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Abstract

We present the addition of a morphological generation component to an

LFG-based Statistical Machine Translation System, taking advantage of ex-

isting morphological grammars and the FST (Finite State Transducer) pro-

cessing pipeline of the XLE system. The extended syntax-driven translation

system takes separate stochastic decisions for lemmata and morphological

tags; the role of finite-state morphological grammars is to generate full forms

out of a bundle of morphological tags produced by the translation component.

This technique can lead to a more effective use of a given amount of train-

ing data from a parallel corpus, since lexical vs. morphosyntactic translation

patterns can be induced independently.

The existing FST processing cascade for German, when added to the Sta-

tistical Machine Translation System, suffers from generation failures. These

occur due to overgeneralisation by the syntax-driven translation process and

originate from (i) the use of various underspecification tags in the morpholog-

ical grammar, or (ii) erroneous assignment of certain tags to a given lemma.

In order to deal with this, we add a set of replacement/correction rules on

top of the cascade. The augmented FST cascade leads to an increase of gen-

eration coverage from 47.90% to 75.35%. A detailed error analysis for the

remaining 24.65% is given.

1 Introduction

In current work on Machine Translation (MT), purely data-driven, statistical ap-

proaches, based on very large corpora of sample translations, continue to lead to

the best evaluation results, at least when tested on the same text domain as they

were trained on (Callison-Burch et al., 2008). At the same time, it is conceptually

clear that there are limitations to picking up certain generalisations (which can be

easily described in linguistic terms) from unstructured training data – Zipf’s law

has it that the multitude of types of linguistic units occur rather infrequently in

corpus data. Hence, an obvious goal for linguistically grounded natural language

processing (NLP) research is to find effective combinations of the highly success-

ful statistical techniques with insights from deep linguistic processing. This goal

is considerably more challenging than one may first think: nearly all previous ex-

periments on the straightforward ways of constraining the statistical models to ap-

ply only on linguistically warranted units have led to a drop in performance (e.g.,

Koehn et al. (2003a); Chiang (2005)). This is presumably so because the uncon-

strained system will quite often learn to produce a reasonable translation for some

combination of words that does not form a linguistic unit at any level. The devel-

opment of more structured statistical translation models, capable of incorporating

linguistic knowledge while not suffering from a reduced amount of training data,

remains a major goal for NLP research for the next years.

†The work reported in this paper was supported by the Deutsche Forschungsgemeinschaft (DFG;

German Research Foundation) in the Emmy Noether project PTOLEMAIOS, on Grammar Induction

from Parallel Corpora.
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In this paper, we focus on the so-called “generation issues” in data-driven trans-

lation. These issues arise when translating from a morphologically poor language

(e.g. English), into a language that requires complex morphosyntactic rules to

be taken into account (e.g. German). The purely statistical MT systems have

very limited capabilities of inducing the generalizations behind the morphosyn-

tactic patterns of a language. This occurs as they rely on statistically trained word

alignments, which were trained on a parallel corpus. For a given portion of text in

the source language, the word-aligned word sequences in the target language are

considered as translation candidates. The candidate word sequences are then as-

sembled, mainly on the basis of statistical (n-gram) language models, which assign

higher scores to typical word sequence patterns in the target language. Patterns

involving high-frequency items will typically be reflected in the language model,

but the patterns are not represented systematically and cannot be generalised to

lower-frequency items.

The statistical translation approach which we build on (Galley et al., 2004;

Hopkins and Kuhn, 2007b) has the ability to separate lexical from morphosyn-

tactic effects during training, since it is driven by a rich syntactic source language

analysis (c-structure augmented by features from f-structure). However, it can only

produce the specific target language word forms that are included in the training

data. This approach suffers to some degree from similar generation issues as the

pure statistical MT approach. Given that high-quality morphological analysers ex-

ist for many languages, we can see a reasonable extension of this approach: We

assume not only a syntactic analysis of the source language, but also a (disam-

biguated) morphological analysis of the target language. In this paper, we present

such an extension building on the English and German resources from the ParGram

project (Butt et al., 2002) and focus on the steps needed to ensure robustness of the

resulting overall system. Specifically, the cascade of Finite State Transducers is

adapted in order to fit the requirements of MT generation.

