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Abstract

LFG-DOP (Bod and Kaplan, 1998, 2003) provides an appealing answer
to the question of how probabilistic methods can be incorporated into linguis-
tic theory. However, despite its attractions, the standardmodel of LFG-DOP
suffers from serious problems of overgeneration because (a) it is unable to
define fragments of the right level of generality, and (b) it has no way of
capturing the effect of anything except simple positive constraints. We show
how the model can be extended to overcome these problems.

1 Introduction

The question of how probabilistic methods should be incorporated into linguistic
theory is important from both a practical, grammar engineering, perspective, and
from the perspective of ‘pure’ linguistic theory. From a practical pointof view
such techniques are essential if a system is to achieve a useful breadth of coverage
and avoid being swamped by structural ambiguity in realistic situations. From
a theoretical point of view they are necessary as a response to the influence of
probabilistic factors in human language behaviour (see e.g. Jurafsky, 2003, for a
review).

Bod and Kaplan (1998, 2003) provide a very appealing and persuasive answer
to this question in the form of LFG-DOP, where the linguistic representations of
Lexical Functional Grammar (LFG) are combined with the probabilistic methods
of Data Oriented Parsing (DOP). The result is a descriptively powerful,clear, and
elegant fusion of linguistic theory and probability. However, it suffers from two
serious problems, both related to generative capacity, which have the effect that the
model overgenerates. This paper shows how these problems can be overcome.

The paper is structured as follows. Section 2 provides background, introducing
the basic ideas of DOP. Section 3 describes the Bod and Kaplan (B&K) model,
and introduces the first problem: the problem of defining DOP fragments with the
right level of generality. Section 4 shows how this problem can be overcome. Sec-
tion 5 describes the second problem (which arises because LFG-DOP fragments
effectively encode only simple, positive, LFG constraints) and shows how it can be
overcome. Section 6 discusses some issues and potential objections.

2 Tree-DOP

The central idea of DOP is that, rather than using a collection of rules, parsing
and other processing tasks employ a database offragmentsproduced by decom-
posing a collection of normal linguistic representations (e.g. trees drawn from a

†We are grateful to the participants at LFG07 in Stanford, Ca, for insightful and stimulating
discussion, in particular: Joan Bresnan, Aoife Cahill, Grzegorz Chrupała, Ron Kaplan, Jonas Kuhn,
and Louisa Sadler.
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treebank).1 These fragments can be assigned probabilities (e.g. based on their rel-
ative frequency of appearance in the fragment database). Parsing astring involves,
in effect, finding a collection of fragments which can be combined to derive it,
i.e. provide a representation for it. These representations are assignedprobabilities
based on the probabilities of the fragments used. This general approachcan, of
course, be realized in many different ways, via different choices of basic represen-
tation, different decomposition operations, etc. So, standardly, specifying a DOP
model involves instantiating four parameters: (i) representational basis; (ii) decom-
position operations; (iii) composition operation(s); and (iv) probability model.

Specified in this way, Tree-DOP, the simplest DOP model, involves:

(i) a treebank of context free trees, such as Figure 1;
(ii) two decomposition operations:Root andFrontier ;

(iii) a single composition operation:Leftmost Substitution;
(iv) a probability model based on relative frequency.

Fragments are produced from representations such as Figure 1 by two decom-
position operations:Root andFrontier :

(i) Root selects any noden and makes it the root of a new tree, erasing all other
nodes apart from those dominated byn.

(ii) Frontier chooses a set of nodes (other than the root) and erases all subtrees
dominated by these nodes.

Intuitively, Root extracts a complete constituent to produce a fragment with a new
root. For example, the fragments in Figure 2 can be produced from the treein Fig-
ure 1 by (possibly trivial) application ofRoot . Frontier deletes part of a fragment
to produce an ‘incomplete’ fragment — a fragment with a new frontier contain-
ing ‘open slots’ (i.e. terminal nodes labeled with a non-terminal category), as in
Figure 3.

Leftmost Substitutioninvolves substituting a fragment for the leftmost open
slot. Figure 4 exemplifies one of the several ways in which a representationof Kim
likes Samcan be derived.

