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Encoding second order string ACG with
deterministic tree walking transducers

SYLVAIN SALVATI

Abstract
In this paper we study the class of string languages repiesdry second order Ab-
stract Categorial Grammar. We prove that this class is theesas the class of output
languages of determistic tree walking automata. Togethitr the result of de Groote
and Pogodalla (2004) this shows that the higher-order tipaginvolved in the defi-
nition of second order ACGs can always be represented byatpes that are at most
fourth order.

Keywords ABSTRACT CATEGORIAL GRAMMAR, A-CALCULUS, DETERMINISTIC TREE WALK-
ING TRANSDUCERS, MILDLY CONTEXT SENSITIVE LANGUAGES

11.1 Introduction

Abstract Categorial Grammars (ACGs) (de Groote (2001)pased on the
linear logic (Girard (1987)) and on the linearcalculus. They describe the
surface structures by using for syntax the ideas Montag@ig4(ldevoted to
semantics. ACGs describe parse structures with higherdirtear A-terms
and syntax as a higher-order linear homomorphism (lexioorparse struc-
tures. Intuitively, the higher the order of the parse stites is, the richer
should the languages of analysis be and the higher the ofdlee ¢exicons
is, the richer should the class of languages be. On the ond& kdanGroote
and Pogodalla (2004) have shown how to encode of severadxidnee for-
malisms by using second order parse structuressgts of trees). They have
encoded Context Free Grammars using second order lexicoregr Con-
text Free Tree Grammars using third order lexicons and LiG@eatext Free
Rewriting Systems (Weir (1988)) with fourth order lexico@®n the other
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hand Yoshinaka and Kanazawa (2005) have explored the esiyite®f lex-
icalized ACGs. They have exhibited a non-semilinear sttarguage with
third order parse structures and an NP-complete stringukzgg with fourth
order parse structures. (Salvati (2005) gave an exampla dfRxcomplete
language with third order parse structures and a first oedézadn).

The present work addresses the problem of the expressivACGs in
a particular case. We show that the class of languages définselcond or-
der string ACGs is the same as the class of languages defirmdmss of
Deterministic Tree Walking Transducers (DTWT) (Aho andnaiih (1971)).
Together with the results of de Groote and Pogodalla (200d yeeir (1992),
this result proves that the generative power of second stdag ACGs is ex-
actly the same as the generative power of Linear ContextiReegiting Sys-
tems. This furthermore shows that second order string AGBsatways be
described with fourth order lexicons. We may neverthelesgscture that the
use of lexicons of order greater than four may give more catg@mmars.

The paper is organized as follows: we first briefly define thedr -
calculus and ACGs in section 11.2. In section 11.3, we usedhespon-
dence between proofs of linear logic and linggerms to relate sub-formulae
of a typea with sub-terms of terms of type. Section 11.4 introduces
reduction, the reduction used by the DTWTs which encoderstavder
string ACGs. Section 11.5 presents the encoding of secatet string ACGs
with DTWTSs. Finally we conclude and outline future work ircden 11.6.

11.2 Definitions

Given a finite set of atomic typed, we defineJ 4, the set of linear applica-
tive types built onA with the following grammatr:

Ta:i=A(Ta—oTa)

If a1, ...,a, are elements of 4 anda € A we will write (a1,...,an) — «a
the type 1 — (- - (@n — @) ---)). The order of the type, ord(@), is 1 if &
is atomic {.e.a € A), and ordf — B) = max(orde) + 1, ord(B)).

Higher-order signatures are triplas, (A, ) whereC is a finite set of con-
stants,A is a finite set of atomic types ands a function fromC to 74. The
order of a signatured, A, 7) is maxXord(r(a))la € C}. Given a higher-order
signatureZ = (C, A, ) we will denoteA by As, C by Cs, T by 7z and7 4 by
Ts; if t2(a) = (g, ..., an) — «, then the arity oh € Cy is n, it will be noted
0% or pa (WhenX is clear from the context).