In the remainder of section 1, a more detailed motivation for morphologically

informed generation in data-driven MT is given. In section 2, we first sketch the

broader research framework in which our experimental statistical LFG-based trans-

lation system is situated, referring to related work and the potential of using LFG

in statistical MT. We also present the translation approach that we are building on

and show how morphological generation can be integrated straightforwardly in the

statistical modelling and combined with standard FSTs. In Section 3 we address

issues that arise in the use of specific existing finite state morphological analysers

and we describe the adaptation methods employed. Section 4 presents the exper-

iment set-up for an English-to-German translation scenario, evaluation results of

system coverage and an error analysis. In section 5, we briefly discuss future di-

rections of our work, before closing with a short conclusion in section 6.
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1.1 Motivation: Morphology issues in Statistical MT

LFG is an excellent candidate for exploring sophisticated ways of combining statis-

tics and deep linguistic analysis, thanks to the assumption of parallel correspon-

dence across levels (Riezler and Maxwell, 2006; Hopkins and Kuhn, 2007a). In

the case of the present proposal, we follow the LFG-based statistical translation

approach of Hopkins and Kuhn (2007a,b), which already exploits c-structure and

f-structure information in the source language. We then take advantage of the

syntax-morphology interface of an LFG grammar for the target language, which

acts as a reliable tool for disambiguating the options that a morphological analyser

of the target language produces.1 This seems to be a useful tool for an exploita-

tion of linguistic generalizations in data-driven MT: when translating from English

into a language that is morphologically more challenging (in our case, German), a

linguistically motivated morphological analyser can break down word forms into a

lemma and a particular set of morphosyntactic features (e.g., {Mann +NN .Masc

.Gen .Sg} for the form Mannes (‘man’s’)).
Lexical generalizations can then be learned for a lemma and generalised to

other forms than the ones seen in training. For instance (fig. 1), the system may

have learned two things:

(a) starke Unwetter (lit. ‘strong un-weathers’) is a good translation for ‘heavy

windstorms’, and

(b) an after-PP in English should be translated as a nach-PP in German, where

the determiner and attributive adjectives should occur in their dative form (this

generalization could have been picked up from examples like ‘after a long

game’→ nach einem langen Spiel).

From these two patterns, the system will for instance be able to infer correct trans-

lations for the phrases ‘a heavy windstorm’ as ein starkes Unwetter and ‘after a

heavy windstorm’ as nach einem starken Unwetter, even if the respective form of

the adjective did not occur in the respective context in the training data – in fact

even if the specific form never occurred in the training data at all.

The benefits to the system can be also interpreted as a way to make clearer

translation decisions, if we consider the stochastic background of how the words

in the two languages are automatically aligned: In the example above, there would

be more than 5 candidates for translating the article ‘a’, which consist of the Ger-

man indefinite article in various variations of genders and cases. As a simplified

example, a pure word-to-word statistical translation model (Brown et al., 1990)

would in principle handle this in the same way as a lexical ambiguity; it would cre-

ate a set of translation candidates and each of these candidates would be assigned

1The statistical system uses only the disambiguated morphological analysis of the target language

from the training data, not the syntactic analysis itself. In principle, it would be possible to employ

a tree-to-tree translation model (Yamada and Knight, 2001; Koehn and Knight, 2003; Huang et al.,

2006); however, tree-to-string translation with the capability for morphological generalizations may

be a very effective middle ground.
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Figure 1: Using the a morpheme generator allows for better coverage for unknown inflec-
tions

a probability, depending on how many times it appears in the training corpus as

translation of ‘a’ (its relative frequency). This appears conceptually weak, as it is

obvious that the decision on the correctly inflected form has nothing to do with the

relative frequency of this particular form, but is dependent on rules of syntax and

agreement in the processed sentence. In our example, if ein appears more often, it

would have a higher translation probability and therefore would be more likely to

be chosen, even if it grammatically should not.

The state-of-the-art systems (following Koehn et al. (2003b)) have reduced this

drawback by using multi-word units (the so-called phrases) and language models

which penalise translation sequences which are non-fluent. Nevertheless, the issue

can still be complex on the lexical level, as the previously mentioned candidate

list may contain both candidates for lexical ambiguities and morphosyntactic in-

flections. For example, the translation candidates list for the English word bank

would contain all noun case variations {Bank (nominative/genitive - prob. 40%),

Flussufer (nominative - prob. 35%), Flussufers (genitive - prob. 25%)},
but the probability of the most frequent lexical decision is split into two separate

hypotheses. When applying the suggested idea, by adding a separate morphol-

ogy layer, we would reduce this list to {Bank (prob. 30%), Flussufer (prob.