1Standard references on DOP include, for example, Bod and Scha (1997), Bod (1998), and the
papers in Bod et al. (2003). All of these contain presentations of Tree-DOP.
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Figure 3: Fragments produced by theFrontier operation

The following define a very simple probability model for this version of DOP.2

(1) P (fi) =
|fi|

∑

root(f)=root(fi)

|f |

(2) P (d) =
n

∏

i=1

P (fi)

2Simple, and one should add, inadequate. This model is based on relativefrequency estimation,
which has been shown to be biased and inconsistent (Johnson, 2002).A number of alternatives have
been proposed, e.g. assuming a uniform derivation distribution (Bonnema et al., 1999), backing-off
(Sima’an and Buratto, 2003), and held-out estimation (Zollmann, 2004). Nothing in what follows
depends on the choice of probability model, however.
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Figure 4: Fragment composition

(3) P (R) =

m
∑

j=1

P (dj)

Equation (1) says that the probability associated with a fragmentfi is the ratio of
the number of times it occurs compared to the number of times fragments with the
same root category occur. (2) says that the probability of a particular derivation d

is the product of the probabilities of the fragments used in deriving it. (3) says that
the probability associated with a representation (tree) is to be found by summing
over the probabilities of its derivations.

Apart from its obvious simplicity, this version of DOP has numerous attrac-
tions. However, from a linguistic point of view it suffers from the limitations ofthe
underlying linguistic theory (context-free phrase structure grammar), and for this
reason does not provide a satisfactory answer to the question of how probabilistic
and linguistic methods should be combined. A much better answer emerges if DOP
techniques are combined with a richer linguistic theory, such as LFG.3

3 LFG-DOP

The idea of combining DOP techniques with the linguistic framework of LFG was
first proposed in Bod and Kaplan (1998) (see also Bod and Kaplan, 2003; Way,
1999; Bod, 2000b,a; Hearne and Sima’an, 2004; Finn et al., 2006; Bod, 2006).
As one would expect given the framework, representations are triples〈c, φ, f 〉,
consisting of a c-structure, an f-structure, and a ‘correspondence’ function φ that
relates them (see Figure 5).4

Decomposition again involves theRoot andFrontier operations. As regards
c-structure, these operations are defined precisely as in Tree-DOP. However, the
operations must also take account of f-structure and theφ-links: (i) when a node is
erased, allφ-links leaving from it are removed, and (ii) all f-structure units that are
not φ-accessible from the remaining nodes are erased.5 (iii) In addition, Root

3Attempts to adapt DOP for other grammatical formalisms, notably HPSG, include Neumann
(2003), Linardaki (2006), and Arnold and Linardaki (2007).

4Discussion of the key ideas of LFG can be found in e.g. Bresnan (1982), Dalrymple et al. (1995),
Bresnan (2001), and Dalrymple (2001).

5A piece of f-structure isφ-accessible from a noden if and only if it is φ-linked ton or contained
within a the piece of f-structure that isφ-linked ton.
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Figure 5: LFG-DOP Treebank representation.

deletes all semantic forms (PRED features) that are local to f-structures which
are linked to erased nodes. (iv)Frontier also removes semantic forms from f-
structures corresponding to erased nodes.

The intuition here is (a) to eliminate f-structure that is not associated with the
c-structure that remains in a fragment, and (b) to keep everything else, except that
a fragment should contain aPREDvalue if and only if the c-structure contains the
corresponding word. Thus, from the representation in Figure 5,Root will produce
(inter alia) fragments corresponding to the NPsSamandKim and the VPlikes Kim,
as in Figure 6. The cases ofSamandKim are straightforward: all other nodes,
and the associatedφ-links have been removed; the only f-structures that areφ-
accessible are the values ofSUBJandOBJrespectively, and these are what appear in
the fragments. The case of the VPlikes Kim, is slightly more complex: deleting the
S and subject NP nodes does not affectφ-accessibility relations, because the S and
VP nodes in Figure 5 areφ-linked to the same f-structure. However, deleting the
subject NP removes thePRED feature theSUBJ value, as required by (iii). Notice
that nothing else is removed: in particular, notice that person-number information
about the subject NP remains.