A higher-order signatur® is said to be atring signatureif Az = {x},
# € Cyx, tz(#) = = and for alla € Cs\{#}, 1=(a) = (x —o *).

We are now going to define the set of lineaterms built on a signature
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T. We assume that the notions of free variablespture-avoiding substitu-
tions, @-conversiong-reduction-reduction. .. are familiar to the reader. If
necessary, one may consult Barendregt (1984).

Given a higher-order signatukeanda € 75, we assume that we are given
an infinite enumerable set of variables y*, z*..., A{ the set of linean-
terms of typer built onX is the smallest set verifying:

1. ifae Cy andrs(a) = athena e Ag
2. X" €AY

3. ifty €AY t, e A andFV(t) N FV(ty) = 0 then tity) € AL
4. ifte A%, x* e FV(t) thenax®.t € AL™

The setAs denotes J,.s, A§. Linear A-terms arelinear because variables
may occur free at most once in them and that whengxet is a lineara-
term,x* has exactly one free occurrence.iMoreover, whenevere AgmA‘;
thena = B, i.e. every lineari-term has a unique type in a given signatkire

We may, when it is not relevant, strip the typing annotatimmf the vari-
ables. We will writedx; ... X,.t for the termaAx,. ... Ax,.t andtot; . ..t, for
(...(tot1) .. .t,). Given a list of indicesS = [iy, ..., in], we will write AX3.t
the termax;, ... X, .t, tote the termtot;, . ..t;, andcst the termei (... c; (1)...)
when for allj € [1,n], ¢, has typex — «. In particular,4%.1, totr andcat
may be used whe8 =[1,...,n].

Given a string signaturk, strings will be represented by the closed terms
of typex. For example, the termy(. .. (c#)...) represents the string . . . ¢y;
givenw, a string built onCs, /w/ will denote the term ofAS which is in
normal form and represenis

To define the sub-terms ¢fe Ay, we follow Huet (1997) and consider
them as pairs@[],t") (whereCJ] is a context,i.e. a term with a hole) such
thatt = C[t’']. The set of sub-terms dfis denoted byS;. In particular, we
defineSy to be{(C[],v) € Silv € AS}. If xis free int, we noteCy[] the
context such that; x[X] = t andx is not free inCx[]. Remark that sincéis
linearC; 4[] is always defined.

We say that a terrhis in long from if for all (C[].t") € S¢™” eithert’ =
Axt” or C[] = C’[[]t”]. Every term can be put in long form bjexpansion,
therefore ift is the long form of’, thent —*>,, t’. When a term is in long form,
all its possible arguments are abstracted Ryadbstraction. For example, the
term x*=*, which is not in long form, can be applied to an argument oétyp
x; in long form, this term becomey/*.x*~*y*, the possibility of applying it
to a term of typex is syntactically represented by theabstraction. A term is
in long normal form (Inf for short) if it is both iB-normal form and in long
form. The set Ir§ (resp.cInfg) represents the set of termsAf in Inf (resp.

1Given al-termt, we will write FV(t) to denote the set of its free variables.
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the closed terms oAg in Inf). In the sequel of the paper we only deal with
terms in long form; thus each time we will writgg.t, xt—é or at—s), we will
implicitly make the assumption thitxis or ats has an atomic type.

We define homomorphisms between the higher-order sigreiumndx,
to be pairs {, g) such thatf is a mapping fron¥s, to 7s,, andg is a mapping
from Az, to As,, and verifying:

1. if @ € Ay, thenf(a) € Ty,, otherwisef(a — B) = f(a) — f(B)

2. foralla e Cy, such thatrs,(a) = @, 9(a) € clnff(“)

3. g(x*) = xf@

- g(tatz) = g(t)a(t2)

5. g(Ax.t) = ax'@ g(t)

One can easily check that whenever A , g(t) € Af(") In general, given a
homomorphisn¥ = (f, g), we will write |nd|st|nctly.£(a) for f(a) and £L(t)
for g(t). Theorderof £ is maXord(L(e))le € As, }.

