MULTIDIMENSIONAL SEMANTICSWITH
UNIDIMENSIONAL GLUE LOGIC

Gianluca Giorgolo and Ash Asudeh
Carleton University Carleton University &
University of Oxford

Proceedings of the LFG11 Conference
Miriam Butt and Tracy Holloway King (Editors)
2011
CSLI Publications

http://csli-publications.stanford.edu/

Abstract

We present an implementation of multidimensional semariticGlue
Semantics. Our approach differs from the proposal of Arreold Sadler
(2010) by restricting multidimensionality to the meaniagdguage and there-
fore avoiding the introduction of tensors in the composisiglue logic. We
use a construction from category theory — monads — to createtsred
mappings from the algebra of unidimensional semanticseanultidimen-
sional case. Monads have already been successfully entpioyleeoretical
computer science to provide a denotational semantics efedfigcts. Here
we follow the suggestion of Shan (2001) to use monads to nemtehntic
phenomena and show how monads can be used to capture thsisuwdly
natural language expressions like appositives and expess$Ve argue that
monads allow us to keep the simplicity of unidimensional position while
also allowing the ability to track multiple meaning dimesrss and to control
information flow between these different dimensions appabgly.

1 Introduction

Recently much attention has been paid to the semantic batitm conveyed by
a diverse group of expressions that incluéggressives, appositives, epithets and
non-restrictive relative clauses. The contribution to meaning of this type of expres-
sions regularly escapes the scope of logical operatorsagichgation and question
forming elements. Consider for instance (1):

1) Most fucking neighbourhood dogs pee on a damn hydrarhierstreet.

This sentence conveys the information that the majorityhefdogs living in the
neighbourhood urinate on a hydrant in the contextually @efisireet. However,
the sentence also conveys a generally negative attituderdevdogs and/or their
urinating on the aforementioned hydrant. This effect isawted in (1) by the use
of the two expressiveficking anddamn(compare (1) with the more neutriéost
neighbourhood dogs pee on a hydrant on this gtreet

Nevertheless, the resulting interpretation is not justagunction of the two
contributions. If an interlocutor replies to (1) wiftlo, that’s not trugthe interpre-
tation commonly associated with this reply can be parapltras “No, the neigh-
bourhood dogs don't pee on a hydrant on this street”. The/répés not negate
the semantic contribution of the expressive. The same teggmething along the
lines of Most neighbourhood dogs pee on a hydrant on this street aaté Idogs
and their urinary habitsr Most neighbourhood dogs pee on a hydrant on this street
and dogs and their urinary habits are detestafoield instead take scope over both
conjuncts, thus also potentially targeting the negatitieude towards dogs.

The mini dialogue in (2) exemplifies the same behavior.

TThis research is supported by an Early Researcher Awardtfrer®ntario Ministry of Research
and Innovation and NSERC Discovery Grant #371969. The asithank Doug Arnold, Mary Dal-
rymple, Dag Haug, Louisa Sadler and the audience at LFG1thércomments and questions.

2 A:John Lee Hooker, the bluesman from Tennessee, appezide Blues
Brothers.
B: No, that’s not true
= No, John Lee Hooker did not appearTihe Blues Brothers.
No, John Lee Hooker was not from Tennessee.

B’s reply does not target the information about the birtteplaf John Lee Hooker,
conveyed by A with the appositivile bluesman from Tenness@de only strategy
available to B to correct A's utterance is the one illustiate(3):

3) B: True, but actually John Lee Hooker was born in Misgissi

In (3) the information conveyed by the main clause is firsthaededged and only
then the appositive contribution is amended.

Potts (2005, 2007) introduces a unified analysis of thesrskvexpressions in
terms of two parallel semantic levels, usually called ‘disiens’. According to
this view, there are two different dimensions of meaning hiclv expressions can
contribute, the ‘at-issue’ dimension and the ‘side-issligiension, also called the
‘conventional implicatures dimension’ or ‘Cl dimension’.

Contributions to theat-issue dimension represent that part of meaning that
speakers present as ‘under discussion’. At-issue cotitiiizlare sensitive to logi-
cal operators and, in a communicative setting, they eneecéimmon ground only
after being (possibly silently) acknowledged by the othmmmunicative agents.
In (1) the at-issue contribution corresponds to the infdiomaabout the urinary
habits of the neighbourhood dogs.

Expressions contributing to the Cl dimension mainly conwvdgrmation that
the speaker presents ascontroversial. Moreover the information is presented
asperipheral and notunder discussion. Very often, as in the case of expressives,
meaning contributed to the Cl dimension is speaker orieatad implicitly ex-
presses the mental state of the speaker. In this senseri$ émecommon ground
in a different way, as the speaker’s choice of words indic#iat she is the relevant
source of truth regarding the propositions contributedigaaways the case for
speaker-oriented material). As illustrated above, Cl nigteegularly escapes the
scope of logical operators such as negation and questiorirfgroperators.

Potts formalizes these intuitions in a type logic based eratidition of a sec-
ond kind of propositionsCl propositions. The logic is set up in such a way that
expressions contributing to the Cl dimension denote a gaialoes, the first one
of the type usually associated with the syntactic categoey belong to (e.g. a
function from sets to sets in the case of a noun-modifyingesgive), and the sec-
ond one, which is always of the ClI propositional type. Thadag also structured
in such a way that the information can only flow from the ati#sslimension to
the ClI dimension, in the sense that at-issue meaning comfooentribute to the
Cl dimension, while Cl material cannot contribute to thésatie dimension during
the compositional phase.

1John Lee Hooker was in fact born in Mississippi.