60%)}, and consequently make the decision on the noun case at a separate stage,

with the possibility of considering syntax information, provided from a separate

layer of the LFG analysis.

2 Building a morphologically informed system

2.1 Existing work

The idea of augmenting the generation process, when translating into morpholog-

ically complex languages, has already been applied to purely statistical systems.

Koehn and Hoang (2007), Toutanova et al. (2008) prefer to translate on lemmata

and consequently train a separate generation process by using morphological and

syntactic factors/features. Other approachess include the use of information from
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the source-side syntax, aiming to improve the morphology issues at the target side

(Minkov et al., 2007; Avramidis and Koehn, 2008). Much research has also been

motivated by the needs of agglutinative languages, such as Turkish (El-Kahlout

and Oflazer, 2006; Oflazer, 2008), where integrating morphotactic knowledge at

the generation stage appears to be essential for creating a fluent output.

2.2 The “tree labelling” approach

For reasons explained in section 1, we attempt to approach the issue in a more lin-

guistically motivated approach, where LFG is the structural backbone of the trans-

lation process. We build on top of a statistical tree-to-string translation approach

as in Hopkins and Kuhn (2007b), the “PTOLEMAIOS approach”, working with the

XLE system and the grammars developed in the ParGram project (Butt et al., 2002)

and a parallel corpus, word-aligned with GIZA++ (Och and Ney, 2003). Informa-

tion from the source language LFG analysis drives a “tree labelling” approach to

translation: a cascade of statistical (discriminative) classifiers is trained, that tra-

verses the c-structure analysis, taking into account f-structure information and all

previous decisions. The new “labels” assigned to the source c-structure tree will

contain target language word forms and tree re-structuring instructions (which can

have the effect of changing the word order), so a particular target language string

can be read off the final tree.

The training process is characterised by the following steps:

(1) Get the XLE parse of the source sentence (e.g. English), add indices for ac-

cessing the f-structure information.

(2) For every leaf node, get the corresponding target word from the word align-

ment with the target (e.g. German) sentence.

(3) Based on the graph structure of the resulting tree/word alignment structure, it is

possible to determine a set of “frontier nodes” among the non-terminal nodes,

following Galley et al. (2004). The tree/word alignment sub-graphs rooted

by these frontier nodes can be used as the building blocks for syntactically

informed statistical translation.

(4) Traverse the c-structure tree top-down. In training, we simulate a decision

process that subsequently assigns various labels to each tree node. The la-

bels reflect the information needed to reconstruct the full tree/word alignment

structure, given only the original source language analysis and the result of

previous decisions (e.g., on the mother node). Complex decisions are broken

up into simple partial decisions, reflected by sub-labels on the node (For exam-

ple: Should the node be in the frontier set? Should there be discontinuous parts

in the resulting target string? What is the target language word that should be

used as a translation for cooperation? Should the translation of the right-most

daughter precede the translation of the daughter previously translated? etc.).
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Figure 2: Basic training and decoding process

Each sub-step can be characterised as a discriminative classification decision,

for which the training data include all the learning features and the correct out-

come (label). The learning feature/label combinations for all sub-decisions are

collected for the entire training corpus.

(5) The learning feature/label combinations are used for training a (large) set of

specialised statistical classifiers that are able to generalise over similar situa-
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tions in the top-down tree traversal process. (This involves a very sophisticated

back-off technique to ensure that each classifier is based on a sufficiently large

sample of evidence.) The resulting cascade of statistical classifiers represents

a full tree-to-string translation model.2

In the decoding process, i.e., when the model is applied in order to translate a

given source language sentence, there is obviously no target language string in the

input. This means that step (1) of the training procedure is performed; steps (2) and

(3) cannot be performed. This means that the top-down tree traversal of step (4) is

performed as a real, cascaded labelling decision process on the nodes (not just as

a simulation as in training).3 The resulting node labels can be used to determine

the set of target language word (predicted by the translation model). Then, labels

referring to the relative order of the graph fragments indicate the predicted word

order.