An ACG (de Groote (2001)) is a 4-tuplE4, =,, L, S) such that:

1. X, is a higher-order signaturthe abstract vocabulary

2. X, is a higher-order signaturthe object vocabulary

3. Lis a homomorphism fror; to X,, the lexicon

4. SeAs,

An abstract constanfresp. object constajis an element of’s, (resp.Cs,),
anabstract typgresp. object typeis an element of’y, (resp.7s,). Given an
abstract constarat, £(a) is called therealizationof a.

An ACG G = (21,22, L, S) defines two languages:

1. the abstract languaged(G) = clnf§1

2. the object languaged(G) = {v € clnfy, |3t € A(G).v =4, L(1)}

An ACG G = (21,22, L, S) is said to be &tring ACGIf %, is a string signa-
ture andZ(S) = . Theorder of an ACGs the order of its abstract signature.

N

11.3 Path in types, active subs-terms and active variables

We assume that we are given a signatiend that all the types and all the
terms used in this section are built on that signature.

A linear A-termt € Infg represents, via the Curry-Howard isomorphism,
a cut-free proof ofr in the Intuitionistic Implicative and Exponential Linear
Logic. This correspondence leads to a natural relation betwesfosmulae
of a and sub-terms df This section presents this relation which will play a
central role in our encoding.

The sub-formulae of a type will be designated by means ofgpdtipath
m=i1-ip---in-1-in IS @ possibly empty sequence of strictly positive integers;
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n is the length ofr and whem = 0, = will be denoted bye. Given a set of
pathsP, i - P denotes the séi - njx € P}. The set of paths in the type P, is
defined as follows:

.....

n
Plar,..an)—ao = 10} U Ui - P, (recall thatag is atomic)
i=1
The setP, is split within two parts: the positive paths, denotedfjyand the
negative paths denoted 8. Positive (esp.negative) paths are the path of
P, which have an evendsp.odd) length.
eif r=e
(p+K)-nifr=k-n'

Givent e Infg, we define two particular subsets$f the set ofictive sub-
terms AT ¢, and the set odictive variablesAYV;. The setsAT  and AV, are
defined as the smallest sets satisfying:

1. ([I.t) € AT
2. if (C[], A%a.t’) € AT then for alli € [1,n],

(CLA%.Cr x[11. %) € AW
3. if (C[[]t1...ts], X) € AV, then for alli € [1,n],
(CIxty...ti-a[] ... ta], ) € AT+

If a termt can be applied tm arguments, then, giveR, ..., t, terms in
Inf, during thes-reduction oftt; . . . t, the active variables dfwill eventually
substituted by a term duringrreduction and the residuals of the active sub-
terms oft will eventually become the argument of a redex. On the othadh
the variables of which are not active will never be substituted and the sub-
terms oft which are not active will never be the argument of a redex.

We can now define two mutually recursive functidXis andAV respec-
tively from AT onto®; and fromAV; ontoP;:

1. AT([],.t)=e
2. if AT((C[], A%.t') =  then for alli € [1, n],
AV (C[A%.Co (1, %) = 7 -1
3. if AV{(C[[]t1...tn], X) = m then for alli € [1, n],
AT(Cxty.. . ti_al] ... ta], i) = 7 -
One can easily check thaT ((C[], v) = 7 (resp.AV(C[], X) = ) implies that

the type ofv (resp. } is the type designated (in the obvious way)din .
The functionsAT; andAV; are bijections whose converseHs

1. Pi(e) = (1. 1)

| (C[A%.Cvx [, %) if Py(n) = (C[], A%a.t')
2. Pi(or-1) ‘{ (C[xtl...tti)il[] ...tn,t:) if Py(7) = (C[[It1...t]. X)

Given a pathr, we definep + ras:p+x =
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For all C[],t") € AT (resp.(C[l,x) € AYVy) it is straightforward that
P:(AT(C[],t)) = (C[].t") (resp.P(AV{(C[], X)) = (C[], X)); and that for all
e Pt (resp.r € Py), ATi(Pi(n)) = 7 (resp.AV(Pi(n)) = n).