Arnold and Sadler (2010) expand on Potts’s proposal andagiienplementa-
tion of the analysis in LFG (Kaplan and Bresnan, 1982; BresR@01; Dalrymple,
2001) with Glue Semantics (Glue; Dalrymple et al., 1993;ripaple, 1999, 2001).
Their starting point is the intuition that, from a resouftogical point of view, ex-
pressions contributing to the Cl dimension create a paiesburces, one at the
at-issue level and one at the side-issue one. To do so, AaraldSadler use a
tensor pair as the resulting resource produced by a Clibatitrg expression. The
paired resources that are produced by the compositionaégpsaare then split and
the at-issue material is used subsequently in the proofewle side-issue material
is only collected at the end of the compositional process.

In this paper we present an alternative treatment of Padisgysis in LFG
that starts from the proposal of Arnold and Sadler (2010sbixes for more gen-
erality and for a simpler treatment of multidimensional satics. At the same
time our approach allows for finer control of the flow of infation between the
two dimensions. In fact, although Arnold and Sadler (204.0¥iplementation cor-
rectly restricts the flow of information only from the atdgsdimension to the CI-
dimension during the compositional phase, at the samekis lawough structure to
model a class of interdimensional meaning interactionsRbés (2005, 2007) and
AnderBois et al. (2010) discuss.

Our proposal is based on the suggestion made by Shan (2004hgimonads
to uniformly model a large number of semantic phenomena.elrewal, a monad
allows us to reproduce the structure of a certain compaositialgebra in a more
complex but related setting. We will show how the monadicragph allows us to
retain a compositional interface based only on functiopgliaation and functional
abstraction, even in the case of a multidimensional secgnit the same time,
the monadic machinery allows us to combine different seim@ghienomena and to
control how they interact. This will also allow us to shednlign the restrictions
that can be observed in the kind of inter-dimensional megimiteractions that are
not directly related to the compositional process.

The paper is structured as follows. In Section 2, we discosgtoposal of
Arnold and Sadler (2010) and motivate our version on thesbhafsihe aforemen-
tioned data that illustrate more complex patterns of imtiivas between dimen-
sions. In Section 3, we introduce the concept of monads asclss how we
can use them to give structure to linguistic meanings. 8eetiprovides a fully
worked out example of how the monadic approach can be usetlnSmantics
to characterize multidimensional meanings and how monadselp us to model
the interaction between the dimensions in cases involvargfally compositional
phenomena. Section 5 concludes and presents directiofigdioe research.

2 Arnold and Sadler (2010)

In this section we briefly review the proposal of Arnold andiia(2010), placing
it in the context of Potts’s analysis and identify the poiotsieparture of our ap-

proach with respect to theirs. Subsequently we review a eumibcircumstances,
initially discussed by Potts (2005, 52ff.), and more relyehy AnderBois et al.
(2010), in which at-issue content seems to require accesglésissue content,
which would be precluded by Potts’s type theory. We clain thig form of inter-
action also calls for an analysis based on monads.

Arnold and Sadler (2010) start their analysis from the aggian that expres-
sions like appositives, non-restrictive relative claused expressives are fully in-
tegrated in the constituent and functional structures @s#émtences to which they
contribute, a view we fully agree with. All these constroo contribute to mean-
ing as adjuncts and compose with the rest of the linguistiteria following the
standard projection architecture of LFG. The focus of theiposal is on the com-
positional rules that govern the interactions between dsioms.

The implementation they discuss is based on the analysisttd 2005) and,
in particular, on a suggestion made by Potts (2005, 85ft.afresource-sensitive
implementation of the theory. As discussed above, the idd®otis is that each
linguistic expression denotes a pair of objects: the ateig®ntribution, of the type
usually associated with the expression, and a possiblyesigé-issue contribu-
tion, always of type®, a distinct Cl propositional type. The meaning of linguisti
expressions is composed according to the structure of argientrée derived from
a syntactic tree using two different modes of compositiohe Tirst one involves
only the at-issue dimension and corresponds to functigualication:

((B),-) ((B),)
/\ /\
B, (e, (e, (B,

In these rules, the at-issue meaning, the first componemieqgbairs, is composed
via functional application. The CI dimension is left untbed and Arnold and

Sadler particularly stress that it is not percolated up the.tThere is then another
form of composition, specific for Cl meaning:

(8, a(B)) (8,a(8))
/\ /\
(8,-) (a2} (o) (B,-)

Here the at-issue material is combined and transferredeidCthdimension (the
second component of the pairs). At the same timestlsemponent is duplicated
and copied in the at-issue part of the meaning. These typadasf regulate the
flow of information between the dimensions. In particula thpe theory is set up
so that values can only travel from the at-issue dimensitinggide-issue one. The
interpretation process is then completed by an additioegl that collects all the
Cl propositions and conjoins them with the propositionaiteat of the at-issue di-
mension. These rules break the resource sensitivity aggaumygd Glue Semantics
(Asudeh, 2004, 2012), which is grounded in the use of linegicl(Girard, 1987),
a resource logic, for semantic composition. In both casestument valug is
used two times: it is first copied to the at-issue dimensidnitta then reused as
the argument of the functiom in the side-issue dimension.

(4)

()

Arnold and Sadler follow and extend the suggestion of Pdttsoasidering
Cl-contributing lexical items as objects producingaar of resources, one for the
at-issue dimension and one for the side-issue dimensionin®eneral, the glue
term describing the compositional behavior of these egas will have a return
type composed by two resources, one of the Cl propositigpa, ttombined with
the tensorr. This is reflected in the meaning terms for these expressamthey
will result, after all their arguments have been saturated,pair of objects.