2.3 Adding the morphology interface

It is conceptually rather simple to augment the cascade of statistical classifiers

just described in order to include further labelling decisions. This makes it very

straightforward to move away from generation of full word form strings on the

target side. Instead, this can be replaced by a more flexible step-by-step generation

of lemma information and morphological tags, as they can be used by a finite-

state morphological generator. Rather than using full word forms in the tree labels,

the first step is just to generate a lemma. The morphological tag specification is

then added in separate classification steps, so it can take all available information

into account; this information may contain agreement information, based on the

analysis done on previously generated words, but may also take advantage of the

syntactic analysis of the source sentence, e.g. in order to assign the proper case to

the direct and indirect objects.

Whereas the original PTOLEMAIOS approach applies a ParGram LFG gram-

mar to the source language (in our case English) in order to perform the tree

labeling, we also parse the target language (German). Since XLE incorporates

finite-state transducers (FSTs) for preprocessing (tokenisation) and morphological

analysis, the German parses contain a syntactically disambiguated morphologi-

cal analysis for all words. This is exactly what is needed as training material for

the extended tree labelling approach we just described: instead of full form like

starke Unwetter, we use the following representation of the target language words

to train the tree labeler: {stark +ADJ .Pos .MFNOnly .NA .Pl .St}
{Unwetter +NN .Neut .NGA .Pl}. Here, these morphemes are syntacti-
cally disambiguated, in the sense that, even if another morphological analysis of

2Note that the architecture is not based on the noisy channel model, so in its purest form, the

model should not be used in combination with a language model for the target language.
3The search strategy adopted is to (greedily) go for the most probable classification outcome in

each sub-decision, although in principle it would be possible to use other strategies.
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Figure 3: Training and decoding process, after adding the separate morphology layers.
Note that here, ich is stemmed to Sie, because Sie has been chosen by the authors of the

German LFG Grammar as the citation form of the personal pronoun
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the current form would be possible in different contexts, we are getting only the

combination of morphemes that matches the most probable syntactic parse.4

After training is finished, in application/decoding mode, the tree labelling trans-

lator is applied to new input (a set of unseen English sentences) as follows: the En-

glish LFG parser is used to produce the most probable c-structure tree, again with

information from the f-structure attached on its nodes. The cascade of statistical

classifiers is then applied to add the translation labels to this tree, which are then

read out to produce a string of lemmata and morphological tags. In the plain tree-

to-string approach, the process was finished at this point. Now, we have to perform

one last step: the string of lemmata and morphological tags is fed into the target

language morphological analyser (run in reverse mode, i.e., as a morphological

generator, which is straightforward in finite-state technology).5

3 Adapting the morphology interface

The previous section showed that in principle, the tree labelling approach can be

straightforwardly extended to produce not just a string of word forms, but a se-

quence of lemmata and morphological tags used as input for standard FST mor-

phological generation. However, a set of issues arises when this approach is used

for a specific morphological grammar, like the one for German used as part of

the German ParGram LFG grammar (based on the work by Schiller and Steffens

(1990)). In this section, we present the issue and our approach to deal with it in a

systematic way.

3.1 The compact underspecified feature format

Using a typical general-purpose morphological analyser for morphologically rich

languages such as German, in a different application context than it was originally

designed for, may quite naturally lead to complications. Specifically, any pipeline

that includes some “soft”/machine learning component feeding the analysis level

of the morphological grammar may pose systematic problems. Here we observe

this type of problem regarding the set-up of the German morphological grammar,

but we present a straightforward solution in the subsequent sections.

To understand the issue, it has to be noted that the feature representations used

within the morphological analysers (Schiller and Steffens, 1990) rely on a com-

pact underspecified feature format in order to avoid a proliferation of disjunctive

analyses for ambiguous word forms. For instance, the form Mann (‘man’) can be

either nominative, dative, or accusative singular (only the genitive singular differs:

4Some morphological tags are per se underspecified (since the form is identical for various fea-

ture values, e.g., starke could be nominative or accusative, hence the tag .NA for Case); here, no

disambiguation is needed. We will come back to these underspecified tags in the following section.
5Note that the syntactic LFG grammar of the target language is not applied in applica-

tion/decoding mode, since its only function was to provide a disambiguated morphological analysis

of the words in the training data.
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Mannes). The morphological grammar assigns the following analysis to Mann:

{Mann +NN .Masc .NDA .Sg}. The case tag .NDA combines the tags for

nominative, dative and accusative in one compact tag. Other singular nouns are

case ambiguous for all four cases, e.g., Frau (‘woman’), which is assigned the case

tag .NGDA. Similar tag combinations occur for other morphosyntactic features,

such as gender, number, and mood.