11.4 h-reduction

The DTWTs which encode second order string ACGs perform trenal-
ization of the realization of abstract terms. They use ai@adér reduction
strategy,h-reduction which is related tchead linear reductior{Danos and
Regnier (2004)).

This reduction strategy is only defined for a particular slagA-terms.
Firstly, thesel-terms have to be built on a string signati;esecondly, they
have a particular form. To describe this form, we need firindeVy c AS
(NE = U(yE’TE Ng) as:

NE = Infe | (NEONE)

Then, the set of terms we are interested in areHfeterms defined by the
following grammar:

HT == Ng | CHT | (X Xy HT )N .. Ng"
wherec € Cs. EveryHT-term is inA5 and is of the form:

%
(A% (- .- (1%s,.Cro (i Q))Vs; - . ) Vs,

so thatS; N S # 0 implies thati = j, v (with kK € Uiz Si) andtq (with
g € Q) are elements ofs.
Given aHT-term,

%
t= (A%} (. .. (A%, Cr (X tQ))Vs, - . ))Vs;
we say that h-contracts td” (notedt —y, t') if
’ rd
t = (%] Cri(. .. (A%, En (ViTQ))Vs] - - )V,

whereS; = Si\{j}. It is a routine to check that =5 t’, thatt’ is also a
HT-term and that the normal form oftan be obtained in a finite number of
h-contractions. The reflexive and transitive closure-gf, h-reduction will

be written—r,.

GivengG = (21,22, S, £) a second order string ACG, ande clnfS, we
are going to see hol-contraction normalize£(u). The determinism of>,
allows one to predict statically.¢é. without performing the reduction) which
sub-term of£(u) will be substituted to a given bound variablefifu) during
h-reduction. This prediction is based on the notiongeplaceable variables
andunsafe termsntroduced by Bohm and Dezani-Ciancaglini (1975). Re-
placeable variables and unsafe terms belong toS £, and will be respec-
tively denoted byRV, andUT .
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If(C[],a) € Suand C'[], X) € AV g, then L(C)[C'[]], X) € RV; UT
is the smallest set verifying:
1. if (C[],av,,) € Sy andC[] # [] then (L(C)[], L(aV,))) € UT,
2. if (C[], &) € Sy and C'[],v) € AT @ then L(C)[C']],V) € UT
The prediction will be given by,, a bijection betwee®RV, and U7 .
The definition ofg, relies on few more technical definitions.
Given (C4[], &) € Sy such thaCy] = C[[Jvi...V,,], then
(C[avl .. .Vi_1|:| .. -Vpa]»Vi)
is thei™ argumentof (Ca[], a). Given Ca[], a), (Co[],b) € Sy, we say that
(C4ll, @) is thehead of the'l argumenif (Cy[], b) if
Coll = Cl[[IVa...Viia(@W,.) ... V,,] andCq[] = Clbwi ... Vi_1(IW,)) . .. V,,]
Given C[],x) € RV, we now definep,(C[], x). As (C[],x) € RV,
we have Cj[],a) € Sy andCy[] such that Cy[],X) € AV andC[] =
L(CIIC[]]. Let m = AV 1@ (Cxll, X), sincer € P e @) is of odd length,
andr = i.n’. Then we have three cases:
1. ifi < paandn’ = e, theng,(C[], X) = (L(C')[], L(t)) where C'[],t) is
thei®™ argument of C,[], @)
2. ifi < pgandn’ # e, thengy(C[], X) = (L(Cp)[C'[]],t) where Cp[], b)
is the head of thé" argument of C4[], @) and C’[],t) = P rw)(ob + 7’)
3. ifi > pa thengy(C[l, X) = (L(Cu)[C'[]],t) where Ca[], ) is the head
of thek" argument of Cy[], b) and C'[],t) = Py (K- (i — pa) - ).
Computing¢y(C[], X) only requires to know about the immediate sur-