However only the at-issue resource is going to be furthet irstine Glue proof,
as the Cl material must be inaccessible once it has beeredreBterefore Arnold
and Sadler introduce a rule to split the tensored pair intorivgources. They call
this ruleat-issue-ci-split; we repeat it here in (6)

(m,m') : r @ re

(6) ;

m:ir M Tt

Any CI resource obtained by the split rule is not used in thierémtial process,
as there are no linguistic expressions that consume a eEsoéithat type. Nev-
ertheless, to obtain the final interpretation, the Cl prajms must be collected.
To this end, Arnold and Sadler use the ‘of course’ operatrwhich allows the
term that it takes scope over to be used any number of timesyétaxing resource
sensitivity. This operator is then used for the meaning too®r of a silent lin-
guistic operator applied to the root of the derivation. Thens operator simply
scans the derivation, collects the Cl propositions andadingjthem with the at-
issue proposition. The silent operator would need to bedifit in case of other
types of utterances, for instance in the case of questianis these cases the ClI
contribution cannot just be conjoined with the at-issueteohof the speech act.

Arnold and Sadler also propose an alternative implememtaiiat departs from
Potts’s proposal by adding a new projection to the LFG agchitre. The idea is
to avoid having to introduce a special propositional type@b material distinct
from the other standard typeand, at the same time, to avoid having to introduce
the of course operator. This new structure G-structure — is projected from
the functional structure and parallel to the semantic sirec In this way, Arnold
and Sadler can keep the resources separated, as they antiatet! from different
structures, without the need to introduceagioc type for CI propositions.

Our approach has points of contact with the implementatioAraold and
Sadler but there are also some fundamental differences. ilMeresent here our
account in an informal way but stressing the differences Withold and Sadler’s
system. In the next section we will give the formal detaibst flustify our claims.

We start from the same assumption that linguistic constmistcontributing
to the CI dimension are fully integrated in the syntactic &mactional structure
of the sentence they appear in. We also share Potts’s ariuitiat the denota-
tion of linguistic expressions corresponds to a pair (oregenerally, a tuple) of
values. However, in our case the CI dimension is represdnyedl collection of
propositions (the CI contributions made so far) rather thaingle propositional
value. This also means that in our analysis the CI contenglisgtated through

the semantic tree/proof. However the process of combinmagpercolating the ClI
component is built into the compositional process and isacogessible to lexical
resources. This means that the Cl material remains aceesiby} locally and only
to those lexical items that operate on it by adding new pritipogl content.

Given that the compositional process is in a sense “awardieopaired nature
of meanings, we can uniformly treat them as atomic resouiidesrefore we do not
replicate the asymmetry present in Arnold and Sadler'sssysh which all expres-
sions denote a pair, but where, at the level of the resougie, lIsome of them are
represented as atomic resources while others are repedsenpairs of resources.
This also means that we do not need a special rule to splitmurces and then
recombine them, nor do we need to postulate a special typ€lfpropositions.
In our derivations, the Cl component is implicitly kept seggad from the at-issue
material and threaded through the compositional procei®ibackground. As a
result the proofs we obtain easily satisfy a strict versibresource-sensitive com-
position, as we do not need an operator like of course, !, lhiith its possibility
of repeated application, breaks down resource sensitivity

By exploiting the paired nature of denotations we can alssdaintroducing
a special propositional type for the CI dimension, while @ianeously avoiding
the introduction of a new kind of semantic structure. The tliraensions are in
fact identified completely by the position they occupy in thar. In this way
we distinguish not between two different types of propositbut rather between
two different modalities with which propositions are irdtaced in the common
ground, a very similar distinction to the one proposed byoftrand Sadler with
the projection to the Cl-structure.

Finally the monadic approach can be seen as more parsinfian a the-
oretical point of view. Shan (2001) in fact shows how the aigiag principles
of monads can be used to model a wide range of semantic pheaonkte lists
among the possible applications of monads phenomena sufdts question
formation, and intensionality. Giorgolo and Unger (2008w how monads can
also model dynamic phenomena like anaphora. This is p&tlgurelevant for
parenthetical constructions as they seem to interact Wwékbe type of phenomena
in non-trivial ways. In particular, dynamic effects haveseal some interest as they
seem to create contexts in which the flow of information betwdimensions is
less constrained than we would predict on the basis of Bdtisbry. Potts (2005,
52ff.) himself and AnderBois et al. (2010) present a numbeases in which in-
formation flows from the Cl dimension to the at-issue dimensiAll these cases
have in common the fact that they involve some formrafertainty in the meaning
they denote. We list here some examples of “unruly” contexts

1. Presupposition
7 Mary, a good drummer, is a good singer.too

2. Anaphora

(8) Jake, who almost killed a womanwith his; car, visited her in

the hospital.
3. VP ellipsis
9) Lucy, who doesn't help her sister, told Jane to

4. Nominal ellipsis

(10) Melinda, who won three games of tennis, lost becausty Ben
SiX.

What we see is that, in order to resolve the uncertainty dhtced in the at-issue
dimension by these constructions, we need to take into deration the Cl dimen-
sion. For instance in the case of (7), the presuppositiggéred bytoois resolved
by the information that Mary has some additional musicarfbeside singing, a
fact we are informed of by the appositiggood drummerSimilarly in the case
of anaphora and ellipsis, the unstated referent/propartiid matrix clause is in-
troduced in the CI contribution. The possibility of modelimultidimensionality
and dynamic phenomena using the same theoretical appakesass to us a good
reason to propose an alternative approach to Arnold anaéGadl

3 Monads

The concept of a monad arises in category theory (Barr antb\W€l84). It has
found many applications in theoretical computer science asodel for the de-
notational semantics of side-effecting computation (Mpd§89, 1990) and in
functional programming as a way to structure and composeeffgcts (Wadler,
1992a,b). Here we try to provide the main intuitions behirehads and how they
can be used in the context of natural language semantics.

The first intuition behind monads is that they are a way toaeépce a certain
algebraic structure, in our case the algebra of meaning ositiqn, in a richer
setting that carriesnore information. The idea is that if we have a collection of
functions and values that represent our meanings we can neap tio new ob-
jects that contain the original information plus some addél meaning material.
The monadic mapping allows us to maintain in the new richéingethe same
compositional configurations we started with. The addaldanformation varies in
different types of monadic mappings, but in all cases we lleta reconstruct the
original compositional configurations.

