5):549–554.

Montague, Richard. 1974.Formal Philosophy: Selected Papers of Richard Montague.
Yale University Press, New Haven, CT.

Salvati, Sylvain. 2005.Problèmes de filtrage et problèmes d’analyse pour les gram-
maires catégorielles abstraites. Ph.D. thesis, Institut National Polytechnique de
Lorraine.

Weir, David Jeremy. 1988.Characterizing mildly context-sensitive grammar for-
malisms. Ph.D. thesis, University of Pennsylvania, Philadephia, PA. Supervisor-
Aravind K. Joshi.



156 / S S

Weir, David J. 1992. Linear context-free rewriting systemsand deterministic tree-
walking transducers. InACL, pages 136–143.

Yoshinaka, Ryo and Makoto Kanazawa. 2005. The complexity and generative capac-
ity of lexicalized abstract categorial grammars. InLACL, pages 330–346.