Applying Frontier to Figure 6 (c) to deleteKim will produce a fragment cor-
responding tolikes NP, as in Figure 7. Again,φ-accessibility is not affected, so
the only effect on the f-structure is the removal of thePREDfeature associated with
Kim, as required by (iv).

The composition operation will not be very important in what follows. For
the purpose at hand it can be just the same as that of Tree-DOP, with two pro-
visos. First, we must ensure that substitution of a fragment at a node preserves
φ-links and also unifies the corresponding f-structures. Second, we require the f-
structure of any final representation we produce to satisfy a number of additional
well-formedness conditions, specificallyuniqueness, completenessandcoherence,
in the normal LFG sense (e.g. Dalrymple, 2001, pp35-39). Similarly, for thepur-
pose of this discussion we can assume the probability model is the same as usedin
Tree-DOP.6

6In fact, a small extension of the probability model is needed.Completenesscannot be checked in
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Figure 6: LFG-DOPRoot fragments
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Figure 7: An LFG-DOPFrontier fragment

What is of central concern here is that the fragments produced byRoot and
Frontier are highlyundergeneral(overspecific). In particular, the fragment for
Samis nom, the fragment forKim is acc, and in the fragment forlikes NP the
direct object NP is third person and singular.

This will lead to under-generation (under-recognition). For example, it will not
be possible to use theRoot fragments forSamandKim in Figure 6 in analyzing
a sentence like (4) whereKim appears as a subject, andSamas an object, because
they have the wrong case marking. Similarly, it will not be possible to use the
Frontier fragment in Figure 7 to analyze (5), since it requires theOBJ to be 3rd
person singular, whichus, themetc. are not.7

the course of a derivation, but only on final representations, some ofwhich will therefore be invalid.
The problem is that the probability mass associated with such representations is lost. Bod and Kaplan
(2003) address this issue by re-normalizing to take account of this wasted probability mass.

7Another way of thinking about this problem is as an exacerbation of the problem ofdata sparsity:
an approach like this will require much more data to get an accurate pictureof the contexts where
words and phrases can occur. Data sparsity is one of the most pervasive and difficult problems for
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(4) Kim likes Sam.
(5) Sam likes them/us/me/you/the children.

To deal with this problem, B&K introduce a further operation,Discard , which
produces more general fragments by erasing features.Discard can erase any
combination of features apart fromPRED, and those features whose valuesφ-
correspond to remaining c-structure nodes. As regards the fragmentsSamand
Kim, this means everything except thePREDcan be removed, as in Figure 8 (a). In
the case oflikes Kimin Figure 6 (c), this means everything can be removed except
for the value ofPREDand theOBJ (and itsPRED), see Figure 8 (b). In the case of
likes NPin Figure 7, it means everything can be removed except thePREDand the
OBJ (however, though theOBJ remains, the features it contains can be deleted), see
Figure 8 (c).

Clearly, such fragments areover-general (under specific). For example, the
fragment forKim in Figure 8 (a) will be able to appear as subject of a non-third
person singular verb, as in (6); the fragments forlikes NPandlikes Kimwill allow
non-third singular subjects (and subjects marked accusative), and the fragment for
likes NPwill also allow a nominative object, as in (7).

(6) *Kim were happy.
(7) *Them likes we.

To deal with this, B&K propose a redefinition of grammaticality: rather than
regarding as grammatical anything which can be given an analysis, they regard an
utterance as grammatical if it can be derived without usingDiscard fragments. For
words with relatively high frequency (including common names such asKim and
Samand verbs such aslikes) this is likely to work. For example, every derivation
of examples like (6) and (7) is likely to involveDiscard fragments, so they will
be correctly classified as ungrammatical. Equally, (4) will have a non-Discard

statistical approaches to natural language.



derivation, and be correctly classified as grammatical, so long asKim appears at
least once as a subject, andSamappears at least once as an object, and (5) will have
a non-Discard derivation so long aslikesappears with a sufficiently wide range of
object NPs.

The reason this can be expected to work for high frequency words is that for
such words the corpus distribution represents the true distribution (i.e. in thelan-
guage as whole). Unfortunately, most words arenot high frequency, and their
appearance in corpora is not representative of their true distribution. Infact, it is
quite common for more than 30% of the words in a corpus to appear only once —
and of course this single occurrence is unlikely to reflect the true potentialof the
word.8

For example, in the British National Corpus (BNC) the noundebauches(‘moral
excesses’) appears just once, as in (8), where it will beacc. Thus, the only way
to produce (9) will be to use aDiscard fragment. But (8) and (9) are equally
grammatical.