The characteristic of a monadic mapping is that the origin@anings are as-
sociated with some kind of default information. In this wag wbtain an object of
the correct enriched type without committing to any pattcenriched informa-
tion. For example, in the case of multidimensionality, theamings of linguistic
expressions that contribute only to the at-issue dimeraiemmapped from the tra-
ditional unidimensional collection of meanings to a cdilee of paired meanings,

and the objects they are mapped to consist of the originahimgand a vacuous
ClI contribution.

The principles behind this intuitive view of monads conénio apply when
we consider monads as models of computations. Accordingisgerspective, a
monad is a computation that yields a value while at the same producing some
side effects, like modifying some global environment or camnmicating with the
“real world”. Also in this case we can assume that we starfpure — i.e. side-
effect free — functions and values and map them to compustiaith possible
side effects that yield the starting object as the resultphing. A monadic map-
ping will map a pure value/function to a computation thatmaside effect and that
only returns the original value when run. The computatigpeakpective also ex-
poses another important property of monads that makes themesesting model
of natural language meaning. The notion of side effectstimately connected to
the idea of sequentiality. For instance, the order in whiehawacess a file by read-
ing from and writing to it is fundamental in determining whet the computation
fails or not. Monads can be composed to create larger cotigngafrom more
elementary ones and the monadic approach requires thdisatian of a fixed or-
der of evaluation. This property is particularly relevamt the non-compositional
phenomena that we discussed above, in which we need to laespdf the linear
order of appearance of the various expressions in orderettigirthe licit patterns
of anaphora, presuppositions and ellipsis.

We formalize these intuitions by defining a monad as a triple;, n, x).2 M
can be understood as the mapping that tells us to which typerathed collections
of values/functions we are lifting our unidimensional miegs. M can also be in-
terpreted as a name for this specific collection. We will deertotation)M « to
indicate the type of objects that result from the applicatbthe mapping\/ to ob-
jects of typea. n (pronounced ‘unit’) is the operation that brings us from dinig-
inal, information-poor collection of meanings to the infation-rich collection. It
does so by encapsulating each object in the source coleictia “container” that
also stores default, vacuous information(pronounced ‘bind’) is a binary oper-
ation that performs both the role of creating new monads fsanpler ones and
imposing an evaluation order for their computatieriakes a monad and a function
from the type of the result yielded by the monad to anotheradai the same kind.
The operation runs the first monad, passes the result to tletida and creates a
new monadic computation. In the background, the side-sfieariched informa-
tion from the first monad and the second one are run sequgfg@umulated. In
this way, the resulting monad creates a new value using tlne ysoduced by the
first one and combines the side-effects/enriched infoonmatif the two monads.
In order to obtain the properties we ascribed to monadic imgppmbove, the two

2\We use here the definition normally found in the computerrsmditerature (Moggi, 1989;
Wadler, 1992b). This particular definition allows us a maatunal description of the meaning of the
expressions contributing to the CI dimension. The categbdefinition is normally given in terms
of a different triple (Barr and Wells, 1984); this is in anyseacompletely equivalent to the one used
here.

operations must satisfy the following laws for allf, g andm:

n@)~f=fx (11)
m+n=m 12)
(mxf)xg=mx*(Az.fx*xg) (13)

Laws (11) and (12) characterizeas the left and right identity with respect
to the composition of monads. This is a way to requjréo couple the lifted
value with vacuous information/no side-effect. Law (13tss thatk behaves as
an associative operator. This is relevant for us becauseaitagtees us that the
ordering of the side effects is independent of the order offasition.

The specific monad we are going to use to model multidimeasisemantics
is known in the functional programming tradition as Wheiter monad. ThéAriter
monad maps values and functions to a pair composed by the/palu and an
element of amonoid. A monoid is an algebra with a single binary associative
operation and an element that is the left and right idenfityhe operation. In our
case the underlying set of the monoid is a set of sets of pitigpoéi.e. the possible
collections of CI contributions), the binary operation & anion and the identity
element is the empty sétin the Writer monad the identity element corresponds
to the vacuous information and the binary operation dessrthe way in which
information is accumulated.

In our case the mappingfriter sends an object of type to an object of type
(a,p — t), a pair of an object of typer and a set of propositions. Typeis a
quite conservative extension to the standard type the@gdare andt. p in fact
represents the set of names of propositions. In this secese be seen as a subtype
of p, namely the domain containing only the namés L }.

Having definedAriter in this way we have, for example, that the interpretation
of an intransitive verb, an object of type— ¢, will be mapped to an object of type
(e — t,p — t), or more compactly\riter (e — t). n pairs every object with the
empty set:

n(z) =(z,{}) (14)
* is instead defined as follows:
(z, P) % f = (mi(f z), PUm(f x)) (15)

wherer; andr, are respectively the first and second projection of a paindrds,

* is a binary function that takes 1) an input pair of a value armbléection of
propositions and 2) a functiofi that produces a computation using the first value
of the input pair.x produces a new computation whose value is the value of the
computation produced by and a new collection of propositions that is the union

3By using set union we make our monoid commutative. In theiegipdns described in this paper
this is not of particular relevance, but in certain casesayime necessary to use a non-commutative
operation to keep track of the order in which the proposgtiare combined.

of the input collection of propositions with the collectiohpropositions produced
by f. The step involving the union of the collections of propiasis is the one that
allows us to use thé/riter monad as a kind of logging system.

Notice that we have not added to the term language anythisgld® pairs
and projections. The monoid structure in the second comyoofeour monads
is already expressible in the simply typed lambda calcuhad e use for our
meaning constructors. The identity element correspondadnto the function
At.T and union can be expressed in terms of disjunctionAr.At.st V r t.

We still need to see how we can integrate the monadic apprwilihe LFG
framework. Our solution, again inspired by Shan (2001)pigive a new Curry-
Howard isomorphism interpretation of the elimination anttaduction rules for
the glue implication—. We will however also need to introduce a new kind of
implication in order to give an interpretation to the exgieas contributing to the
Cl dimension.