This compact feature representation leads to the following issue in translation:

as the assignment of labels is trained from output of the morphology, the system

will of course pick up generalizations that involve combined tags like .NDA . It

may turn out however that the translator ends up using such a tag with a lemma that

has a slightly different inflection paradigm (e.g., producing {Frau +NN .Fem

.NDA .Sg} instead of {Frau +NN .Fem .NGDA .Sg} ). Running the in-

correct sequence through the morphological generator will result in a failure.

One may argue that we should try to improve the training so the system will

learn to only produce “legal” sequences. However, even if this worked, it would

unnecessarily reduce the effectiveness of the training with a given amount of data.6

It seems much more appropriate to take advantage of the available linguistic knowl-

edge about morphological regularities in the form of morphological analysers and

use this to fix the issues.

3.2 The “correction” module

It is relatively straightforward to augment the pre-processing FSTs used in XLE

with a “correction” module: using the FST composition operation, we can map

combined tags like .NDA to other, overlapping combined tags like .NGDA, oper-

ating in two stages. Hence, a new “recombination” FST is defined, by adding a set

of replace rules on top of the existing deep morphology FST, without requiring any

modification of the latter.

These extra replace rules could be seen as a preprocessing step for the queries

that are fed to the generator. They were written manually with regard to the par-

ticular morpheme/part-of-speech categories that use a compact representation for

ambiguous word forms. Accordingly, their aim is to avoid generation failures, deal-

ing with cases when a probabilistically guessed morpheme does not exactly match

the compact morpheme tag expected by the compiled morphology FST. Then they

should therefore lead to at least one more compact or more generalised tag, contain-

ing the one requested, that could end up in a successful generation. In particular,

this task is addressed by:

(a) explicating the combined tags towards their component features (e.g., replac-

ing .NDA with .Nom, .Dat or .Acc, disjunctively) and then

(b) generalizing these in order to get a disjunction of all the (other) possible tag

combinations that may contain them.

6In addition, it should be noted that we are seeing the effect of a representational short-hand that

was intended for a different application context.
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Figure 4: Example of a successful generation in an enhanced Finite State Transducers

cascade. Whereas Frau would previously be generated only if .NGDA was given, the

replace rules can adapt an input such as .NDA so that it is accepted

This way, the desired tags would be taken into consideration, even if they are more

or less explicit than the expected. Both stages are compiled out in the resulting

recombination FST.

For the German grammar, apart from the noun cases, which have been ex-

plained above for means of illustration, rules were written for compact tags refer-

ring to verb persons, numbers, genders, moods, and adjective predicate markers.

With the described generalizations, the generator is essentially tuned to over-

generate, in the sense that it will produce all partial tags for a given compact tag

(e.g., nominative, genitive, dative and accusative for .NGDA), even if the lemma

that the tag is attached to does not have the same form for all the feature values.

This is intentional since it allows for the desired degree of robustness, i.e., the cas-

cade will typically produce at least one result even for input that would have been

incompatible with the original morphological transducer. Since the preprocessing

transducers are composed (or cascaded) with the actual morphological grammar

transducer, the linguistic knowledge encoded in the latter will constrain the over-

generation. In almost all cases this will have the desired effect, i.e., the correct

solution will be included among the solutions. However, it cannot be excluded that

an unfortunate combination of overgeneration steps will lead to an incorrect re-

sult. What is quite typical is that more than one solution is produced disjunctively.

There are ways for the statistical system to choose with some confidence between

the alternatives at a later stage (e.g., by scoring the formed phrases with a language

model that takes the left and right context in the target language into account).
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3.3 Facing incorrect assignments

In the previous section, we addressed cases in which the use of convenient “un-

derspecification tags” in the morphological grammar for ambiguous word forms

can lead to issues in the translation-driven construction of the input to a finite-state

transducer. One could argue that in the generation of a .NDA tag instead of a

.NGDA tag in translation is not really a mistake, but what we see is a representa-

tional issue.