(8) [H]e . . . shook Paris by his wild debauches on convalescent leave.
(9) His wild debauches shook Paris.

Similarly, the verbsto debauch(‘to corrupt morally’) andto hector(‘talk in a bul-
lying manner’) appear several times, but never with a first person singular subject:
So analyzing (10) and (11) will requireDiscard fragments, and they will be clas-
sified as ungrammatical. But both are impeccable.

(10) I never debauch anyone.
(11) I never hector anyone.

In short: there is a serious theoretical problem with the way LFG-DOP frag-
ments are defined. WithoutDiscard , the fragments areundergeneral, and the
model undergenerates, e.g. it cannot produce (4) and (5). There isa clear need for
a method of producing more general fragments via some operation likeDiscard .
However, as formulated by B&K,Discard produces fragments that areovergeneral,
and the model overgenerates, producing examples like (6) and (7). Since B&K’s
attempt to avoid this problem via a redefinition of grammaticality does not help,
we need to consider alternative approaches. The most obvious being to impose
constraints on the wayDiscard operates (cf Way, 1999).9

8Baroni (to appear) notes that about 46% of all words (types) in the written part of the British
National Corpus (90 million tokens) occur only once (in the spoken part the figure is 35%, lower, but
still above1/3). Of course, the BNC is not huge by human standards: listening to speech at normal
rates (say, 200 words per minute) for twelve hours per day, one will encounter more than half this
number of tokens each year (200 × 60 × 12 × 365 = 52, 560, 000). But Baroni also observes that
the proportion of words that appear only once seems to be largely independent of corpus size.

9A number of participants at LFG07 suggested alternative approaches based on ‘smoothing’,
rather thanDiscard (see also Hearne and Sima’an (2004)). Suppose, we have seen the proper name
Alina just once, markednom (Alinanom ). We ‘smooth’ the corpus data, by treatingAlinaacc as
an ‘unseen event’ (e.g. we might assign it a count of0.5). We can generalize this to eliminate



4 Constraining Discard

The problem with B&K’s formulation ofDiscard— the reason it produces over-
general fragments — is that it is indiscriminate. In particular, it does not distin-
guish between features which are ‘inherent’ to a fragment (that is, ‘grammatically
necessary’ given its c-structure), and those which are ‘contextual’ or ‘contingent’
given its c-structure and are simply artifacts of structure that has been eliminated
by the decomposition operations. The former must not be discarded if we are to
avoid overgeneration; the latter can, and in the interest of generality should, be dis-
carded. Consider, for example, the fragment forlikes NPin Figure 7. Intuitively,
thePERandNUM features on the object NP are just ‘contextual’ here — they sim-
ply reflect the presence of a third person singular NP in the original representation.
On the other hand, theCASE feature on the object is grammatically necessary, as
are thePER, NUM andCASE features on the subject NP (given that the verb islikes).
Similarly, with fragments for NPs likeSamandKim: PERandNUM features seem
to be grammatically necessary, butCASE seems to be an artefact of the context in
which the fragments occur (while with a fragment forsheall three features would
be grammatically necessary).

One approach would be to look for general constraints onDiscard , e.g. to try
to identify certain features as grammatically ‘essential’ in some way, and immune
to Discard (i.e. like PREDfor B&K). While appealing, this seems to us unlikely to
be sucessful, and certainly no plausible candidates have been proposed.10