Our goal is to be able to reproduce the unidimensional coitipoal config-
uration at the monadic level. This means that, starting fatissue only lexical
items and lifting them to the monadic level vig we want to able to saturate a
predicate of typa\riter (o« — () with an argument of typ&\riter «. Notice how
we cannot simply use functional application because we eaérd) here with two
pairs. The solution proposed by Shan (2001) is to usextbperator to define a
general notion of functional application for monadic megsi. The definition of
this new form of functional application, which we cadlfollowing Shan (2001), is
given in (16):

A(f)(@) =gef frAga*xAyn(gy) : M (o« —=B) > Ma—MpB (16)

The monad encapsulating the function is run wiand its result (the function)
is bound to the variablg. Similarly the argument monad is run and the result is
bound toy. As a final step a new monad is created that returns the réspptying

the functiong to the argumeny, without adding any additional information/side
effect. In the background, the operator takes care of threading the additional
information (in our case the collection of Cl propositians)

To obtain an isomorphism between the proofs in Glue Sensatid the mon-
adic meaning terms we need to define a notiorfunttional abstraction. The
definition of abstraction for monads is less mathematicaljasant and depends
more heavily on its use in Glue proofs than the definition ohawdic functional
application. A is in fact just a function operating on values. The corresjpumn
abstraction cannot be defined in the same way but makes ule spécific shape
of the meaning language we use to decorate our proofs. Thatabefiis given in
(17).

n(x) am =gef mxAb.y (Ax.b) : Moo= M B — M (o — 3) (17)

The termm(z) < m indicates the monadic abstraction of a valuie the computa-
tion represented by the monad The interpretation of the term is close to that of

a classical abstractiohz.t, in the sense that signals a hole inn calledx in the
same way thak signals a hole ir calledz. The precise definition is however a bit
more involved. In (17)y(z) is assumed to be a hypothesis introduced in the proof.
x must be a fresh variable. The hypothesis allows us to dedweedmputation
corresponding ten from which we then discard the hypothesig) via this form
of abstraction. We extract the value yieldedy bind it to b and return a new
computation that returns the abstractiooverb.

In (18) we give the elimination and introduction rules foe tjlue logic impli-
cation,—o, using the newly defined monadic functional application fumdttional
abstraction.

[n(z) : Al;
r:A f:A—B £ mB I
AHx) B n@)am:A—-B (18)

The mode of composition just outlined is not powerful enotatescribe how
certain expressions move information from the at-issueedsion to the Cl one. In
fact the class of objects composable withis restricted to those that operate on the
two components independently. To understand why this is@tsider the case of
an expressive, likéuckingin (1). This expressive takes an argument, a noun, and
contributes to the at-issue dimension by returning its gt untouched, which
means that it encapsulates the identity function as itssatei meaning, and to the
Cl dimension by applying the predicate to its argument. Given its at-issue
contribution the type we would assign to its denotatiowister ((e — t) — (e —

t)). However an object of this type would not be able to apply tlegligate—~ to
its argument. If we take a look at the definition of monadiclapgtion we can see
that the functional value is actually applied to its argutrautside of the original
monad. The monad is in fact run and its return value collediationly at the end
is it combined with its argument. This means that the deiwtdor the expressive
would not be able to access its argument to generate a Cllmatian.

In order to properly generate the CI contribution, we neealstign to expres-
sions like fucking a denotation that corresponds to a function that is “awafe” o
the monadic context in which it is evaluated. The idea is teehthese types of
expressions take monads as arguments, in our case pairsssfiatand side-issue
meaning material. The type we will assign to an expresskmflicking is there-
fore Writer (e — t) — Wkiter (e — t). This is the type of function that takes a
monadic object encapsulating a predicate and returns enatbnadic object also
encapsulating a predicate. In the case of the express&dutiction will return a
monad containing the same predicate but paired with the @igsition expressing
a negative judgment about it.

To keep track of which type of composition it is necessaryntooduce in the
glue logic a new implication;—,. This new implication behaves exactly like the

“The frown symbol,~, is meant to evoke the idea of a negative judgement.

original one and comes equipped with its own notion of fuorai application and
functional abstraction. By a slight twist of logic, applice and abstraction for
this new connective corresponds to standard applicatidrabstraction, as we use
them in traditional Glue Semantics, as shown by the termddeth of the colon in
the following:

Adf)(@) =ges fe:-(Ma—-MpB) > Ma— Mp (19)

T<m =gef \e.max: Ma—=MpB—= (Ma— MpJ) (20)

In (21) we give the Curry-Howard isomorphism for respedyiveimination and
introduction of—, and this additional type of monadic functional applicataord
abstraction.

[z Al;

x:A f:A—o*B_OE m;B
A«(f)(x) : B * x<m:A—, B

(21)

In the next section we show how the formal machinery intreduicere can be
used to analyse expressions involving side issue coritritgit

4 Monadsin action

In this section we present the details of our proposal. We Btaworking out in
some detail the analysis of the contribution to the CI dinmmsf an expressive.
We then move to another example illustrating the interactietween dimensions
in the case of presupposition. This example allows us to seethe monadic
approach controls the information flow in the desired manner

Consider the sentence in (22).

(22) John loves goddamn Marilyn Manson.

We assume a standard constituent structure and assoaiaiettbhal structure. In
particular we take it thajoddammworks as a regular modifier that contributes
to the ADJUNCT feature ofMarilyn Manson In Table 1 we present the meaning
constructors that form our lexicon.