However, in some cases, the step-by-step generation of morphological tags per-

formed in translation may lead to an incorrect assignment of unambiguous feature

tags. Since the statistical system has no explicit knowledge of the gender of the

nouns, but instead makes predictions based on a wide range of features, it would

be possible to assign the tag .Fem to a noun that is actually masculine, e.g., leading

to {Mann +NN .Fem .NDA .Sg}. In such cases, even if most nouns have no
flexibility in changing their gender and therefore such a specification in the genera-

tion process seems redundant, the nature of the morphology FST would lead it into

Figure 5: Example of two successful generations in an enhanced Finite State Transducers
cascade, extending the one shown at Figure 4. Here, Zusammenarbeit (a feminine noun) is

generated, although a tag for the masculine form of it has been incorrectly decided by the

statistical system.
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a generation failure. It is clearly desirable to rely on the morphological grammar

for overriding such incorrect feature markings to make the system more robust.

Of course, we only want to change a feature like .Fem into .Masc in situ-

ations where the former analysis is indeed incompatible with the morphological

grammar. Adding such a correction to the morphology cascade which was de-

scribed in the previous section, would correct the issue concerning the nouns, but

would cause problems to other parts of speech, for whom the gender information

is indeed useful in order to choose within inflection options.

In order to achieve such a flexible manipulation, we actually need a model with

two cascades: (a) one with the core of the correction module (section 3.2) without

any gender alterations, and (b) an alternative one which takes effect only when the

main one fails to generate. This gives all possible gender alternatives as alternative

morphemes for the generation failures on the nouns. As mentioned, (b) should only

be applied to input (a lemma/tag sequence) for which (a) fails.

3.4 Priority Union

The finite-state operation of priority union (Guingne et al., 2003) can be used to

this effect (as a unification operation, it was proposed by Kaplan (1995)). By

combining two FSTs with priority union (Figure 5), the second FST is only applied

to a given input in case the input is not included in the upper side of the first FST.

For instance, we may in general apply the mentioned “recombination” FST, and if

this combination does not lead to a result, we prefix an additional feature correction

FST:

(Trecomb ◦ Tmorph)

p
[

(Tcorrect ◦ Trecomb ◦ Tmorph) (1)

≡ (Trecomb ◦ Tmorph) ∪ (¬upper(Trecomb ◦ Tmorph) ◦ (Tcorrect ◦ Trecomb ◦ Tmorph))
(2)

where Tmorph is the existing morphology generator, Trecomb is the tag recombina-

tion transducer and Tcorrect is an FST cascade for substituting tags that may fail

during the first generation.

4 Evaluation

The language pair that our experiments focus on is English to German. This pair,

in this translation direction, is a good example for disproportional morphology, as

German is much more inflected than English. In addition, XLE parsers with the

desired morphology features were fully available to us for both languages.

The main focus of our evaluation was how well the morphology interface was

adapted to the generation stage of our statistical system. Therefore, we had to mea-

sure the improvement in generation coverage. This can be seen as the number of the

generations that succeeded, divided by the total number of generations requested.

Evaluation of the full translation system will be presented in future work.
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System Generation coverage

only morphology FST 47.90%

compact tags correction 60.41%

gender correction 75.35%

Table 1: Generation coverage, with the various adaptations of the morphology module

4.1 Experiment

The experiment was run on a small, simplified set of the Europarl corpus version

4 (Koehn, 2005). The training set contained 20,000 sentences which had less than

10 words, whereas the untranslated evaluation set contained 1,000 sentences of the

same length. The percentages, shown in Table 1, are given based on a proportion

over 5510 generation requests.

The results in table 1 show that with the techniques demonstrated, the success

rate has been raised from 47.90% to 75.35%, in the full system. The extra correc-

tion level for the gender correction by itself was able to improve the coverage by

14.94%, which confirms that the problem was quite critical.

4.2 Error analysis

As the results show, there is still a considerable 24.65% of failures taking place

even when all of the above corrections are applied. A first detailed evaluation was

performed manually in order to further investigate the actual cause of the failures.

It became clear that many failures had common reasons: a more concrete categori-

sation of approximately 70% of the errors has successfully been traced with regular

expressions, whereas the “Wrong POS” category was estimated based on a smaller

manually evaluated subset.