rounding ofa. This is the reason why the normalization£fu) can be per-
formed by a DTWT. To prove the correctness of the predictiof,ave need

the notion ofstrict residual givent andt’ such thatt Sn t, C[l,v) € &
and C'[],v) € Sy, we say thatC'[], v) is the strict residuabf (C[], v) when-

everC[xyi ... ¥nl S C'[xy1...Yn] With FV(V) = {y1,...,¥n} andxis a fresh
variable.

Givent such that£(u) S t, we say that is predicted byg, if the two
following properties hold:

1. for all (C[], (AXaAYq.V)Va) € St andi € [1, ], the fact that
(CHAXAYq-Cux D VAL, %)
is the strict residual ofGy[], X)) € RV r) implies that
(C[(/l?n/l%.V)Vl .. .Vi_1|:| .. .Vn], Vi)

is the strict residual ap,(Cx[], Xi).
2. for all C[[IVe],x) € St (C[0Vql,X) is the strict residual of some
(C'[0]. x) € RV
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We are now going to show thitreduction preserves the predictionggf
This will be achieved by using the following technical lemma

Lemma 25 Given (C[[]Va],x) € RV, if we haveq)u(C[[]Vq)],x) = (C'[l.t)
then t = (AXpyq.W)Wp and we have
Gu(C'[(A%pYa-Cwy ) Wpl, Vi) = (C[xva ... . Vicea[] - - - Vgl Vi)

Proof.
This proof only consists in unfolding the definitions. Sir((‘Z{[]Vq)], X) €
RV, we must have@,[], a) € Sy andC,[] such that:

1. ClVg] = L(CAICAN Vo]

2. CIV). ¥ € AV 1

3. AV 1@ (CxI[1Ve], X) = i - « for somei andx
There are three fierent cases depending bandr.

Case 1:i < p, andn = e: this case is very similar to the following one and is
thus left to the reader. It is the only case whpmaay be diferent from 0.

Case 2:i < pa andrm # e: by definition if (Cp[],b) is the head of the
i™" argument of Ca[], @), and if Pzey(ob + 71) = (C”[], AYq.W) thenC'[] =
L(Cp)[C”[l] and t’ = Ayg.w. Let's now suppose that= m- 7/, then we have
that AV £y (AYg-Cuyll- ) = (ob + 1) - kK = (op + M) - 7’ - k. Therefore, as
b+ M > pp and as Cy[], b) is the head of thé" argument of C,[], a), we
have thatpu((4Yg.Cwy[l) . Yi) = (L(Ca)[Cil], ux) where

(Cll, u) = P (i - (op + M= pp) - 7" - K) = Pria)(i - - K)
But we have thaAVL(a)(Cx[[]Va], X) = i -  which implies that

(Cl, w) = PL(a)(i s7-K) = (Cu[xve . Vil - - - Ve ]s W)-
Finally asC[] = L(CJ)[C«[]] we get the result.
Case 3:i > p,: this case is similar to the previous one. O

Proposition 26 If £(u) Snt, thentis predicted by,.
Proof. This proof is done by induction on the numbertefontraction steps
of the reduction. The case where this is zero is a simple egjpn of the
definitions. Now let's suppose tha(u) —n t —p t/, then, by induction
hypothesist is predicted byp,; furthermoret is aHT-term, thus

t= (1%, .En(. .. (1%, Cr, (X Q)Vs, - . ))Vs,
and

t = (I%s..Cri(. .. (%5, C, (ViTQ)Vs, - . )Vs,
with S’ = Sj\{j}.
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Within the two conditions required to obtain thais predicted byp,, only
the first one requires more than a straightforward apptocatf the induction
hypothesis. There is actually only one subternt’ofvhich is problematic:
v,—t_Q). From the induction hypothesis we know that the subtermesponding
to x; in t is the strict residual ofC([[]t_Q)], Xj) € RV, and that the subterm
corresponding ta;j in t is the strict residual o&&u(C[[]Eg’],xj). Finally the
previous lemma allows us to conclude thpt_b) fullfills the first condition.d