We think this is not an accident. Rather, the difficulty of finding general con-
straints onDiscard is a reflection of a fundamental feature of f-structures, and
LFG: the fact that f-structures do not record the ‘structural source’ of pieces of f-
structure. This is in turn a reflection of an important fact about natural language —
one for which constraint based formalisms provide a natural expression: that infor-
mation at one place in a representation may have many different structural sources
(in the case of agreement phenomena, many sources simultaneously). Consider, for

the need forDiscard : we simply hypothesize similar unseen events for all possible attribute-value
combinations. This is an interesting approach, but (a) it will overgenerate, and (b) we will still be
unable to reconstruct any idea of grammaticality. To see this, consider that we will also treatAlina
marked plural (Alinapl ) as an unseen event, and presumably assign it the same count asAlinaacc . We
will now be able to derive *Aline run (so we have overgeneration). Moreover, the same arguments
that we used to show the inadequacy ofDiscard as a basis for a notion of grammaticality apply here,
equally (e.g. if we try to identify ungrammaticality with ‘involving a smoothed fragment’). Notice it
is not the case that grammatical sentences will receive higher probabilityon such an account: suppose
that the probability ofNP run is the same or higher thanWe saw NP: it is likely that the probability
assigned to *Alina run will be the same or higher thanWe saw Alina. (We are especially grateful to
Ron Kaplan, Jonas Kuhn, and Grzegorz Chrupała for stimulating discussion on this point.)

10Way (1999), suggests it might be possible to classify features as ‘lexical’ or ‘structural’ in some
general fashion (so the presence of ‘lexical’ features in fragments would be tied to the presence
of lexical material in c-structures in the same way asPRED). He suggestsPER andNUM might be
lexical, andCASE might be structural, but notice that there are cases whereCASE is associated with
particular lexical items (e.g. pronounsshe, her), and wherePERandNUM values are associated with
a particular structure (e.g. subject of a verb with a third person singularreflexive object, such asNP
criticized herself).



example, theNUM:pl feature that will appear on the subject NPs in the following:

(12) These sheep used to be healthy.
(13) Sam’s sheep are sick.
(14) Sam’s sheep used to look after themselves.
(15) These sheep are able to look after themselves.
(16) Sheep can live in strange places.

In (12), this feature is a reflex of the plural determiner; in (13) it is a result of the
form of the verb (are); in (14) it is a result of the reflexive pronoun; in (15) it comes
from all these places at once; in (16) it is theabsenceof an article that signals that
the noun is plural.

Thus, instead of trying to find general constraints, we propose that the produc-
tion of generalized fragments should be constrained by the existence of what we
will call ‘abstract fragments’. Intuitively, abstract fragments will encode informa-
tion about what is grammatically essential, and so provide an upper bound onthe
generality of fragments that can be produced byDiscard . We will call this gener-
alizing operationcDiscard (‘constrainedDiscard ’). Furthermore, we propose that
the knowledge underlying such abstract fragments be expressed usingnormal LFG
grammar rules.

Formally, the key insight is that it is possible to think of a grammar and lexicon
as generating a collection of (often very general) fragments, by constructing the
minimal c-structure that each rule or lexical entry defines, and creatingφ-links
to pieces of f-structure which are minimal models of the constraints on the right-
hand-side of the rule. We will call fragments produced in this way ‘basic abstract
fragments’.

For example, suppose that, in response to the problems discussed above,we
postulate the rules and entries in (17). These rules can be interpreted so as to
generate the basic abstract fragments in Figure 9.11

(17) a. S→ NP
(↑SUBJ CASE)=nom

VP
↑=↓

b. VP→ V
↑=↓

NP
(↑OBJ CASE)=acc

c. Kim NP (↑NUM)=sg
(↑PER)=3

d. she NP (↑NUM)=sg
(↑PER)=3
(↑CASE)=nom

e. her NP (↑NUM)=sg
(↑PER)=3
(↑CASE)=acc

11Notice that we do not follow the normal LFG convention whereby the absence of f-structure
annotation on category is interpreted as ‘↑=↓’: absence of annotation means exactly an absence of
f-structure constraints. Notice also that this means we are treating theφ-correspondence as a partial
function in abstract fragments: in Figure 9 (a) the NP is not linked to any f-structure.
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Figure 9: Basic abstract fragments generated by the grammar rules in (17)

Formally speaking, these are fragments in the normal sense, and they can be
composed in the normal way. For example composing Figure 9 (b) and Figure 9 (f )
will produce the ‘derived’ abstract fragment in Figure 10 (a). This in turn can be
composed with Figure 9 (a) to produce Figure 10 (b). The idea is that such frag-
ments can be used to put an upper bound on the generality of the fragments pro-
duced bycDiscard , by requiring the latter to be ‘licensed’ by an abstract fragment.

