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Abstract

Machine translation can be carried out via transfer between source and
target language deep syntactic structures. In this paper, we examine core
parameters of such a system in the context of a statistical approach where
the translation model, based on deep syntax, is automatically learned from
parsed bilingual corpora. We provide a detailed empirical investigation into
the effects of core parameters on translation quality for the German-English
translation pair, such as methods of word alignment, limits on the size of
transfer rules, transfer decoder beam size, n-best target input representations
for generation, as well as deterministic versus non-deterministic generation.
Results highlight just how vital employing a suitable method of word align-
ment is for this approach as well as the significant trade-off between gains
in Bleu score and increase in overall translation time that exists when n-best
structures are generated.

1 Introduction

Statistical Machine Translation via deep syntactic transfer is carried out in three
steps: (i) parsing the source language (SL) input to SL deep syntactic represen-
tation, (ii) transfer from SL deep syntactic representation to target language (TL)
deep syntactic representation, (iii) generation of TL string. Figure 1 shows how
an example German sentence is translated into English. Bojar and Hajič (2008)
present an English to Czech SMT system that uses the Functional Generative De-
scription (FGD) (Sgall et al., 1986) Tectogrammatical Layer (T-layer), i.e. labeled
ordered dependency trees, as intermediate representation for transfer, and integrate
a bigram dependency-based language model into decoding. Riezler and Maxwell
(Riezler and Maxwell, 2006) use the Lexical Functional Grammar (LFG) (Ka-
plan and Bresnan, 1982; Bresnan, 2001; Dalrymple, 2001) functional structure (f-
structure) for transfer, an attribute-value structure encoding of bilexical labeled de-
pendencies and atomic value features, and extract transfer rules semi-automatically
from the training data, by automatically word aligning surface-form sentences us-
ing Giza++ (Och et al., 1999) before manually detecting and automatically correct-
ing systematic errors. Most of the transfer rules are automatically extracted from
the parsed training data with some transfer rules manually written and deep syntax
language modeling is carried out after decoding, on the n-best output structures.1

Like Riezler and Maxwell (2006), we use the LFG f-structure as the intermedi-
ate representation for transfer, but in contrast we investigate the feasibility of deep
syntactic transfer when translation models are learned fully automatically. In addi-
tion, we integrate a deep syntax language model to decoder search, similar to Bojar
and Hajič (2008) but increase to a tri-gram model. Again in contrast to Riezler and
Maxwell (2006) where language modeling is applied to the n-best structures output

†This work was partly funded by a Science Foundation Ireland PhD studentship P07077-60101.
1Personal communication with authors.



Figure 1: Deep syntactic transfer example via LFG f-structures



after decoding, we integrate language modeling to decoder search. Our empirical
evaluation highlights the importance of selecting methods of word alignment most
suitable for deep syntax, as well as notable trade-offs that exist between currently
achievable translation speed and the quality of translations produced.

Ding and Palmer (2006) use dependency structures for translation, but the ap-
proach they take is not strictly deep syntactic transfer, as they use dependency
relations between surface form words as opposed to lemmas and morpho-syntactic
information, and additionally they use information about source language word or-
der during translation, arguably losing the high level of language pair independence
afforded by fully deep syntactic transfer.

2 Translation Model

Similar to PB-SMT (Koehn et al., 2003), our translation model is a log-linear com-
bination of several feature functions:

p(e|f) = exp
n∑

i=1

λihi(e, f) (1)

2.1 Word Alignment

An alignment between the nodes of the SL and TL deep syntactic training struc-
tures is required in order to automatically extract transfer rules. In our evaluation,
we investigate the following three methods of word (or node) alignment, all us-
ing Giza++ (Och et al., 1999) for alignment and Moses (Koehn et al., 2007) for
symmetrization:

• SF-GDF: input the surface-form bitext corpus to Giza++ and symmetrize
with grow-diag-final algorithm.2 Map many-to-many word alignment from
each surface-form word to its corresponding local f-structure. This yields a
many-to-many alignment between local f-structures and was used in Riezler
and Maxwell (2006).3

• DS-INT: reconstruct a bitext corpus by extracting predicates from each local
f-structure, input the reconstructed bitext to Giza++, then use the intersection
of the bidirectional word alignment for symmetrization. This yields a one-
to-one alignment between local f-structures. This method takes advantage of
the predicate values of f-structures being in the more general lemma form,
and should suffer less from data sparseness problems.