Lexical entries that contribute only to the at-issue dinemsre assigned a
meaning term very similar to the standard one. The one difie is in the ‘lifting’
of their meaning term to the monadic level by means ofth@apping. The expres-
sive goddamris instead given an interpretation that makes full use ohtb@adic
setting. First of all the glue term associated with it deadtee fact that the ex-
pressive composes with the surrounding lexical material way that produces a
contribution to the CI dimension. The expressive takes tRédrilyn Mansonas

WORD MEANING TERM + GLUE TERM

John n(j) < Jj

loves n(love) :m —o j —o 1

Marilyn Manson n(m) : m

goddamn Ax.zx Ay.write(—~(y)) * Aon(y) : m —o, m

Table 1: Lexicon forJohn loves goddamn Marilyn Manson

[goddamfy : m —, m [Mansor} : m
[loved : m —o j —o 1 A, ([goddamh)([Mansor) : m
[John : j A([loved)(A.([goddamf)([Mansor})) : j — 1
A(A([loved)(A.([goddami)([Mansoi})))([JohR) : 1

Figure 1: Glue Semantics proof fdohn loves goddamn Marilyn Manson

its argument via the special implicatier,. In this way it can control the evalua-
tion of the meaning term corresponding to the NP and extrant ft the necessary
information. The meaning term associated withddamnillustrates how this is
done: the expressive takes the NP as its firatgument, extracts from it its value
(the referent of the NP) and, via theoperator, passes in the background the side-
issue material that may have been computed by its argumethié case none).
The referent is bound to the variabjeand using an auxiliary operatiomrite
the application of the predicate. to y is logged to the Cl dimensionurite is

a simple function, taking a proposition as its argument astdrning a pair of a
vacuous value and a collection of propositions containinly the argument. We
can therefore assign terite the typet — Writer 1, wherel is a domain with
a single inhabitant also named write is defined as follows:

write = Ap.(L,{p}) (23)

The final step performed by the denotationgoiddamris to return the interpreta-
tion of its argument without any additional change to thdextion of CI proposi-
tions. Notice that the value returned by thei te operation is not used anywhere
in the lambda term and, following a common practice in prograng languages,
we indicate this by binding it with an underscére.

The Glue proof is shown in Figure 1. The proof makes one useeohéw rule
for the elimination of—,, which is reflected in the proof term by the use of the
special applicatiom.,.

The resulting proof term encapsulates the instructionséonputing the de-
notation of the utterance. The final result will be a pair whifisst projection and
second projection represent respectively the at-issusideeissue dimensions. As
discussed abovgoddamnwill take the denotation oMarilyn Mansorto create a

*We could have of course used any variable different from

new computation whose result is the denotatioMatrilyn Mansonbut that con-
tributes a proposition to the Cl dimension. The other apgilims are all instances
of standard functional application lifted to the monadieele the monads corre-
sponding to the function and the argument are ‘run’, thelues applied and, in
the background, the CI contributions are collected. To see this happens we
will show the full expansion of the term. We will use the syrhbe to indicate a
reduction and decorate it with subscripts indicating whitdps are taken: we will
use lex-def for the use of lexical postulatgsjef andx-def for the definition ofy
andx, A-def andA,-def for the definition ofA and A,., write-def for the defini-
tion of write, andg for beta reduction (including the reduction of projectiamsl
unions).

The term we are reducing is repeated in (24).

A(A([loved))(A.([goddamiy)([Mansor)))([Johr) (24)

We start by reducing the subteri. ([goddamiy)([Mansorf).

A*([[go‘jdam’ﬂ’)([“\/lansmﬂ) ~?lex-def+A.-def
(Ax.x % Aywrite(—~(y)) * A_n(y)) (m,{ }) ~
(m, { }) x Aywrite(~(y)) x A-n(y) ~ edlef

(m((Ay-write(~(y)) x An(y)) m),
{ } Um((Aywrite(~(y)) x A-n(y)) m)) (25)

The term(A\y.write(— (y))*xA_.n(y)) m appears two times in (25); we show here
its reduction and plug the result directly in (25) below.

(Aywrite(—(y)) * A-n(y)) m ~p

write(—~ (m)) * A_n(m) ~urite-def

(L, {~(m)}) * A_n(m) - dlef
(m1((A-n(m)) L), {~(m)} Uma((A-n(m)) L)) ~ B4 n-def
(m((m, { 1), {~ (m)} Uma((m, { }))) ~5

(m, {~(m)}) (26)

Substituting (26) fof Ay.write(—~(y)) x A_.n(y)) m in (25) we obtain

(m1((m, {~ (m)})), { } Uma((m, {~(m)}))) (27)

which, after computing the projections and the union, reduo

(m, {~(m)}) (28)

In words, the denotation of the Nfpddamn Marilyn Mansors a pair whose first
projection is the individual Marilyn Manson and whose sat@nojection is the
proposition stating a negative judgement about that iddii.

We continue the reduction by plugging (28) in (24) and exjpandhe inner
application oflovesto goddamn Marilyn Mansan

A(A([loved)({m, {~(m)}))([John) ~lex-def A-def

A{love, { }) % Af-(m, {~(m)}) « Az.n(f x))([Johr) (29)
As was the case before, the expansion ofdloperator requires us to compute the
same term A\ f.(m,{—~ (m)}) x \x.n(f z)) love) twice. We reduce here indepen-
dently and plug it in (29) below.

(Af-{m, {~(m)}) x Az (f z)) love B

(m,{~(m)}) * Az.n(love) = s-def

(m1((Az.n(love z)) m), {~(m)} Uma((Az.n(love x)) m)) ~giy-det

(m1({love m, { })), {~(m)} Ums((love m,{ }))) ~p

(love m,{—~(m)}) (30)

The first and the second projection of (30) are needed in thareston of (29) as
show in the following reduction steps:

A((love, { }) *x Af-{m, {~(m)}) * Az.n(f))([JohA) ~=def

A((m1({love m, {~(m)})),

{ } Um((love m, {~(m)})))([Johr}) ¥
A((love m, {~ (m)}))([John) ~lex-deft A-def
(love m, {~(m)}) » Af-(3,{ }) * Az.n(f) (31)

Also in this case we can avoid clutter in the derivation byudg only once the

term(\f.(5,{ }) x A\z.n(f x)) (lovem) needed for the expansion of te@perator:

(Af-(. A 1) * Azn(f @) (love m) ~p

(3.4 1) * Az.n(love m x) ~ x-def

(m1(Azn(love m z) 5), { } Uma(Az.n(love m z))) .