More precisely, we require that, for a fragmentf , if cDiscard(f) produces
fragmentfd, then there must be some abstract fragmentfa which licensesfd,
which for the moment we take to meanfa ‘frag-subsumes’fd. We will say that an
abstract fragmentfa frag-subsumesa fragmentfd just in case:

1. the c-structures are isomorphic, with identical labels on correspondingnodes;
and

2. theφ-correspondence offa is a subset of theφ-correspondence offd (recall
thatφ-correspondences are functions, i.e. sets of pairs); and

3. every f-structure infa subsumes (in the normal sense) the corresponding
f-structure offd.12

12This desciption glosses over a small formal point: normal fragments contain an f-structure with
a single root. For abstract fragments this will not always be the case. For example, a rule like
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Figure 10: Derived abstract fragments

To see the effect of this, consider theRoot andFrontier fragments in Fig-
ure 11 (b), (d) and (f ), and the abstract fragments that would license possible ap-
plications ofDiscard to them, in Figure 11 (a), (c) and (e).

The abstract fragment in Figure 11 (a) will license the discarding ofPER and
NUM from the object slot of Figure 11 (b), but will not permit discarding ofTENSE

information, or information about theCASE of the subject or object, orPER and
NUM information from the subject. Thus, we will have fragments of sufficient
generality to analyze (18), but not (19):

(18) Sam likes them/us/me/the children. [=(5)]
(19) *Them likes we. [= (7)]

Similarly, the abstract fragment in Figure 11 (c) will license generalized fragments
for Kim from whichCASE has been discarded, but will not allow fragments which
from whichPERor NUM information has been discarded. Thus, as we would like,
we will be able to analyze examples whereKim is an object, but not where it is,
say, the subject of a non-third person singular verb:

(20) Kim likes Sam. [= (4)]
(21) *Kim were happy. [= (6)]

On the other hand, the abstract fragment in Figure 11 (e) will not permit any fea-
tures to be discarded fromher, which will therefore be restricted to contexts which
allow third person singular accusatives:

S→NP VP (without any constraints) should produce an abstract fragmentwith c-structure consisting
of three nodes, each associated with a separate, empty, f-structure.
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Figure 11:Root , Frontier , and abstract fragments

(22) Sam likes her.
(23) *Her likes Sam.

5 General Constraints

The previous section has shown how one source of overgeneration can be avoided.
A second source of overgeneration arises from the fact that, while it provides a
reasonable model of normal c- and f-structure constraints (i.e. definingequations),
an LFG treebank is only a poor reflection of other kinds of constraint, e.g.nega-
tive constraints, functional uncertainty constraints, existential constraints, and con-
straining equations.13 A treebank is a finite repository of positive information, and
cannot properly reflect negative constraints, constraints with potentiallyinfinite

13See Dalrymple (2001) for discussion and exemplification of such constraints.
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Figure 12: AcDiscard Frontier fragment

scope, or constraints whose essential purpose is information ‘checking’. In this
section we will show how the approach of the previous section can be extended
to address this source of overgeneration. For reasons of space, wewill focus on
functional uncertainty constraints and negative constraints.

As an example of a functional uncertainty constraint, consider the need to ‘link’
topicalized constituents. Suppose the treebank contains representations of exam-
ples like (24) and (25).

(24) Her, Sam likes.
(25) Her, we think Sam likes.

As things stand, it will be possible to produce a fragment like Figure 12 from(24)
by deleting the structure corresponding toSam likes(and discarding a number of
features likeTENSE, which are not relevant here). Notice it will be possible to
compose any complete sentence with this, and so derive ungrammatical examples
like the following, in which the topicalized constituenther is not linked to any
normal grammatical function.

(26) *Her, Sam likes Kim.

In a normal LFG grammar, examples like (26) are excluded by including a
functional uncertainty constraint on the rule that produces topicalized structures:14

(27) S→ NP
(↑TOPIC)=↓

(↑COMP* GF)=↓

S
↑=↓

As things stand, the LFG-DOP model is unable to prevent examples like (26) being
derived: there is no way of capturing the effect of anything like an uncertainty
constraint.