2Grow-diag-final works as follows: Word alignment is run in both language directions, for ex-
ample, German-to-English (f2e) and English-to-German (e2f). For any given training sentence pair,
each run (e2f and f2e) can yield a different set of alignment points between the words of the train-
ing sentence pair. There are many ways to combine these two sets, grow-diag-final begins with the
intersection, then adds unaligned words.

3It should be noted that we use a different method of transfer rule extraction, we do not correct
word alignment and do not include hand-crafted transfer rules.



• DS-GDF: reconstruct a bitext corpus by extracting predicates from each local
f-structure, input the reconstructed bitext to Giza++ (as in DS-INT), but use
grow-diag-final for symmetrization yielding up to many-to-many alignments
between local f-structures.

2.2 Transfer Rule Extraction

Similar to PB-SMT, the transfer of a SL deep syntactic structure f into a TL deep
syntactic structure e can be broken down into the transfer of a set of rules {f̄ , ē}:

p(f̄ I1 |ēI1) =
I∏

i=1

φ(f̄i|ēi) (2)

In PB-SMT, all phrases consistent with the word alignment are extracted, with
shorter phrases needed for high coverage of unseen data and larger phrases im-
proving TL fluency (Koehn et al., 2003). With the same motivation, we extract
all transfer rules consistent with the node alignment. Figure 2 shows a subset of
the transfer rules extracted from the f-structure pair in Figure 1.4 We estimate the
translation probability distribution using relative frequencies of transfer rules:

φ(f̄ , ē) =
count(ē, f̄)∑
f̄i
count(ē, f̄i)

(3)

This is carried out in both the source-to-target and target-to-source directions.5

3 Deep Syntax Language Model

In deep syntactic transfer, the output of the decoder is a TL deep syntactic structure
with words organized in the form of a graph (as opposed to a linear sequence
of words in PB-SMT). A standard surface-form language model cannot be used
during transfer decoding because no surface-form representation of the TL deep
syntactic structure is available. It is still important for the model to take TL fluency
into account so that the structures it outputs contain fluent combinations of words.

A standard language model estimates the probability of a sequence of English
words by combining the probability of each word, wi, in the sequence given the
preceding sequence of i−1 words. In a similar way, we estimate the probability of
a deep syntactic structure d, with root node wr consisting of l nodes, by combin-
ing the probability of each node, wi, in the structure given the sequence of nodes
linked to it via dependency relations that terminates at the node’s head. We use the

4Morphosyntactic information is left out.
5Since we use Factored Models for translating morpho-syntactic information, when computing

the translation model we ignore differences in morpho-syntactic information.
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Figure 2: Extracted LFG F-structure transfer rule



function m, to map the index of a node to the index of its head node within the
structure.

p(d) =
l∏

i=1

p(wi|wr, ..., wm(m(i))wm(i)) (4)

In order to combat data sparseness, we apply the Markov assumption, as is
done in standard language modeling, and simplify the probability of a deep syn-
tactic structure by only including a limited length of history when estimating the
probability of each node in the structure. A trigram deep syntax language model
estimates the probability of each node in the structure given the sequence of nodes
consisting of the head of the head of the node followed by the head of the node as
follows:

p(d) ≈
l∏

i=1

p(wi|wm(m(i)), wm(i)) (5)

Figures 3(a) and 3(b) show how the trigram deep syntax language model probabil-
ity is estimated for the English f-structure in Figure 1.6

4 Decoding

In the (i) parse, (ii) transfer, and (iii) generate architecture of the system, decod-
ing carries out step (ii), the transfer of a SL deep syntactic structure to the target
language. Decoding of the SL structure is top-down starting at the root of the struc-
ture (usually the main verb of the sentence). Similar to PB-SMT, where decoding
search space is exponential in sentence length, our search space is exponential in
the number of SL nodes, and we use beam search to manage its size. We use
an adaptation of Factored Models (Koehn and Hoang, 2007) to translate morpho-
syntactic information.