(m1((fovem j,{ })),{ } Uma((love m j,{ }))) ~p

(lovem j,{ }) (32)
We proceed by plugging (32) in (31):

(love m, {~(m)}) x Af.(j, { }) * Az.n(f z) ~ s-def

(m1({love m j, { })),{—~(m)} Uma({lovem j,{ }))) ~p

(lovem j,{~(m)}) (33)

The first projection is the proposition that John loves MariManson and the
second projection is the proposition stating a negativggutent about Marilyn
Manson.

We mentioned in Section 2 that monads can also be used to rotbdeltypes
of semantic phenomena. We discuss here an example invadviman-restrictive
relative clause and a presupposition trigger. Considefalif@ving sentence:

(34) John, who likes cats, likes dogs also.

The sentence contributes two propositions to the commanngkol) the fact that
John likes cats and 2) the fact that John likes dogs. Howdéeeptesupposition
trigger also additionally imposes a test on the structure of the commauirgt.
The speaker expresses with this item that in the common dragnmust already
have some information corresponding to the fact that Jdkes [Isomething be-
sides cats. The information is indeed already presentgasah-restrictive relative
clause informs us that John likes dogs and it dodsekwe the position in which we
are required to apply the test to the common ground. Our sisalill capitalize
on the fact that monads can be layered to create new types rddadhat com-
bine their ability to enrich meaning. We will therefore deea monad that jointly
deals with multidimensionality and presupposition by cosipg the monad we
have described for multidimensional meaning with a monake&p track of pre-
suppositions. Fortunately, we can also useWréer monad for the treatment of
presupposition.

To combine two monads we actually need to consider an additimonstruct:
monad morphisms. For our purposes it will be sufficient to understand monad-mo
phisms as monad “factories”. The idea is that a monad marph&n be instanti-
ated as a monad by specifying the monads we want it to comhthe Whe monad

WORD MEANING TERM + GLUE TERM

comma MALjxAx.lxAfwrite(f z)*A-.n(x):j —ox (j —o 1) —ou j

also AA0AS.S x Ax.v *x Af.ox Ay.lift(check(Iz.f zx Az # y)) *
An(fyz):(d—oj—ol)—oud—o.j—oul

John — n(j):j

who NAP.P):(j — 1) — (j — 1)

likes (like) : ¢ — j —o 1

cats n(tx.cat*(x)) : ¢
(
(

3

likes n(like) :d — j —o 1
dogs n(wx.dog*(x)) : d

Table 2: Lexicon forJohn, who likes cats, likes dogs also

morphisms will provide some additional enrichment to thi@iimation stored in

the monad we wrap it around. In our case we simply take the thowaphisms to

add an additional component to our meanings. This meansh@aheanings we
will end up with will be formed by a pair whose first componesitanother pair.

To be able to use the functions defined for the internal moradlao need a way
to lift them to the level of the more complex monad. This carlbee in our case
using the following functiorLift:

lift(m) = m* Az.n({x,{ })) : Writer &« — Writer (Writer «) (35)

wherex andn are the operator for the monad around which we wrap the mor-
phism®

In Table 2 we list the relevant lexical entries. The entriesthe at-issue-
only items are constructed in the same way discussed abgvapplying then
operator. The only difference here is thyds the operator bringing us to the monad
composed by the multidimensional monad (which starts as machonorphism)
together with the presuppositional ormammais a silent operator that we borrow
from Potts’s and Arnold and Sadler's analysis of non-retie relative clauses.
Looking at the associated glue logic term we see tisatmatakes 1) the resource
corresponding to the NP to which the relative clauses isladichand 2) the relative
clause, and returns the NP resource. These resources argrahvia the second
monadic functional application, indicated in the term wville special implication
—o,. Behind the scenegommasaturates the denotation of the relative clause, a
one place predicate, with the denotation of the NP, stomesetbulting proposition
in the CI storage using the now familiarite function and returns the denotation
of the NP as its final value.

The denotation o&lsointroduces the new presuppositional monadic level. As
was the case witktomma its glue term is built using the special implicatien,,

®Notice that although we say that we wrap the monad morphismnarthe monad the result in
our case will be “inside-out”: the additional informatiorpeessed by the monad morphism will end
up in the internal pair, while the information coming fronetsimple monad will be collected in the
second component of the external pair.

a signal of the fact that this lexical item performs some tiolgial work besides
returning a value. We analys#soas a sentential operator that takes as arguments
the verb, the subject and the object of the sentence. Thit tgselis the one corre-
sponding to the propositional value of the at-issue compbokthe sentence. The
meaning term describes the semantic operations corresgptathe evaluation of
alsa The meaning of the verb, the object and the subject areatettaand bound
respectively to the variableg, y andx. The next step is to perform a side-effect
in the presupposition monad. As stated earlier, the premifign monad is really
just another instance of th&friter monad, again constructed as a pair of a value
and a set of propositions. The presupposition monad is definexactly the same
way as the multidimensional monad is. The function we see,baeck, is really
just another name for the functiairite, used here to clarify the levels at which
the operations take placeheck adds the presuppositional condition that in the
model in which the sentence is evaluated there has to be éy emstuch that the
subject) likes z but z is different from the objecty). This operation is lifted to
the level of the multidimensional monad viaft and the computation terminates
by returning the application of the verb to its arguments.

