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Linguistic Theories
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Competence Hypothesis

• Language user applies internalized rules to produce

internal representations

• Language user acquires rules by abstraction of

grammatical experience guided by universal principles and

constraints
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Alternative view:

Representations only, no rules

• Language user acquires examples of representations from

syntactic experience

• Language user applies operations on representations to

produce representations for new utterances

• Linguistic theory specifies representations and operations

• Rules perhaps appear in scientific discourse, but are not

part of native speaker’s “competence”
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Productivity from examples
(following Scha, Bod:  Data Oriented Parsing)

Given:  corpus annotated with representations

(e.g. phrase structures)

   1.  Break structures into fragments--remember them

   2.  Combine fragments to get structures for new sentences
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Given:  corpus annotated with representations:
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1.  Break structures into fragments

NP

Mary

NP

Susan

S

NP VP

NPV

likes

S

NP VP

VP

NPV

hatesS

NP

John

VP

NP

Mary

V

likes

etc.



8.  R. M. Kaplan, A probabilistic approach to LFG,  LFG Colloquium and Workshops, Rank Xerox Research Centre, Grenoble, August 1996.

2.  Combine fragments to get structures for new utterances
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In DOP, ° is left-most substitution
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Another derivation of the same structure:
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Observations

• Fragments are not minimal

– Range from context-free rule equivalent  (S → NP VP)

to whole-utterance structure.

– Some large fragments may represent idiosyncratic constructions,

   others may not.  We don’t care.

– We don’t even care how many fragments there are (in principle).

• Fragments are redundant, with overlapping information.

• Multiple results, not derivations, correspond to ambiguity
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Probabilities

Resolve ambiguities, implicitly identify most useful fragments

• Frequency affects language-user interpretations:  governs

choice among several grammatical alternatives

Mehler & Carey (68)....Tanenhaus and Trueswell (95)

• Typically, probabilities are defined on rules

(stochastic grammars)

• DOP:  Probabilities are defined on representations, not rules

Scha (90) .... Bod (95)
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A corpus-oriented, representation-based approach

requires

1.  A theory of well-formed utterance representations.

2.  A definition of productive representation fragments.

3.  A definition of a fragment-combination operation °.

4.  A probability model for utterance representations.

A linguistic theory provides 1, 2, 3

but no other descriptive devices
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For DOP

1.  Representations:  phrase structure trees.

2.  Fragments:  connected subtrees.

3.  Operation °:  substitution of leftmost matching category.

4.  Probability model:  ...later.
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For LFG:

1.  Representations:  valid* c-structures and f-structures in

correspondence.
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2.  Fragments:  loosely, connected subtrees in correspondence

with connected sub-f-structures
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Intuition says:  some possible fragments are implausible

etc.
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Examples of

theory-based restrictions

Lexical predicates:  If a fragment includes an f-structure lexical predicate,

the fragment must also include a corresponding lexical node.

Head chains:  If a f ragment includes node n corresponding to f-structure f,

then all other nodes under n corresponding to f must be included.

Control:  If a fragment contains one path of a control identity, it must

contain the other.

Sisters:  If a fragment includes a node n, it must include all of n’s sisters

(from DOP).
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3.  Operation:  Left-most substitution of matching categories

followed by unification of corresponding fragment f-structures
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Derivation

A derivation for an utterance u is a sequence of fragments <f1, f2...fn> such

that the composition operator ° applied from left to right results in a valid

representation R whose yield is u:

R = (...((f1 ° f2) °...) ° fn)

Theory of representation defines “yield”:

      e.g        the terminal string of the c-structure.

= <c-structure, φ, f-structure>

Theory of representation defines “valid”:

     e.g.       no nonbranching dominance chains,

                  complete and coherent f-structure.
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4.  Probability Model

Let C be a corpus of structures and Bag(C) be the bag containing all

fragments derived from C.  #(f) is the number of times that fragment f appears

in the bag.

P f
f

gg Bag C

( )
#( )

#( )( )

=
∈∑

The probability of each fragment is estimated by its corpus frequency:
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Probability of a derivation

A derivation for an utterance u results in a representation R whose yield is u.

P s P fi
i

( ) ( )= ∏

• We assume a fragment sequence s= <f1, f2...fn> is constructed from the bag

by random sampling with replacement.  Then its sequence probability is

• There may be infinitely many sequences that result in no representation or

which result in a representation whose yield is not u.  We are not

interested in those.  For a given derivation d of u we obtain

P d d u
P d

P ss u

( | )
( )

( )
 yields 

  yields 

=
∑ The linguistic theory must

guarantee for every u a

maximum derivation length.

(E.g.  no nonbranching chains)
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Probability of an

utterance representation

P R P d d u
d r R

( ) ( | )= ∑  yields 
 esults in 

In general there are many derivations of a particular representation R for

an utterance u.  Assuming these derivations are independent, we have

We assign the most probable R as the best analysis of u.

The most probable R:   the one most likely to have been derived.
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Other approaches

• Stochastic grammars:  Assign probabilities to rules

The most probable R:  the one with the most probable derivation

• Johnson (1996):  Assign probabilities to f-structure relations

The most probable R:  the one with the most probable f-structure

independent of any derivation

“Model theory vs. proof theory”
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Summary

• A productive system based on representations, not rules

• Clear, but different, role for linguistic theory

• Different claims about what a native-speaker “knows”,

what needs to be explained

• Theory of acquisition combined with theory of processing

(Although it may be impractical...)