5 Generation

Generation of the TL output is carried out using XLE rule-based generator (Kaplan
et al., 2002), using an English precision grammar (Kaplan et al., 2004; Riezler
et al., 2002), designed only to generate fluent sentences of English. When the
precision grammar alone is used for generation it often fails due to imperfect input
resulting from the transfer step of our system. A fragment grammar is used as a
back-off in such cases, to increase the coverage. For some TL structures however,
even when the fragment grammar is used the generator can still fail due to ill-
formed input structures. The decoder outputs an m-best list of TL structures, the

6Argument sharing can occur within deep syntactic structures and in such cases we use a sim-
plification of the actual deep syntax graph structure by introducing the restriction that each node in
the structure may only have a single mother node (with the exception of the root node which has no
mother node), as this is required for the m function.



(a)

(b)
p(d) ≈ p( enhance | <s>)

p( proposal | <s> enhance )
p( the |enhance proposal )
p(</s> | proposal the )
p( safety | <s> enhance )
p( the | enhance safety )
p(</s> | safety the )
p( of | enhance safety )
p( feed | safety of )
p(</s> | of feed )

Figure 3: Deep Syntax Language Model Example



content of which tends to vary a lot with respect to lexical choice. By increasing
the number of structures input to the generator we can improve overall MT system
coverage.

The generator is also non-deterministic, generating a k-best list of output sen-
tences for each input TL structure. For (English) grammatical structures, the value
of k is usually low, with the list containing a small number of legitimate variations
in word order, and for ungrammatical or ill-formed input structures, k is usually
very large, with the lists consisting of many permutations of the same words. Since
the transfer decoder outputs anm-best list of structures and for each of those struc-
tures we generate k strings, the size of the n-best list for the overall MT system is
therefore m ∗ k.

Besides increasing coverage, by increasing the value of m, increasing either m
or k (or both) also has the potential to reduce search error and result in improved
MT system performance. Although the size of m can easily be changed to any de-
sired value for the decoder (by simply changing a value in the configuration file),
the generator only allows three options for deterministic versus non-deterministic
generation: shortest and longest, generating either only the shortest or longest sen-
tence with respect to number of words or allstrings generating all possible strings
given an input structure according to the generation grammar. We refer to the three
available generation options as k-options.

In the overall translation model, we include some features that are applied to
the TL surface-form sentence after generation.7 To stay true to the deep syntax
approach, we do not use features that use information about the source language
surface form word order. We compute a standard language model probability for
the generated string and a grammaticality feature function, using information out-
put by the generator about the grammaticality of the string. In addition, we omit
scope features from f-structures for rule extraction, transfer and generation.

6 Other Features

In addition to feature functions we described thus far, we include the following
additional features:8

• lexical translation model for source to target and target to source directions

• transfer rule size penalty (phrase penalty)

• TL node penalty (word penalty)

• fragment penalty
7Note that if we did not do this then many the n-best translations would be given the same score,

because generation is non-deterministic.
8Equivalent features used in PB-SMT are in brackets.



• default transfer rule penalty9

• morpho-syntactic rule match feature10

7 Evaluation

We provide a detailed evaluation of the system to investigate effects on MT per-
formance of using (i) different methods of word alignment, (ii) restricting the size
of transfer rules by imposing different limits on the number of nodes in the LHS
and RHS of transfer rules used for transferring SL structures to the TL,11 (iii)
different beam sizes during decoding, (iv) generating different sized m-best TL
decoder output structure lists, and (v) different k-options for deterministic versus
non-deterministic generation.