The outcome of the analysis is shown in Table 2, in which the percentages

sum up to the 24.65% questioned. What is identified as a major cause of failures,

includes:

(a) the predefined behaviour of the statistical part of the system, which does not

always provide the full set of required morphemes. As this has been the most

robust solution, the statistical system first decides the categories of the mor-

phemes that a word may be assigned and then makes a decision for each mor-

pheme value. However, FST allows the morpheme order for a small set of

words to vary, especially when these words are generated by combining other

smaller words. In this error category we would count complex prepositions

(like gegenüber, daraus), prepositions with fused articles (zur, im), compounds

(Parkordnung etc.) and some other forms which appear as articles or personal

pronouns.

(b) wrong POS behaviour (e.g. when a verb lemma is requested to be inflected as
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Error type failure perc.

fused articles (zur, im), complex prepositions (darüber) 4.33%

wrong POS predicted 3.95%

definite morpheme for indefinite article 2.47%

proper names 2.05%

ihre attr with incompatible morphemes 1.56%

die art with incompatible morphemes 1.38%

derivatives of verbs 1.32%

dem with incompatible morphemes 1.16%

compounds 1.03%

NoGend tag required for spec. nouns (Herr, Ausschuss, Prozess) 0.69%

personal pronoun derivatives 0.58%

hyphens 0.18%

numerical expressions 0.18%

Other issues 3.73%

Table 2: Analysis of the persisting generation failures

a noun, or when the system requires an adjective-looking item, which is in fact

a derivational form of a verb).

(c) incompatible morphemes (the definite morpheme for indefinite articles, the

.NoGend morpheme for particular nouns) that should have been included in

the correction layer described in section 3.3

(d) proper names, which are not known by the FST. Although the generator re-

ports a failure, they do not consist a translation error, as they can safely be left

uninflected.

(e) other issues, such as hyphens, numerical expressions etc.

Many of the issues above could be addressed with some minor machinery al-

terations. Point (a) above represents a large class of failures. For this case, the

statistical system decision process can be adapted in order to deal with morpheme

tag sets of variable width. Similarly, incompatible morphemes (b) can be addressed

by adding rules as shown in Section 3.3.

5 Future work

Since there is still a small class of generation failures due to various issues (section

4.2), some effort is needed in order to guarantee robustness. We could consider a

backing-off statistical model, which could perform the tree labeling process in a

combined mode, for every sentence: During training, every tree node would get

labels referring to both the full word form (as in the original system in section 2.2)
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and the lemma+tags (as in the extended system in section 2.3). Then, during the

decoding, when the morphology generator fails to produce a word from out of its

morphemes, the trained full word form label would be used.

There is also ongoing work in order to efficiently handle the overgenerating

phenomenon, which was explained at section 3.2. The method of n-best re-scoring

(Och and Ney, 2002; Koehn and Knight, 2003), creates a set of alternatives forms

of the whole sentence and uses an n-gram language model to re-score them, based

on their fluency. That could be a useful tool for getting a more certain decision for

the outcome of the generations that resulted in several alternative inflections.

Additionally, the order in which the tree nodes are being traversed has an im-

pact on the availability of the agreement features within the sentence. Whereas the

experiments were performed on a simple top-down, left-to-right tree traversal (and

hence left-right in the sentence), this does not provide enough agreement features

from words following the ones we examine at a certain point. For example, the

determiners and the adjectives would have more hints for their gender and case,

if they know the properties of the following noun. However, nouns normally get

traversed and analysed afterwards, since they are to the right of their determiner

and adjectival modifiers. We are considering a restructuring on the order of the

traversal mechanism, so that there is better availability of such features.

6 Conclusion

We have explained the adaptation of a German Morphology Finite State transducer,

so that it can inflect words from given morphemes, as they have been given at the

final stage of a LFG-based statistical Machine Translation system. A new “recom-

bination” transducer was formed by writing a set of replace rules on top of the

existing morphology transducer. During this adaptation, two major issues were

shown to be (a) the compact underspecification tags required by the FST, which

would not match what was decided by the statistical system and (b) the require-

ments of specific POSs for morphemes that are useful for agreement, but redundant

for generation. Both issues, when addressed, led to a significant improvement at

the generation coverage.
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