As regards negative constraints, in Section 4 we expressed facts about subject
verb agreement withlikesby means of a positive constraint requiring its subject to

14In (27), GF is a variable over grammatical function names, such asOBJ andSUBJ, andCOMP*
is a regular expression meaning any number ofCOMPs (including zero).COMP is the grammatical
function associated with complement clauses. Thus, the constraint requires the NP’s f-structure to
be theOBJ (or SUBJ, etc.) of its sister S, or of a complement clause inside that S, or a complement
clause inside a complement clause (etc).



be 3rd person singular. This still leaves the problem of agreement for other forms.
For example, we must excludelike appearing with a 3rd person singular form, as
in (28).

(28) *Sam like Kim.

This can be expressed with a disjunction of normal constraints, but the mostnatural
thing to say involves a negative constraint, along the lines of (29) (which simply
says that the subject oflike must not be third person singular). The existing appa-
ratus provides no way of encoding anything like this.

(29) like V ¬
(

(↑SUBJ PER)=3 (↑SUBJ NUM)=sg
)

In fact, apparatus to avoid this sort of overgeneration is a straightforward ex-
tension of the approach described above.

• We add to fragments a fourth component, so they become 4-tuples:
〈c, φ, f ,Constr〉, whereConstr is a collection of ‘other’ (i.e. non-defining)
constraints.

• For basic abstract fragments the elements ofConstr are the ‘other’ con-
straints required by the corresponding rule or lexical entry.

• Combining abstract fragments involves unioning these sets of constraints.
• Licensing a fragment involves adding these constraints to the fragment (i.e.

fragments inherit the Constraints of the abstract fragment that licenses them).
• The composition process is amended so as to include a check that these con-

straints are not violated (specifically, we require that, in addition to normal
completeness and coherence requirements, the f-structure of any finalrepre-
sentation we produce must satisfy all constraints inConstr).

The idea is that, given a grammar rule like (29), any basic abstract fragment
for like will include a negative constraint on the appropriate f-structure, which will
be inherited by any derived abstract fragment, and any fragment that isthereby
licensed. So, for example, the most generalcDiscard fragment forNP like Kim
will be as in Figure 13. While it will be possible to adjoin a 3rd person singular
NP to the subject position of this fragment, this will not lead to a valid final repre-
sentation, because the negative constraint will not be satisfied. Thus, as one would
hope, we will be able to derive (30), but not (31).

(30) They like Kim.
(31) *Sam like Kim.

Similarly, the rule in (27) will produce abstract fragments which contain the un-
certainty constraint given, and these will license normal fragments like thatin Fig-
ure 14. Again, the only valid representations which can be constructed which sat-
isfy this constraint will be ones which contain a ‘gap’ corresponding to theTOPIC.
That is, as one would like, we will be able to produce (32), but not (33):

(32) Her, Sam (says she) likes.
(33) *Her, Sam (says she) likes Kim.
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Figure 13: Fragment incorporating a negative constraint
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Figure 14: Fragment incorporating an uncertainty constraint

6 Discussion

The proposals presented in the previous sections constitute a relatively straightfor-
ward extension to the formal apparatus of LFG-DOP, but they are open toa number
of objections, and they have theoretical implications of wider significance.

One kind of objection that might arise is a result of the relatively minor phe-
nomena we have used for exemplification (case assignment and person-number
agreement in English). This objection is entirely misplaced. First, because, inan
LFG context, similar problems will arise in relation to any phenomenon whose
analysis involves f-structure attributes and values. More generally, similarprob-
lems of fragment generality will arise whenever one tries to generalize DOP ap-
proaches beyond the context-free case, e.g. to deal with semantics.15 More gen-
erally still, analogues of the problems we have identified with fragment generality
and capturing the effect of ‘general’ constraints on the basis of a finite collection
of example representations will arise with any ‘exemplar’ based approach.