German and English Europarl (Koehn, 2005) and Newswire sentences length
5-15 words were parsed using using LFG Grammars (Kaplan et al., 2004; Riezler
et al., 2002), resulting in approx. 360K parsed sentences pairs with a disambigua-
tion model used to select the single best parse. A trigram deep syntax language
model was trained on the LFG-parsed English side of the Europarl corpus, with
approximately 1.26M English f-structures (again using only the single-best parse)
by extracting all unigram, bigram and trigrams from the f-structures before run-
ning SRILM (Stolcke, 2002). The surface-form language model, used after gener-
ation, consisted of the English side of the Europarl, also computed using SRILM.
Word alignment was run on the training data yielding an alignment between lo-
cal f-structures for each f-structure pair in the bilingual training data. All transfer
rules consistent with this alignment were extracted. Minimum Error Rate Train-
ing (MERT) (Och, 2003) was carried out on 1000 development sentences for each
configuration using Z-MERT (Zaidan, 2009).12

We restrict our evaluation to short sentences (5-15 words) and use the test set
of Koehn et al. (2003), which includes 1755 German-English translations.13 We
carry out automatic evaluation using the standard MT evaluation metric, Bleu (Pa-
pineni et al., 2002), in addition to a method of evaluation used to evaluate LFG

9When a SL word is outside the coverage of the transfer rules, it gets translated using a default
rule that translates any SL word as itself (Riezler and Maxwell, 2006).

10For high coverage of transfer rules we allow a fuzzy match between morpho-syntactic informa-
tion in the SL input structure and those of transfer rules. This feature allows the system to prefer
translations constructed from transfer rules that matched the SL structure for a higher number of
morpho-syntactic factors.

11For example, if the limit is 2, only rules with a maximum of 2 nodes in the LHS and a maximum
of 2 nodes in the RHS are used for transfer.

12Settings for MERT training were as follows: beam=20, m=100, k=1, k-option=shortest. MERT
was carried out separately for each method of word alignment. In all other experiments weights for
the DS-INT configuration were used.

13The test set was selected on the basis that it is a commonly available test set of short sentences
of German to English. Another option would have been to use short sentences from one of the WMT
test sets. However, the WMT test sets only contain a relatively low number of short sentences, so
instead we revert to the 2003 test set, though a little outdated, is the current best option available.



Align. Pts. Rules
Total Ave. Total Ave. Bleu Prec. Rec. F sc.

SF-GDF 4.5M 12.5 2.9M 8.1 1.61 15.83 5.46 8.12
DS-GDF 4.1M 11.5 9.7M 27.1 6.04 29.13 28.17 28.64
DS-INT 2.5M 6.9 13.9M 38.8 16.18 40.31 41.25 40.78

Table 1: Effects of using different methods of word alignment. Note: rule size
limit = none, beam = 100, m = 100, k = 1, k-option = shortest

parsers comparing parser-produced f-structures against gold-standard f-structures.
The method extracts triples that encode labeled dependency relations, such as
subject(enhance,proposal) and object(enhance,safety) for example, and triples en-
coding morpho-syntactic information, for example case(proposal,nominative) or
tense(enhance,future), from each parser produced f-structure and corresponding
gold-standard f-structure, counting matching triples to finally compute a single
precision, recall and f-score computed over the triples of the entire test set.

We evaluate the highest ranking TL decoder output f-structure with an adapta-
tion of this method since we do not have access to gold-standard f-structures for the
test set. Instead we use the next best thing, the parsed reference translations. This
provides an evaluation that eliminates generator performance. Note, however, that
this method of evaluation is somewhat harsh when used for the purpose of MT eval-
uation. Since it was designed to evaluate parser output, it does not take differences
in lexical choice into account, so, for example, if the MT system produces the cor-
rect tense but a different lexical item for enhance, such as tense(improve,future), the
triple is counted as incorrect ignoring the fact that tense was in fact correct. Correct
triples, in the evaluation, are those where the correct lexical choice was made by
the system and the correct dependency relation (or morpho-syntactic information)
was produced.

7.1 Results

Table 1 shows statistics and results for each word alignment method. The deep
syntax intersection method of word alignment by far achieves the best result with
a Bleu score of 16.18. Results drop sharply when the grow-diag-final algorithm
is applied to deep syntax word alignment, with scores of 6.04 Bleu. The method
of word alignment that uses the surface-form bitext corpus for word alignment
achieves an extremely low score of only 1.61 Bleu.