11.5 Encoding second order string ACGs with DTWT

We are now going to show how to encode second order string AGGBSs
DTWT. We do not follow the standard definition of DTWT as givienrAho
and Ullman (1971). Indeed, instead of walking on the paesestof a context
free grammar, the transducers we use walk on lingarms built on a second
order signature. But, as these setd-@érms are isomorphic to regular sets of
trees, the string languages output by our transducers esathe as those of
usual DTWT. By abuse, we call our transducers DTWT.

A DTWT is defined as a 6-tuple

A = (27 D» Q7T967 qO» qf)

whereX is a second order signaturig;e As; Q is a finite set of state§; is

a finite set of terminalsy , the transition function, is a partial function from
Cex(Q\{g}) to ({up; staypu(downxN*))xQx T* whereN* denotes the set of
strictly positive natural numbers affid denotes the monoid freely generated
by T; qo € Qs the initial state; and; € Q is the final state. Aonfiguration
of A is given by C[],a,q, s) whereC[a] € cInf2,a€ Cz,q € Qandse T
initial configurationsare of the form (ng, a, qo, €) (e being the empty string)
Wherea\z € cIanD. The automator defines a move relatioma (-, is the
reflexive transitive closure afa), between configurationsC(],a,q, S) ra
(C'[].b, g, sw if 6(a, ) = (9, m, w) and one of the following holds:

1. m=upand C[], a) is the head of one of the arguments Gf[{, b)

2. m= stayand C’'[],b) = (C[],a)

3. m=(downi) and C’[], b) is the head of thé" argument of C[], a)
Givenav,, € cInf2, av,’ generates with A if

(02,2 do. €) Fa (CI0.b.qr. 9).

The language oA, La, is {33 € cInf2.v generates).

Given a second order string AC& = (X1, 2, £, S) we are going to build
an automatohg = (,D,Q, T, 6, do, ) such thald(G) = {/w/w € La,}.
Letkg = maxXpala € Cy,}, we then defin& as:

1. As = As, x [1,kg]



152/ SyLVAIN SALVATI

2. Cy =Cy, x[1,kg]
3. ifry, (@) = (a1,...,an) — athen

(@ K)) = ((@1, 1), .. ., (an, N) — (a, K).

Remark that ifv € cInf™", then for all C[], (&, j)) € Sv, C[l # [V, implies
that C[], (a, j)) is the head of thg" argument of C'[], (b, 1)) € S,. Further-

more, giverv = (a,k)V,, € cinf! we noteV the term of cInf, such that
—)
V=av,.

ThenD = (S» 1)1 Q= ([07 kg] X P) U{qgr} whereP = Uaeczl PL((X)! Jo =
(O, o); building § requires some more definitions.

Given @@ k) and {, n), theselection pattof (a, k) and {, x) is:

, [ i-mifi>0
g ‘{ pa+mifi=0
If the selection path ofg, k) and {, ) is in PZ(Tzl(a)) then we say thata( k)
and {, 7) arecoherent ¢ will be only defined on coherent pairs o, k) and
(i, 7). A configurationK = (C[], (a, k), (i, ), w) is said to becoherenif (&, k)
and (, ) are coherent.

If (a,k) and {,n) are coherent and if’ is their selection path, then
we define thefocused termof (a, k) and {, ) asP @ (7). Furthermore, if
(C[l,t) is the focused term ofa(k) and {,7) and ift = AXp.Cn(XVq), then
(ClA%pCr([IV)], X)) is called thefocused variablef (a, k) and , 7).