The resulting proof term is show in (36):

A.(Ax(As([alsd)([likes]))([dogd) (A«(A«([comm4)([john]))
(A([whd])(A([likes])([catg)))) - 1 (36)

After reducing the term we obtain the following pair:

((like(j, vx.dog™ (x)), {like(j, tx.cat™ (x))}),
{3z.like(j,z) N z # wx.dog™(x)}) : (37)

The first component is a pair containing the at-issue prdiposthat John likes

dogs and the side-issue proposition that John likes catss&ébond component of
the outer pair lists the conditions that must be met to satts presuppositions
triggered in the evaluation of the sentence. In this cagepttly condition is that

there must be something else besides dogs that John likesproposition that

satisfies this condition can be found in the CI dimension.

5 Conclusion

In this paper we presented an analysis of multidimensios@alastics based on a
monadic analysis of meaning. Our approach exploits theadikin capabilities
of monadic mappings in order to maintain a largely standamdjimensional glue
logic for composition while assigning more complex measing the linguistic
resources. The only innovation in the glue logic is the idtiction of a new impli-
cation,—o,.

"We usewr.dog™(z) andz.cat*(z) to denote respectively the contextually relevant pluraj do
individual and the contextually relevant plural cat indival.

We started by discussing the proposal of Arnold and Sad@tQRto model
multidimensional meaning in Glue Semantics by the use ohsareconjunction.
While their approach is capable of accounting for the baate,dt does so at the
price of breaking the resource sensitive contract of lilegic. Our approach does
not contravene this fundamental assumption of Glue Sensarii the same time,
our approach seems more flexible and general, as it can beeddaplifferent sce-
narios, in particular if we decide to further differentiaten-at-issue contributions.
Monads allows us to retain the simple, familiar compos#iaonfigurations in the
unidimensional case, while at the same time composing narplex objects on
the meaning side of the derivation. Another promising cttaréstic of the mon-
adic approach is the possibility of using the same abstnagtio deal with different
semantic phenomena.

The analysis of example (34), presented in Section 4, ptirttee fact that the
interaction between dimensions may be more complex thangusy theorized.
Here we have just started sketching a possible analysisrimstef layering of
monadic mappings. We leave for future work the study of tlifeidint varieties of
contexts that make the picture about meaning interaction® iromplex and how
these interactions can be reconstructed in terms of ugifgiinciples.

References

AnderBois, Scott, Brasoveanu, Adrian and Henderson, Rab@t0. Crossing the
Appositive/At-issue Meaning Boundary. In Man Li and Davidtt (eds.) Pro-
ceedings of SALT 20, pages 328—346.

Arnold, Doug and Sadler, Louisa. 2010. Pottsian LFG. In 3firi Butt and
Tracy Holloway King (eds.)Proceedings of LFG10, pages 43-63, Stanford,
CA: CSLI Publications.

Asudeh, Ash. 2004Resumption as Resource Management. Ph. D.thesis, Stanford
University.

Asudeh, Ash. 2012The Logic of Pronominal Resumption. Oxford: Oxford Uni-
versity Press, to appear.

Barr, Michael and Wells, Charles. 198mposes, Triples, and Theories. Springer-
Verlag.

Bresnan, Joan. 200Lexical-Functional Syntax. Oxford: Blackwell.

Dalrymple, Mary (ed.). 199%emantics and Syntax in Lexical Functional Gram-
mar: The Resource Logic Approach. Cambridge, MA: MIT Press.

Dalrymple, Mary. 2001Lexical Functional Grammar. San Diego, CA: Academic
Press.

Dalrymple, Mary, Kaplan, Ronald M., Maxwell Ill, John T. arthenen, An-
nie (eds.). 1995Formal Issues in Lexical-Functional Grammar. Stanford, CA:
CSLI Publications.

Dalrymple, Mary, Lamping, John and Saraswat, Vijay. 199B8GLSemantics via
Constraints. InProceedings of the Sxth Meeting of the European ACL, pages
97-105, European Chapter of the Association for Computali©inguistics,
University of Utrecht.

Giorgolo, Gianluca and Unger, Christina. 2009. Corefegewithout Discourse
Referents: a non-representational DRT-like discourseaséins. In B. Plank,
T. Kim Sang and T. Van de Cruys (edsGpmputational Linguistics in the
Netherlands 2009, LOT Occasional Series, No. 14, pages 69-81, LOT.

Girard, Jean-Yves. 1987. Linear Logitheoretical Computer Science 50(1), 1—
102.

Kaplan, Ronald M. and Bresnan, Joan. 1982. Lexical-FunatiGrammar: A For-
mal System for Grammatical Representation. In Joan Bregthi) The Men-
tal Representation of Grammatical Relations, pages 173—-281, Cambridge, MA:
MIT Press, reprinted in Dalrymple et al. (1995, 29-135).

Moggi, Eugenio. 1989. Computational Lambda-Calculus adadls. IrProceed-
ings of the Fourth Annual Symposium on Logic in computer science, pages 14—
23, IEEE Press.

Moggi, Eugenio. 1990. An Abstract View of Programming Laages. Technical
Report, Laboratory for Foundations of Computer Sciencgadtenent of Com-
puter Science, University of Edinburgh, Edinburgh.

Potts, Christopher. 2003he Logic of Conventional Implicatures. Oxford: Oxford
University Press.

Potts, Christopher. 2007. The Expressive Dimensibeoretical Linguistics 33(2),
165-197.

Shan, Chung-chieh. 2001. Monads for Natural Language S#main Kristina
Striegnitz (ed.)Proceedings of the ESI_LI-2001 Sudent Session, pages 285—
298, 13th European Summer School in Logic, Language andnhaftion.

Wadler, Philip. 1992a. Comprehending Monads.Mathematical Structures in
Computer Science, pages 61-78.

Wadler, Philip. 1992b. The Essence of Functional Progrargmin POPL ’92:
Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 1-14, New York, NY, USA.

	Introduction
	arnold;sadler10
	Monads
	Monads in action
	Conclusion

