A probabilistic approach to Lexical-Functional Grammar

Ronald M. Kaplan
Xerox Palo Alto Research Center

Based on joint work with
Rens Bod, Khalil Sima'an, Remko Scha

Linguistic Theories provide

Representations

Formal encoding of grammatical relations

Rules

$$
\begin{array}{ccc}
S & \rightarrow \begin{array}{c}
\text { NP } \\
\\
\\
(\uparrow \text { SUBJ })=\downarrow
\end{array} & \begin{array}{l}
\text { VP } \\
\text { VP }
\end{array} \\
& \left.\rightarrow \begin{array}{cc}
\mathrm{V} & \text { NP } \\
& \uparrow=\downarrow \\
\hline
\end{array} \uparrow \text { OBJ }\right)=\downarrow
\end{array}
$$

Determine representations for all possible utterances

Usual goal: minimal, nonredundant set of independent generalizations with free interactions

Carry explanatory burden

Competence Hypothesis

- Language user applies internalized rules to produce internal representations
- Language user acquires rules by abstraction of grammatical experience guided by universal principles and constraints

Alternative view: Representations only, no rules

- Language user acquires examples of representations from syntactic experience
- Language user applies operations on representations to produce representations for new utterances
- Linguistic theory specifies representations and operations
- Rules perhaps appear in scientific discourse, but are not part of native speaker's "competence"

Productivity from examples (following Scha, Bod: Data Oriented Parsing)

Given: corpus annotated with representations (e.g. phrase structures)

1. Break structures into fragments--remember them
2. Combine fragments to get structures for new sentences

DOP illustration

Given: corpus annotated with representations:

1. Break structures into fragments

2. Combine fragments to get structures for new utterances

In DOP, \circ is left-most substitution

8. R. M. Kaplan, A probabilistic approach to LFG, LFG Colloquium and Workshops, Rank Xerox Research Centre, Grenoble, August 1996.

Another derivation of the same structure:

Observations

- Fragments are not minimal
- Range from context-free rule equivalent ($\mathrm{S} \rightarrow \mathrm{NP}$ VP) to whole-utterance structure.
- Some large fragments may represent idiosyncratic constructions, others may not. We don't care.
- We don't even care how many fragments there are (in principle).

TAG?

- Fragments are redundant, with overlapping information.

is in

- Multiple results, not derivations, correspond to ambiguity

Probabilities

Resolve ambiguities, implicitly identify most useful fragments

- Frequency affects language-user interpretations: governs choice among several grammatical alternatives

Mehler \& Carey (68)....Tanenhaus and Trueswell (95)

- Typically, probabilities are defined on rules (stochastic grammars)
- DOP: Probabilities are defined on representations, not rules Scha (90) Bod (95)

A corpus-oriented, representation-based approach requires

1. A theory of well-formed utterance representations.
2. A definition of productive representation fragments.
3. A definition of a fragment-combination operation ${ }^{\circ}$.
4. A probability model for utterance representations.

A linguistic theory provides 1, 2, 3
but no other descriptive devices
12. R. M. Kaplan, A probabilistic approach to $L F G$, LFG Colloquium and Workshops, Rank Xerox Research Centre, Grenoble, August 1996

For DOP

1. Representations: phrase structure trees.
2. Fragments: connected subtrees.
3. Operation ${ }^{\circ}$: substitution of leftmost matching category.
4. Probability model: ...later.

For LFG:

1. Representations: valid* c-structures and f-structures in correspondence.

*No nonbranching dominance chains
2. Fragments: loosely, connected subtrees in correspondence with connected sub-f-structures

etc.

Intuition says: some possible fragments are implausible

Examples of theory-based restrictions

Lexical predicates: If a fragment includes an f-structure lexical predicate, the fragment must also include a corresponding lexical node.

Head chains: If a f ragment includes node n corresponding to f -structure f, then all other nodes under n corresponding to f must be included.

Control: If a fragment contains one path of a control identity, it must contain the other.

Sisters: If a fragment includes a node n, it must include all of n 's sisters (from DOP).

3. Operation: Left-most substitution of matching categories followed by unification of corresponding fragment f -structures

[^0]
Derivation

A derivation for an utterance u is a sequence of fragments $\left\langle f_{1}, f_{2} \ldots f_{\mathrm{n}}\right\rangle$ such that the composition operator ${ }^{\circ}$ applied from left to right results in a valid representation R whose yield is u :

$$
\begin{aligned}
R & =\left(\ldots\left(\left(f_{1} \circ f_{2}\right) \circ \ldots\right) \circ f_{\mathrm{n}}\right) \\
& =<\mathrm{c} \text {-structure, } \phi, \text { f-structure }>
\end{aligned}
$$

Theory of representation defines "valid":
e.g. no nonbranching dominance chains, complete and coherent f-structure.

Theory of representation defines "yield":
e.g the terminal string of the c-structure.

4. Probability Model

Let C be a corpus of structures and $\operatorname{Bag}(C)$ be the bag containing all fragments derived from $C . \#(f)$ is the number of times that fragment f appears in the bag.

The probability of each fragment is estimated by its corpus frequency:

$$
P(f)=\frac{\#(f)}{\sum_{\left.g \in \operatorname{Bag}(C)^{\#(} g\right)}}
$$

Probability of a derivation

A derivation for an utterance u results in a representation R whose yield is u.

- We assume a fragment sequence $s=\left\langle f_{1}, f_{2} \ldots f_{\mathrm{n}}>\right.$ is constructed from the bag by random sampling with replacement. Then its sequence probability is

$$
P(s)=\prod_{i} P\left(f_{i}\right)
$$

- There may be infinitely many sequences that result in no representation or which result in a representation whose yield is not u. We are not interested in those. For a given derivation d of u we obtain

$$
P(d \mid d \text { yields } u)=\frac{P(d)}{\sum_{s \text { yields } u} P(s)}
$$

The linguistic theory must guarantee for every u a maximum derivation length. (E.g. no nonbranching chains)

Probability of an utterance representation

In general there are many derivations of a particular representation R for an utterance u. Assuming these derivations are independent, we have

$$
P(R)=\sum_{d \text { results in } R} P(d \mid d \text { yields } u)
$$

We assign the most probable R as the best analysis of u.

The most probable R : the one most likely to have been derived.

Other approaches

- Stochastic grammars: Assign probabilities to rules

The most probable R : the one with the most probable derivation

- Johnson (1996): Assign probabilities to f-structure relations

The most probable R : the one with the most probable f -structure independent of any derivation
"Model theory vs. proof theory"

Summary

- A productive system based on representations, not rules
- Clear, but different, role for linguistic theory
- Different claims about what a native-speaker "knows", what needs to be explained
- Theory of acquisition combined with theory of processing (Although it may be impractical...)

[^0]: 17. R. M. Kaplan, A probabilistic approach to $L F G$, LFG Colloquium and Workshops, Rank Xerox Research Centre, Grenoble, August 1996.