If (a, k) and {, r) are coherent thes((a, k), (i, 7)) = (g, movew) depends
on the focused term o&(k) and {, ), (hoted C[], t)):

1. if t = Ch# thenq = g, move= stayandw = ¢; ... Cy

2. if t = A%,C(WVg), AV £ (CIAR C(0VR)], ¥) = | -7 andl > p, then
g=(k (I-pa)-7"), move=upandw=c;y...Cp
3. if t = 1. C(Ng), AV £ (C[A%Cr([IV)], X) = | - 7”7 andl < p, then

g = (0,7”"), move= (downl) andw =c; .. .c,

We now relate the walk okg onv e clnfés'l) with the h-reduction of£(V).
To establish this relation we need to show that the transdraraputespy.
Given a coherent configuratidf = (C[], (a,K), (i, 7), w), the activated term
of K'is (L(C’)D,L(a\f;)) if (i, 7) = (0, ¢) andC[] = C'[[] \i], otherwise it is
(LO)[C[]]. 1) if (C'[].t) is the focused term of(k) and {, ); the activated
variable of K is (£(C)[C'[]], x) if the focused variable ofa( k) and {, ) is
(C'1l, x). We will show that giverK; andK; such thakK; +a, Kz, if (C[], X)
is the activated variable d¢f; thengw(C[], X) is the activated term df,. This
property shows thafg performs theh-reduction of L(v) and that if £(V)
normalizes to/w/ then, walking onv, Ag ends in the final state and outputs
W.
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Lemma 27 Given v= (a, 1)@: € clnf(zs’l) and two coherent configurations
K; and K such that(ﬂ\z, (8,1),(0,0),¢) I—Zg K1 kag Ko, if (C[], X) is the
activated variable of Kthengy(C[], X) is the activated term of K

Proof. As for the proof of lemma 25, this proof is mainly based onuthéld-
ing of the definitions. We simply compugg(C[], X) and the activated term of
K, and then show that they are the same.

We assume thel, = (C/[], (a, k), (ir, 7r), W) with r € [1,2], thatz; is
the selection path oK. If Py,)(r}) = (Cill, %p.Ca(XVy)), then letry =
AV £(a)(Ci A% Ta(([IVg), X); @S} € P, (o) We know thatr) =i - 7. We
then have three cases: '

Case L:if i < pa andn” = e, then ¢y(C[],X) = (L(C)[],L()) if
(C'[].t) is thei" argument of C1[], a;). But in that case, we have that
8((as, ky), (i1, 1)) = ((0, o), (down i), c; . .. Cy); thus @y, k) is the head
of the i argument of &, ki) and as ib, 7o) = (0, ), we obtain, by
definition, that the activated term &% is indeed £(C')[], £(t)).

Case 2:if i < pa, andn” # e, thengy(C[], X) = (L(Cp)[C'[I],1) if (Cb[], b)
is thei! argument of C4[], a;) and if (C'[],t) = Prwm(op + 7). In that
case, we havé((as, ky), (i1, 1)) = ((0,7”), (downi),c; ... c,); there-
fore, (@, ko) is the head off" argument of &, k1) which implies that
(Call,a2) = (Cp[], b); finally by definition we have that the activated
term of Kz is (L(Cp)[C[]] . 1) = ¢w(CI], X).

Case 3:if i > pa, thengy(C[], X) = (L(Cp)[C'[1],1) if (C4,[], &) is the head
of thek,"™ argument of Cp[], b) and C'[],t) = Prpy(Ke - (i — pa,) - 7).

In that case, we havi#(ay, ki), (i, 7)) = ((Ki, (i—pa,)-7”), UP, C1 . . . Cn),
and the definition leads to the fact that the activated ternKofs
(L(Co)IC. 1) = ¢u(CI]. 9.