A second source of objections might arise from the fact that we have focused

15At least, this is the case if one wants to preserve the idea that a treebank consists of representa-
tions in the normal sense. In the approach to semantic interpretation in DOP described in Bonnema
et al. (1997) these problems are avoided at the cost of not using semantic representations in the normal
sense. Rather than having semantic representations, the nodes of treesare annotated with an indica-
tion of how the semantic formula of the node is built up from the semantic formulae of its daughters,
and hence how it should be decomposed. The ‘fragment generality’ problem is sidestepped by ex-
plicitly indicating on each and every node how its semantic representation should be decomposed as
fragments are created.



on the problem of overgeneration: one might object (a) that in a practical,e.g. lan-
guage engineering, setting this is not very important, and (b) that in a probabilis-
tic setting, such as DOP, overgeneration can be hidden statistically (e.g. because
ungrammatical examples get much smaller probability compared to grammatical
ones).

As regards (a), the appropriate response is that a model which overgenerates
is generally one which assigns excessive ambiguity (which is a pervasiveproblem
in practical settings). Sag (1991) gives a large number of plausible examples. In
relation to subject-verb agreement, he notes that the following areunambiguous,
but will be treated as ambiguous by any system that ignores subject-verb agree-
ment: (34) presumes the existence of a unique English-speaking Frenchman among
the programmers; (35) presumes there is a unique Frenchman among the English
speaking programmers.

(34) List the only Frenchman among the programmers who understands English.
(35) List the only Frenchman among the programmers who understand English.

Similarly, a system which does not insist on correct linking of Topics will treat (36)
and (37) as ambiguous, when both are actually unambiguous (in (36)to themmust
be associated withcontributed, in (37) it must be associated withappears, because
contributerequires, anddiscoverforbids, a complement withto):

(36) To them, Sam appears to have contributed it.
(37) To them, Sam appears to have discovered it.

As regards (b), it is important to stress that the problem of overgeneration as
we describe it has to do with the characterization of grammaticality (i.e. the char-
acterization of a language), and grammaticality simply cannot be identified with
relative probability (casual inspection of almost any corpus will reveal many sim-
ple mistakes, which are uncontroversially ungrammatical, but have much higher
probability than perfectly grammatical examples containing, e.g., rare words).

A third objection would be that in avoiding overgeneration, we have also lost
the ability to deal with ill-formed input (robustness). But there is no reason why
the model should not incorporate, in addition to ‘constrainedDiscard ’, an uncon-
strained operation like the original B&KDiscard . Notice that this would now give
a correct characterization of grammaticality (a sentence would be grammaticalif
and only if it can be derived without the use of unconstrainedDiscard fragments).

A fourth, and from a DOP perspective very natural, objection would be that
these proposals in some sense violate the ‘spirit’ of DOP — where an important
idea is exactly to dispense with a grammar in favor of (just) a collection of frag-
ments. A partial response to this is to note that to a considerable degree the sort
of grammar we have described is implicit in the original treebank. For example,
the set of c-structure rules can be recovered from the treebank by simply extracting
all trees of depth one. This will produce a grammar without f-structure constraints,
and abstract fragments with empty f-structures and constraint sets, whichis exactly



equivalent to the original B&K model. Taken as a practical proposal for gram-
mar engineering, the idea would be that one can begin with such an unconstrained
model, and simply add constraints to these c-structure rules to rule out overgenera-
tion. This can clearly be done incrementally, and in principle, the full range of LFG
rule notation should be available, so this should be a relatively straightforward and
natural task for a linguist. It should be, in particular, much easier than writing a
normal grammar.

However, it is also possible to take the proposal in a different way, ‘theoreti-
cally’, as describing an idea about linguistic knowledge, and human language pro-
cessing and acquisition. Taken in this way, the suggestion is that a speakerhas at
her disposal two knowledge sources: a database of fragments (in the normal DOP
sense), which one might think of as a model of grammatical usage, and a gram-
mar (an abstract fragment grammar) which expresses generalizations over these
fragments, which one might take to be a characterization of something like gram-
matical competence. Notice that on this view: (i) the grammar as such plays no
role in sentence processing (but only in fragment creation, i.e. off-line); (ii) the
task of the learner is only secondarily to construct a grammar (the primary task
is the creation of the fragment database — learning generalizations over thisis a
secondary task); (iii) the grammar does not generate or otherwise precisely charac-
terize the language (this is achieved by the fragment database with the composition
operation), rather its job is to license or legitimize the fragments in the fragment
database. Taken in this way, the model is an enrichment of the standard DOPap-
proach.
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