Table 2 shows automatic evaluation results when different limits on rule size
are imposed (all for the best performing alignment method DS-INT). As the limit
is increased from 1 node per LHS and RHS to 7 nodes, so does the Bleu score,
from 10.09 to 16.55, with a slight decrease, to 16.18, when no limit is put on the
size of transfer rules. The biggest increase is seen when we compare the results
when the limit is increased from 1 node (10.09 Bleu) to 2 nodes (14.94 Bleu), an
increase of almost 5 percentage points absolute. In general, precision, recall and



Limit Bleu Prec. Recall F-score
1 10.09 38.67 33.89 36.12
2 14.94 41.55 39.09 40.28
3 15.85 41.50 39.93 40.70
4 16.31 41.03 40.25 40.63
5 16.14 40.75 40.50 40.62
6 15.52 40.31 40.71 40.51
7 16.55 40.46 41.03 40.74

none 16.18 40.31 41.25 40.78

Table 2: Effects of limiting transfer rule size. Note: word alignment = DS-INT,
beam = 100, m = 100, k = 1, k-option = shortest

f-score also increase, as we increase the limit on transfer rule size, for example,
from an f-score of 36.12 when the limit is 1 to 40.74 for a limit of 7.

Results for the system for different decoder beam sizes are shown in Table
3.14 Results show that changing the beam size does not have a dramatic effect on
the system performance. However, the difference between the highest and lowest
scores is approximately half a Bleu point, which is a notable decrease in trans-
lation quality when the beam is increased from size 10 to 400. This is counter
to our expectations, since with an increase in beam size we expect to observe an
improvement in Bleu score since more target language f-structures are reached by
the decoder search. This indicates that the model used to rank target language so-
lutions is introducing error as some target language f-structures reached when the
beam size is 400 are incorrectly ranked higher than other solutions reached when
the beam size is 10. In addition, due to the extensive resources and time required to
carry out minimum error rate training for the system, the same weights were used
for all beam sizes (via optimization with a beam size of 100), and the particular
weights may by chance be more suited to solutions reached by a beam size of 10.
Further investigation is required before we can make any more general statement
about what beam size might be best for f-structure transfer.

Table 4 shows automatic evaluation results for different m-best list sizes.15

Results show that increasing the size of them-best list of TL structures produced by
the decoder, has a dramatic effect on system performance, with the largest increase
in results when we increase the size ofm from 1 (12.67 Bleu) to 10 (15.34 Bleu), an
increase of almost 3 Bleu points absolute. Results increase again when we increase
m to 100 (16.18 Bleu) and again for 1000 (16.57). We include Bleu scores for
when true casing is used, and, as expected, for all configurations the Bleu score

14Note in this experiment that results are lower relative to other experiments because m=1, as
when m is larger than the specified beam size, the decoder can increase the beam size in order to
ensure enough solutions.

15Precision, recall and f-scores are the same for each configuration, since scores are computed on
the highest ranking TL structure, which is the same in each configuration. Bleu-tc scores are for Bleu
evaluation with true casing.



Beam Bleu Prec. Recall F-score
1 12.76 40.61 41.19 40.90
5 12.84 40.70 41.54 41.11

10 13.03 40.79 41.43 41.11
20 12.83 40.69 41.31 41.00
50 12.69 40.35 41.18 41.00
100 12.67 40.31 41.25 40.78
200 12.67 40.24 40.99 40.61
400 12.52 40.06 40.78 40.78

Table 3: Effects of increasing the decoder beam size. Note: word alignment =
DS-INT, rule size limit = none, m = 1, k = 1, k-option = shortest

m-best list size Bleu
1 12.67
10 15.24
100 16.18

1000 16.57

Table 4: Effect of increasing the size of the m-best decoder output lists. Note:
word alignment = DS-INT, rule size limit = none, beam = 100, k = 1, k-option =
shortest. Precision = 40.31%, recall = 41.25%, f-score = 40.78%

drops when casing is taken into account, by approximately 1 Bleu point absolute.
Table 5 shows automatic evaluation results for different generation configura-

tions.16 The lowest result is seen for deterministic generation with k-option longest
(15.55), where the generator outputs the longest result, while selecting the shortest
generator output string for each TL structure results in an increase to 16.18 Bleu,
an increase of almost 1 Bleu point. When non-deterministic generation is used and
the generator produces all TL strings for the TL input structure the score increases
again to 17.29 Bleu.