O

Proposition 28 Given ue clnfgl, there is a unique = (a, 1)\@ € cInféS'l)
such tha/ = u, and([¥,.. (&, 1), (0, »), ) 5 (CIl, b, air, W) iff L(u) =3, /w/.

Proof. The existence and the uniqueness afe obvious from the definition
of X. To prove the proposition it sfices to study the walk oAg onv and
the h-reduction of £(u) in parallel: assume tha¢; = ([1V,., (& 1), (0, ), €),

k
ty = L(u), Ky I—ig Kk andt; —p ty (wherek'/’;g corresponds td steps of
k . .
Ag and— to k steps oth-reduction). The use of the previous lemma and an
induction onk prove thaty is of the form
t = (A%, ... (A%, T (X Q) - ) s,

if and only if Ky = (Ck[]. (@, ), (ix. 7)., Wi) SO thatwy = Cr,...Cr.,, if
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(C/[I, A%s,.Cry(xit0)) € Sy (with the obviousC][]) is the strict residual of

(€11, %s,.Er(xta)) € Sy, then €]'[1, A%s,.Cr,(x;t0)) is the activated term of

Kk and C/'[1%s,.cr,(IT)]. X;) is the activated variable dfx. This allows us

to conclude that the walk ends in the configuratiGfi (b, gr, w) iff L(u) =g,

W/ O
This finally shows thaD(G) is indeed equal to/w/|w € La,}.

11.6 Conclusions and future work

In this paper, we have proved that the languages defined lmndearder
string ACGs were the same as the output languages of DTWT Ere re-
sults of Weir (1992) and de Groote and Pogodalla (2004), weinlas a
corollary that the languages defined by second order strid@#are exactly
the languages defined by LCFRS. Furthermore as, accordide@oote and
Pogodalla (2004), LCFRS can be encoded by second ordey st@iGs with
a fourth order lexicons, we obtain that every second ordiergsACG can be
encoded by another one whose lexicon has at most fourth.order

In our next work, we would like to exhibit a direct translatiof a second
order string ACG into another one with a fourth order lexic@his would
help understanding how relevant the order of the lexicos.conjecture
that using lexicons of order greater than four may lead toesompact gram-
mars. The problem is to know how compact those grammars candf the
compaction is important whether it can be used do desige lgrgmmars for
natural languages.

As the tools we used are general, we think it is possible tweptbat
any second order ACG can be represented as a second order AG&: w
lexicon is at most fourth order. Indeed, the notion of pathd the relations
they establish with active sub-terms and active variabtesat depend on
the problem. The only definition which is dependent of the fee deal with
strings is the definition offi-reduction. We nevertheless think that, provided
we define a generalized notion of DTWT which would outputdingterms
instead of strings, we can show that second order ACGs candmeled with
these generalized DTWTSs. It would remain to encode those DIWith
second order ACGs with a fourth order lexicon to generalizeresult. But
this last part does not seem todtatiult.

The first part seems also feasible since it should be podsilgeneralize
h-reduction. Indeed, instead of having a unique variable bitlvwe could
make the substitution, the fact that the constants in thm etroduce some
branching may lead to have several such variables. Thisdvoairespond
on the generalized DTWTSs to the fact that when it would ougpbitanching
constant the transducer should duplicate its head in ood®ate one head to
generate each argument of that constant.
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Finally this work may lead to the definition of an abstract hiae for sec-
ond order ACGs. Such a machine would be valuable to studyrthtegm of
parsing second order ACGs and give insights on the stratéiuse can be im-
plemented for those grammars. Furthermore, as such a neaghind have a
language made of linedrterms, it would be a first step towards the definition
of an abstract machine whose language is a sgitefms. In Montague style
semantics, the problem of generation mainly consists isipgrianguages
of A-terms. We would then obtain a valuable tool to study the lembof
generation in that setting.
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