16Precision, recall and f-scores are the same for each method, since scores are computed on the
highest ranking TL structure before generation is carried out.

k-option list size Bleu
longest 15.55
shortest 16.18
allstrings 17.29

Table 5: Deterministic versus non-deterministic generation. Note: word alignment
= DS-INT, rule size limit = none, beam = 100, m = 100. Precision = 40.31, recall
= 41.25 and f-score = 40.78 for three configurations.



7.2 Discussion

In the sections that follow, we provide some discussion of results observed.

7.2.1 Word Alignment

Results show that system performance varies dramatically depending on how word
alignment is carried out and this is caused by each word alignment method pro-
ducing different quality alignment points and constraining transfer rule extraction
differently (Table 1). The best performing method, DS-INT, produces the fewest
and highest quality alignment points and subsequently the best MT performance.

7.2.2 Limiting Transfer Rule Size

In general, as we increase the limit on transfer rule size (Table 2), results improve as
more fluent combinations of words in TL structures are produced. Larger snippets
of TL structure are also less likely to cause clashes with generation constraints.
The minor decrease observed when we change from a limit of 7 to no limit on
transfer rule size is probably due to a small number of erroneous transfer rules
being eliminated when transfer rule size is limited.

7.2.3 Decoder Beam Size

Increasing the beam size of the heuristic search does not dramatically increase MT
system performance (Table 3), with a beam size of 10 being sufficient and this is
probably due to the search being highly focused on lexical choice, as it is carried
out on lemmatized dependency structures with the translation of morpho-syntactic
information carried out independently of decoding, using an adaptation of Factored
Models.

7.2.4 M-best Decoder Output

Increasing the number of structures generated (Table 4) has a more dramatic effect.
When m is increased from 1 to 10, an increase of almost 3 Bleu points absolute
is observed and scores increase again when we move to 100 structures by almost
1 Bleu point. Increasing the size of m to 1000 results in an additional increase
of 0.39 Bleu points absolute, but a trade-off exists as the increase in computation
time required for generation by increasing m from 100 to 1000 is significant, from
approximately 2.33 to 26.75 cpu minutes per test sentence.

7.2.5 Deterministic vs. Non-deterministic Generation

Allowing non-deterministic generation (Table 5) results in a significant increase in
Bleu score. With respect to the trade-off in additional computation time required by
non-deterministic generation, non-deterministic generation indeed is worthwhile,



since the average time for generation is only increased by half a cpu minute per
test sentence, from 2.33 (shortest) to 2.83 (allstrings) cpu minutes.

8 Summary

A detailed evaluation of a German-to-English SMT via deep syntactic transfer sys-
tem was presented in which values of core parameters were varied to investigate
effects on MT output. Experimental results show that the deep syntax intersection
word alignment method achieves by far the best results for the system, with larger
rule size limits also improving translation quality as estimated by Bleu. Varying the
beam size does not show dramatic effects on MT performance, with a beam size
of only 10 being sufficient for the transfer-based system. In addition, significant
gains can be made by increasing the size of the m-best decoder output list to 100
and non-deterministic generation, however with the significant trade-off in overall
translation time introduced by generating from multiple target language structures.
In future work, we would like to investigate to what degree the same effects are
observed when the language direction is changed to English-to-German. Transla-
tion into German would be interesting for this approach, since German has more
free word order and richer morphology compared to English. However, signifi-
cant adaptation of existing generation technologies for German would be required
before this is possible, since generation from imperfect German f-structures is re-
quired.
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